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SUMMARY
This poster presents the problem of estimating the mixture parameter in two-component mixture model with one
unknown component. Given a sample X1, . . . , Xn of size n from a mixture H(x; θ) of two distribution functions F (x)
and G(x), where G(x) is unknown, an approach for estimating the mixture parameter θ is discussed. By utilizing the
behavior of the family of random variables {θ∗n(x), x ∈ [0, 1], n = 1, 2, . . .}, a number of properties of the estimator
are derived. In particular, it is shown that this family of random variables contains an unbiased estimator of the
mixture parameter. Based on the approach developed in [3], an inequality for the lower bound of the mixture
parameter and its estimator is derived, which serves as the mixture parameter estimator.

THE SETTING OF THE PROBLEM
Let X1, . . . , Xn be a sample of size n drawn from a distribution

function (d.f.) H(x; θ) of the form

H(x; θ) = θF (x) + (1− θ)G(x), (θ ∈ (0, 1)). (1)

In representation (1) F (x) is a known d.f., while d.f. G(x) and a pa-
rameter θ ∈ [0, 1] are unknown. This is a binary mixture problem (or
so called two-component mixture problem) and our aim is to estimate
(non-parametrically) the parameter θ. Here notations H(x), H(x; θ)
and Hθ(x) are used interchangeably just to emphasize the that θ is a
mixture parameter and d.f. H(x) depends on θ through the mixture
proportion.

Similar models can appear in many contexts. In multiple hypothesis
testing problem when the number of hypotheses is large (for exam-
ple in the analysis of differentially expressed genes, neuroimaging) the
distribution of p-values under the null hypotheses as a result of indepen-
dent statistical tests is uniform on the interval [0, 1] (under continuity
assumption), while under the alternative hypotheses is unknown (see,
[1, 2]). In terms of the model (1), F (x) is the uniform distribution
(the distribution of p-values under the null hypotheses) and G(x) is the
distribution of the p-values under the alternative, which is unknown.
In this context the aim is to estimate the proportion of false null hy-
potheses, that is, the mixture paramter θ.

In contamination problems under reasonable assumptions, distribu-
tion F (x) can be contaminated by some arbitrary distribution F0(x),
which yields a sample drawn from H(x) as in (1) (see, for example, [5]).
In astronomy, similar situations can arise quite often: once we observe
a variable of interest (for example, metallicity, radial velocity) of stars
in a distant galaxy, foreground stars from the Milky Way in the visi-
ble area, contaminate the sample. Stars in the galaxy can be difficult
to distinguish from those of foreground stars since we are able only to
observe the stereographic projections but not the 3D positions of the
stars ([9]). Proceeding from the well-known physical models for the
foreground stars, it is possible to constrain d.f. F (x) and in addition
to estimating the mixture parameter focus on estimating d.f. F0(x).
High Energy Physics also can be a source of similar problems, where
the evidence could be to have a significant peak at some position on
top of some known distribution with nice properties (see, [4, 7]).

In contrast to the usual classical mixture problem, where the mixture
consists of a combination of two or more, mainly specified or partially
specified distributions, the mixture in the right-hand side of (1) contains
an unknown component and hence suggested classical methods cannot
be applied here. Instead, the approach proposed in [3] to a binary sur-
vival model seems to be more promising to drive an inequality for the
mixture parameter and estimate its lower bound.

In the classical mixture problem (partially) specified components can
already be considered as a certain type of restriction imposed on the
family of distributions that together with other restrictions and as-
sumptions makes the problem well-defined, in particular, identifiable.
Basically, it is the identifiability of the model which makes it possible
to estimate the mixture parameter. If we proceed from this principle,
it seems impossible to estimate the mixture parameter without ensur-
ing identifiability of the model. Although imposing certain restrictions
makes model (1) well-defined enough, it still cannot ensure its identifi-
ability.

However, it seems that even without ensuring identifiability, one can
deal with the problem of estimating the mixture parameter θ in (1), in
particular, one can derive certain bounds for it. To derive a lower bound
for the mixture parameter θ in the model (1), without being specific,
we impose certain restrictions on the components of the mixture model.
First of all, we assume that

G(x) > F (x). (2)

This assumption arises, for example, in multiple testing and certainly
has practical application. Condition (2) still cannot guarantee the iden-
tifiability of the model, however it enables one to extract certain prop-
erties of the mixture parameter, in particular, it allows one to derive
the lower bound inequality for the mixture parameter θ and obtain its
estimator.

