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Summary: Although not well-known, the Bernstein-von Mises theorem (BvM) is a so-called bridge between bayesian and frequentist asymptotics. Basically, it states that under mild conditions the posterior
distribution of the model parameter centered at the maximum likelohood estimator (MLE) is asymptotically equivalent to the sampling distribution of the MLE. This is a powerful tool especially when the classical
asymptotics is tedious or impossible to conduct while bayesian asymptotic properties can be obtianed via MCMC. However, in semiparametric setting with presence of infinite-dimensional parameters, as is e.g. Cox
model for survival data, the results regarding BvM are more difficult to establish but still not impossible. The proposed poster gives short overview of BvM results found in the survival analysis context.

Bernstein - von Mises theorem: the parametric case
Let Xi, i = 1, .., n be independent identically distributed random variables distributed according to Pθ, θ ∈ Θ ⊂ Rp, Θ open.

Let f (x, θ) be a probability density of Pθ with respect to Lebesgue measure. Suppose that π(θ) is an a priori probability density
on Θ which is continuous and positive in an open neighbourhood of the true parameter θ0. Suppose that ∂ log f (x, θ)/∂θ and
∂2 log f (x, θ)/∂θ2 exist and are continuous in θ. Further, suppose that I(θ) = −E

[
∂2 log f (x, θ)/∂θ2

]
is continuous, with

0 ≤ I(θ) ≤ ∞.

Let θ̂n be a maximum-likelihood estimator of θ based on X1, .., Xn.

Theorem 1 (Frequentist asymptotics for MLE of θ, [1]) Under certain regularity conditions

√
n(θ̂n − θ0)

D−−→ N (0, I(θ0)−1).

Let π(θ) denote the prior probability density of θ and πn(θ|x1, .., xn) denote the posterior density of θ given the observation

x1, .., xn. Further denote π?n(t|x1, .., xn) = n−1/2πn(θ̂n + t/
√
n|x1, .., xn). Then π?n(t|x1, .., xn) is the a posteriori density

of the rescaled parameter t =
√
n(θ − θ̂n). Let Π?(dt|x1, .., xn) be the probability measure with density π?(t|x1, .., xn)

and P n
θ be the joint distribution of X1, .., Xn.

Theorem 2 (Parametric Bernstein - von Mises, [5]) Let {Pθ, θ ∈ Θ} be differentiable in quadratic mean
at θ0 with nonsingular Fisher information Iθ0, and suppose that for every sequence of balls (Kn)n≥1 ⊂ Rp with
radii Mn →∞, we have

Π?(Kn|X1, .., Xn)
Pnθ0−−→ 1.

Then the posterior distribution Π?(dt|X1, .., Xn) of the scaled parameter t =
√
n(θ− θ̂), given X1, .., Xn, satisfies

sup
B∈Bp

|Π?(B|X1, .., Xn)− Φ(B)|
Pnθ0−−→ 0,

where Φ is the probability measure of normal distribution with mean zero and variance I(θ0)−1 and Bp denotes
the set of all Borel subsets on Rp.
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Figure 1. Example: Generate x1, .., xn, an n-sample from exponential distribution with the true parameter λ0 = 1 (first
row) and λ0 = 3 (second row). ML estimate of λ is the mean x =

∑
i xi/n. Take a family of cunjugate priors Gamma(a, b)

for λ. The posterior density of
√
n(λ − x) and corresponding normal density are in black and red, respectively. The size of

sample is n = 3, 10, 50 and 100 from left to right.

Bernstein - von Mises theorem in semiparametric setting: Cox model
Let Xi, i = 1, .., n, be survival times and alongside with each Xi let us observe a set of covariates Z i ∈ Rp. Let Fi(·) be

the distribution function associated with Xi. As usual in applications, the survival times are assumed to be right-censored,
that is, the actual observed dataset is a set of triplets (Ti, δi, Z i, i = 1, .., n) where Ti = min(Xi, Ci), δi = I(Ti = Xi) and Ci
is censoring random variable independent on Xi.

