Bootstrapping of M-smoothers in Homoscedastic and Heteroscedastic Models

Matúš Maciak[#]

Charles University in Prague, Faculty of Mathematics and Physics

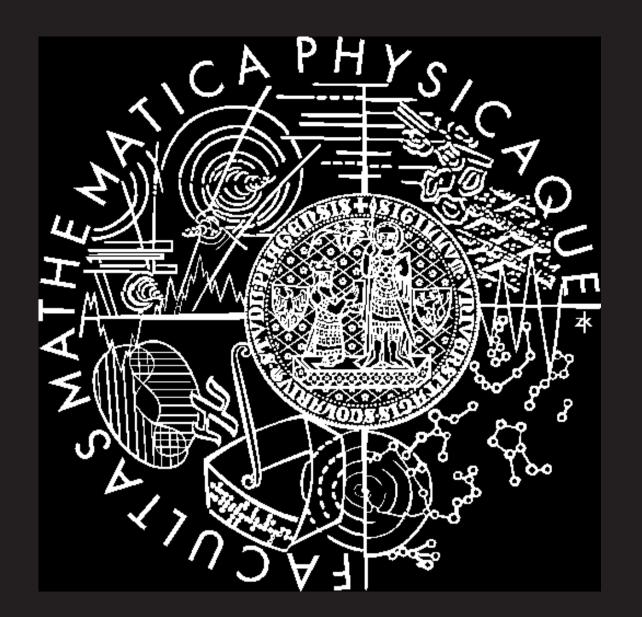
Department of Probability and Mathematical Statistics, Sokolovská 83, Prague, Czech Republic

- observations $\{(X_i, Y_i); i = 1, ..., N\}$ for some $N \in \mathbb{N}$ form a random sample from F(x, y);
- \blacktriangleright conditional dependence of Y given X modelled by m(x) under nonparametric assumptions;
- under the given variance \Rightarrow two possibilities:

Local polynomial estimation methods with robust approach. while taking into account all order discontinuities up to the order of approximation.

• asymptotic normality derived under some common assumptions related to nonparametric regression and M-estimates theory;

► asymptotically unbiased M-smoother estimate of the unknown regression function m(x), for some $x \in [0, 1]$, where we assume the domain of interest for X to be the interval [0, 1];



$Y_i = m(X_i) + \sigma \varepsilon_i, \ i = 1, \ldots, N;$

Homoscedasticity

• for some unknown variance parameter $\sigma^2 > 0$;

 $Y_i = m(X_i) + \sigma(X_i)\varepsilon_i, \ i = 1, \ldots, N;$

Heteroscedasticity

For some common variance function $\sigma(\cdot) > 0$; ▶ for ε_i 's to be an i.i.d. sequence of random variables with a distribution function $G(\cdot)$;

Change-point problem:

We assume a model with possible discontinuities (change-points) up the the order $p \in \mathbb{N}$, where p is an order of local polynomial approximation!

> Application to a hypothesis testing problem . about the occurrence of a change-point at some $x_0 \in [0, 1]$

• asymptotic normality derived also for all order derivatives $m^{(\nu)}(x)$ of the unknown regression function $m(\cdot)$, for some $x \in [0, 1]$ and $\nu \in \{1, 2, \dots, p\};$

$$\sqrt{Nh_{N}} \cdot \left| \hat{m}^{(\nu)}(x) - m^{(\nu)}(x) \right| \xrightarrow{\mathbf{D}} \mathbf{N} \left(0, \frac{c^{2}\mathbf{E}\psi^{2}(\epsilon)}{f(x)} \cdot \mathbf{e}_{\nu+1}^{\top}\mathbf{h}_{N}^{\top}\mathbf{S}_{1}^{-1}\mathbf{S}_{2}\mathbf{S}_{1}^{-1}\mathbf{h}_{N}\mathbf{e}_{\nu+1} \right)$$

$$\underbrace{\text{Homoscedasticity}}_{\sqrt{Nh_{N}}} \cdot \left| \hat{m}^{(\nu)}(x) - m^{(\nu)}(x) \right| \xrightarrow{\mathbf{D}} \mathbf{N} \left(0, \frac{c_{x}^{2}\mathbf{E}\psi^{2}(\epsilon \cdot \sigma(x))}{f(x)} \cdot \vec{e}_{\nu+1}^{\top}\vec{h}_{N}^{\top}\mathbf{S}_{1}^{-1}\mathbf{S}_{2}\mathbf{S}_{1}^{-1}\vec{h}_{N}\vec{e}_{\nu+1} \right)$$

$$\underbrace{\text{Heteroscedasticity}}_{\text{Heteroscedasticity}}$$

Under the notation:

σ

• where $c^{-1} = \lambda'_{C}(0)$ is a common term coming naturally form an M-estimates theory and c_r^{-1} respectively is its analogy for

For the test about the change-point occurrence at some $x_0 \in [0, 1]$ the test statistics

 $T_N(x_0) = \sqrt{Nh_N} \cdot \left| \hat{m}_+^{(\nu)}(x_0) - \hat{m}_-^{(\nu)}(x_0) \right|$ follows the same distribution (up to the additive constant) as the one derived above;

however, this distribution heavily depends on some unknown quantities \Rightarrow bootstrap approximation for the unknown distribution;

Bootstrapping algorithms:

a) compute (estimate) residuals $\hat{e}_i = Y_i - \hat{m}(X_i)$, for $i = 1, \ldots, N$; b) centering of residuals: $\tilde{e}_i = \hat{e}_i - \frac{1}{N} \sum_i \hat{e}_i$; c) resample new residuals e_i^* from $\{\tilde{e}_i, \ldots, \tilde{e}_N\}$ with replacement, for $i=1,\ldots,N.$

d) apply a bias-correction procedure where $e_i^* \leftarrow e_i^* + a_N \cdot Z_i$, such that Z_i 's are independent centered random variables and a_N is a bias-corrected bandwidth;

e) define new data points (X_i, Y_i^*) , where $Y_i^* = \hat{m}(X_i) + e_i^*$;

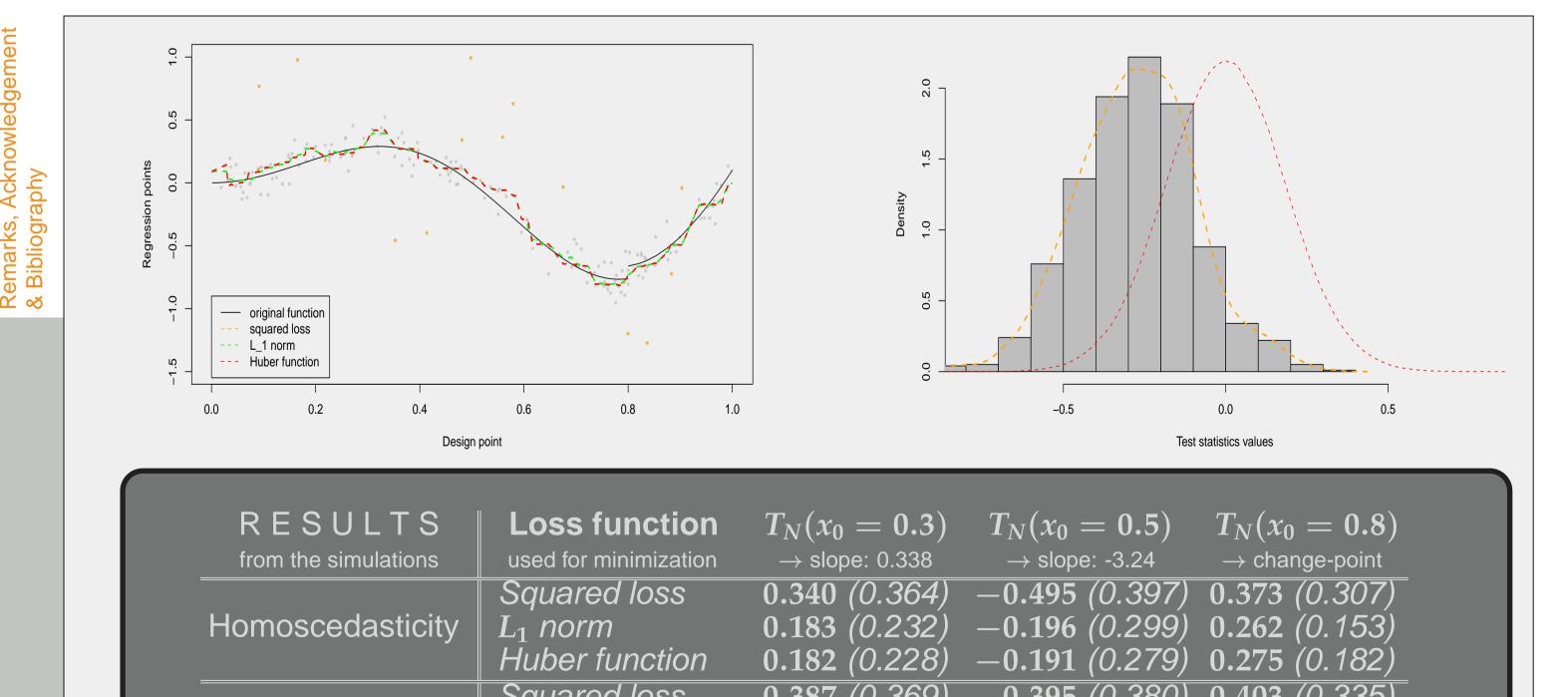
) use new data to compute the test statistics $T_N(x_0)$ \rightarrow repeat for a sufficient number of times to mimic the unknown distribution;