Without loss of generality we can assume that the support of d.f.
F (x) belongs to the interval [0, 1] (SF = suppF (x) ⊂ [0, 1]), otherwise
it could be transformed into the interval [0, 1]. Due to monotonicity,
reducing the support SF of d.f. F (x) does not affect condition (2),
that is, the inequality G(x) > F (x) remains valid for x ∈ [0, 1] and it

guarantees that the support SG of d.f. G(x) be a proper subset of the
support of d.f. F (x): SG ⊆ SF . In general, the support SG could be
any proper subset of SF of the forms [0, 1 − δ], [1 − δ, 1], [δ, 1 − δ]
for some 0 < δ < 1. For now we assume that SG = [0, 1 − δ], δ > 0.
Other type of supports could be considered in a similar way. Therefore,
it is enough to consider (1), defined on the interval [0, 1].

Thus, after some assumptions and restrictions we arrive at the fol-
lowing problem

Estimate the mixture parameter θ in the model

H(x; θ) = θF (x) + (1− θ)G(x), x ∈ [0, 1], (θ ∈ (0, 1)), (3)

with the conditions

G(x) > F (x), ∀x ∈ [0, 1] (4)

and
SG ⊂ [0, 1− δ], for some δ > 0. (5)

In addition, we assume that d.f.’s F (x) and G(x) are continuously
differentiable. It should be noted that among others, issues that bring
to similar problem were considered in [6, 10].

PROPERTIES OF THE FAMILY OF
R.V.’S {θ∗N(X), X ∈ [0, 1], N = 1, 2, . . .}

Theorem 1 Assume condition (4) holds. Let d.f.’s F (x) and
G(x) are continuously differentiable and satisfy the relation

F ′(x)

1− F (x)
≤ G′(x)

1−G(x)
. (6)

Then the expected value of the family of random variables
{θ∗n(x), x ∈ [0, 1]} is a monotonic non-increasing on the in-
terval [0, 1] function and θ ≤ E[θ∗n(x)] ≤ 1, x ∈ [0, 1].

For the proof of the theorem see [8].

Theorem 2 Let conditions (4) and (5) be satisfied. Then if
in addition to (6), the condition

2
F ′(x)

1− F (x)
≥ G′(x)

1−G(x)
(7)

also holds, then the variance σ2
θ∗n(x)

, defined as

σ2
θ∗n(x) =

H(x)(1−H(x))

n(1− F (x))2
. (8)

is a monotonic nondecreasing function of x for all x ∈ [0, 1].

A LOWER BOUND ESTIMATOR

Lemma 1 .
Let Xn = {X1, . . . , Xn} be a sample of size n drawn from d.f.
H(x). Then sample Yn = {Y1, . . . , Yn} of size n drawn from
the complementary cumulative distribution function (c.c.d.f.)
(1−H(x))/(1− F (x)) could be obtained from Xn by

y = H
−1

(
1−H(x)

1− F (x)

)
, H(x) = 1−H(x).

Proof. Since
H(x) = P {X > x} ,

hence for x ∈ [0, 1]

1−H(x)

1− F (x)
=
P {X > x}
1− F (x)

= P {Y > y} = H(y),

from which follows the statement of lemma.

Let us call Xn the original sample and Yn its transformed sample.

Theorem 3 Let Xn be the original sample and Yn be its trans-
formed sample and 1 ≤ k ≤ n. Assume the following condi-
tions hold:

G(x) > F (x), ∀x ∈ [0, 1], (9)

SG ⊂ [0, 1− δ], for some δ > 0, (10)

and
F ′(x)

1− F (x)
≤ G′(x)

1−G(x)
. (11)

Assume that ϕ(x) is a strictly decreasing function on the in-
terval [0, 1] such that ϕ(0) = −ϕ′(0) = 1 and satisfies the
relation

d2

dx2

[
ϕ−1

(
1−H(x)

1− F (x)

)]
≥ 0. (12)

Then for the mixture parameter in the model (3) the inequality

θ ≥ 1− H(X)− F (X)

F (X)(1− ϕ(Y RH(y0)))
(13)

holds and the estimator of its lower bound, which serves as an
estimator of the mixture parameter θ in the model (3), can be
defined as

θ∗n = max

{
1− k

n[1− ϕ(Y Rn(y0))]
, 0

}
, (14)

where Y is defined as

max {Y1, . . . , Yk} ≤ Y ≤ min {Yk+1, . . . , Yn} , k ≤ n, (15)

y0 ∈ (0, Y ), x0 is such that H(y0) · F (x0) = H(x0) and

Rn(y0) =
1

y0
ϕ−1

(
1−Hn(x0)

1− F (x0)

)
,

Hn(x) is the empirical d.f., constructed by the sample
{X1, . . . , Xn}.

Proof of the theorem is based on the approach developed in [3],
inequality (6), Lemma 1 and properties of the generalized hazard
function ϕ(x).
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