The traditional approach to specify Cox model is via particular form of the hazard rate which is assumed to satisfy

Λi(t) = Λ(t,Z i) =

∫ t

0

exp{β>Z i}dΛ(s), i = 1, .., n,

where β is unknown p-dimensional regression parameter and Λ is an unknown cumulative hazard rate of a survival time with
the covariate being equal to 0. After minor calculations we can reach an alternative formulation

1− Fi(t) = (1− F (t))exp{β>Zi}, i = 1, .., n,

where F is an unknown distribution for an individual with Z = 0.
Remark: There is a one-to-one relation between Fi and Λi, precisely Λi(t) =

∫ t
0

∆Fi(s)
1−Fi(s−)ds.

Remark: With Λ being functional (so an infinitely-dimensional) parameter and β finite-dimensional parameter inference on
Cox model falls among the semiparametric problems.

Traditional approach to estimate the unknown parameters β and Λ ...
.. is based on partial likelihood theory. Let β0 and Λ0 be the true parameters and τ = max{Ti, i = 1, ..n}. The estimator

β̂ of β is defined as a solution to the vector equation U(β) = 0 where

U(β) =

n∑
i=1

{
Z i −

∑
j:Tj≥TiZj exp{β>Zj}∑
k:Tk≥Ti exp{β>Zk}

}
.

The cumulative baseline hazard function Λ(t) is estimated using the Breslow estimator

Λ̂(t) =
∑
i:Ti≤t

δi∑
j∈Ri exp{β̂

>
Zj}

.

We need to introduce some neccesary notation before stating next theorem:

Σ(β0, t) =

∫ t

0

{
s(2)(β0, s)

s(0)(β0, s)
− e(β0, s)e(β0, s)

>
}
s(0)(β0, s)dΛ0(s)

where

e(β0, s) =
s(1)(β0, s)

s(0)(β0, s)
and s(l)(β, s) = lim

n→∞

1

n

∑
i:Ti≥t

Z⊗li exp{β>Z i}, l = 0, 1, 2.

In next we will also use the processes defined as

V0(t) =

∫ t

0

dΛ0(s)

s(0)(β0, s)
and E0(t) =

∫ t

0

e(β0, t)dΛ0(s).

Theorem 3 (Frequentist asymptotics for Cox model, [2]) Let the conditions A-D in [2] be fulfilled.
Then the following is true:

1. √
n(β̂ − β0)

D−−→ N (0,Σ(β0, τ )−1)

2.
L (
√
n(Λ̂(·)− Λ0(·))|

√
n(β̂ − β0) = x)

D−−→ W (V0(·)− xE0(·))

on the space of functions continuous to the right and with limits to the left, D[0, τ ]. W denotes the standard
Brownian motion.

Bayesian: Process neutral to the right as a prior for F
A prior process on the c.d.f. F is a process neutral to the right if corresponding Λ is a positive nondecreasing
independent increment process (a nonstationary subordinator in the language of Lévy processes, further NII) such that
Λ(0) = 0, 0 ≤ ∆Λ(t) ≤ 1 for all t w.p. 1 and either ∆Λ(t) = 1 for some t > 0 or limt→∞Λ(t) =∞ w.p. 1.

The Lévy measure ν of an NII process is defined

ν([0, t]×B) = E

∑
s∈[0,t]

I(∆Λ0(s)) ∈ B r {0}


where t ≥ 0, B is a Borel subset of [0, 1]. Here we let the baseline c.d.f. F be, a priori, a process neutral to the
right and let us assume that the corresponding Λ is an NII process with the Lévy measure

ν(dt, dx) =
1

x
gt(x)φ(t) dx dt, t ≥ 0, x ∈ [0, 1],

where
∫ 1

0 gt(x)dx = 1, ∀t, and φ is bounded and positive on [0, τ ]. And let π(β) be prior distribution for β which is
continuous at β0 with π(β0) > 0, where β0 is true value of β.