heteroskedastic case given by

 $c_x^{-1} =_x \lambda'_G(0) = -\left[\frac{\partial}{\partial t} \int_{-\infty}^{\infty} \psi(e \cdot \sigma(x) - t) \mathrm{d}G(e)\right]_{\{t=0\}}.$

▶ moreover, S_1 and S_2 being $(p + 1) \times (p + 1)$ matrices with elements $s_{i,j} = \int_{-1}^{1} u^{i+j} K(u) du$ in case of **S**₁ and $s_{i,j}^* = \int_{-1}^{1} u^{i+j} K^2(u) du$ in case of S_2 , for i, j = 0, 1, ..., p, where $p \in \mathbb{N}$ is a degree of local polynomial approximation;

• vectors \vec{e}_{ν} , \vec{h}_N respectively, stands for a vector with zeros everywhere and a one on its ν^{th} place and $(1, h_N^{-1}, \ldots, h^{-p})$;



a) compute residuals $\hat{e}_i = Y_i - \hat{m}(X_i)$, for $i = 1, \dots, N$; b) compute standardized residuals as $\tilde{e}_i = \frac{\hat{e}_i - \frac{1}{N} \sum_j \hat{e}_j}{\sqrt{\frac{1}{N} \sum_j (\hat{e}_j - \frac{1}{N} \sum_l \hat{e}_l)^2}};$

c) similarly to the previous case, let $e_i^* = \tilde{e}_i + a_N \cdot Z_i$; d) form a new data set (X_i, Y_i^*) , where $Y_i^* = \hat{m}(X_i) + \hat{\sigma}(X_i) \cdot e_i^*$, where $\hat{\sigma}(\cdot)$ is a nonparametric estimate of the variance function under the considered model;

e) use the new data set to compute the test statistic repeat to mimic the distribution under the interest;

	Squared ioss	0.307 (0.309)	-0.395(0.300)	0.403 (0.33)
Heteroscedasticity	L ₁ norm	0.194 (0.240)	-0.236(0.319)	0.312 (0.18
	Huber function	0.190 (0.235)	-0.211(0.322)	0.305 (0.19

Considered for the test statistic $T_N(x_0) = \sqrt{Nh_N} \cdot (\hat{m}_+(x_0)) - \hat{m}_-(x_0))$ for a data set with 10 % of outlying observations.

Bibliography:

An extensive simulation study proposed ...

in order to see how the algorithms behave.

elf.

[1] Bickel P.J. and Freedman D.A., Some Asymptotic Theory for the Bootstrap; *The Annals of Statistics*, (1981), Vol.9, No.6, 1196-1217.
 [2] Freedman D.A., Bootstrapping Regression Models; *The Annals of Statistics*, (1981), Vol.9, No.6, 1218-1228.
 [3] Neumeyer N., Bootstrap Procedures for Empirical Processes of Nonparametric Residuals; *Habilitationsschirft*, Ruhr-Universität (2006).

Acknowledgement:

The author would like to express many thanks for support provided to him from the grant GAČR 201/09/0755.

maciak@karlin.mff.cuni.cz