Let us suppose that usual conditions regarding the regularity of the model are met (see (A1)-(A5) in [3]). Further, for
bayesian asymptotics consider two important conditions:

(a) There exists ζ > 0 such that

sup
t∈[0,τ ], x∈[0,1]

gt(x)(1− x)1−ζ <∞.

(b) There exists a function k(t) on [0, τ ] such that 0 < inft∈[0,τ ] k(t) ≤ supt∈[0,τ ] k(t) <∞ and, for some α ≤ 1/2 and ε > 0,

sup
t∈[0,τ ], h∈[0,ε]

∣∣∣∣gt(h)− k(t)

hα

∣∣∣∣ <∞.

Theorem 4 (Bernstein - von Mises for Cox model, [4]) Under conditions (a) and (b), the following
holds:

1.

lim
n→∞

∫
Rp
|fn(x)− φ(x)|dx = 0

with probability 1, where fn is the marginal posterior density of x =
√
n(β− β̂) and φ is the normal density

with mean 0 and variance Σ(β0, τ )−1.

2.
L (
√
n(Λ(·)− Λ̂(·)|

√
n(β − β̂) = x, (Ti,Z i, δi)

n
i=1)

D−−→ W (V0(·)− xE0(·)) (1)

on the space of functions continuous to the right and with limits to the left, D[0, τ ], with probability 1, as
n→∞. W denotes the standard Brownian motion.

As a direct result of Theorem 3 we have the convergence of the joint posterior distribution

L (
√
n(Λ(·)− Λ̂(·),β − β̂)|(Ti,Z i, δi)

n
i=1)

D−−→ (W (V0(·)−XE0(·)), X)

with probability 1, as n → ∞ on D[0, τ ]. X represents p-dimensional multivariate normal distribution with mean 0 and
variance Σ(β0, τ )−1. Now let A be an arbitrary Hadamard-differentiable functional of model parameters (Λ,β).

Then similar result can be obtained for
√
n(A(β,Λ) − A(β̂, Λ̂)) by simply applying the functional delta method (e.g. [5],

Section 20.2).

Remark: Useful examples of Hadamard-differentiable functionals:

• survival function S(t) =
∏

s≤t{1− dΛ(s)}

• median residual life ηt0 so that S(ηt0)/S(t0) = 0.5, for t0 ∈ (0, τ ).

Example
For illustration we picked the simplest case of noncensored data without covariates. Then the only unknown param-

eter is cumulative hazard rate Λ(·) and the asymptotic distribution of (1) in Theorem 3 simplifies into W (U0(·)) where

U0(t) =
∫ t

0 dΛ0/Pr(T ≥ t).

As a prior process we used compound Poisson process with Lévy measure ν(dt, dx) = cσ(x) dx dt where σ(·) is the
jump size distribution density. For σ(·) we used Beta distribution with parameters a = 0.1 and b = 0.2. The simulation of
posterior density was done using Markov Chain Monte Carlo methods. The number of iterations was 10000, first 5000 were
discarded as burn-in. Number of simulated observed failures was 25.
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Figure 2. From left to right: 1. Several iterations from the posterior sample of the cumulative hazard rate Λ(·) with fre-
quentists estimator in red color alongside; dots in the bottom are observed data 2. The posterior median and 95% pointwise
credibility band for the cumulative hazard rate with frequentists estimator in red color alongside; dots in the bottom are
observed data 3. Several iterations from the transformed cumulative hazard rate

1

Û(τ )1/2

√
n
(

Λ(·)− Λ̂(·)
)

which is asymptotically distributed as the standard Brownian motion and Û(·) is a consistent estimator of U0(·) 4. The posterior
median and 95% pointwise credibility bands for the transformed cumulative hazard rate alongside with the Kolmogorov-Smirnov
type bands in red color.
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