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◮ observations {(Xi, Yi); i = 1, . . . ,N} for some
N ∈ N form a random sample from F(x, y);

◮ conditional dependence of Y given X modelled
by m(x) under nonparametric assumptions;

◮ under the given variance⇒ two possibilities:

Yi = m(Xi) + σεi, i = 1, . . . ,N;

Homoscedasticity
◮ for some unknown variance parameter σ2 > 0;

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . ,N;

Heteroscedasticity
◮ for some common variance function σ(·) > 0;
◮ for εi’s to be an i.i.d. sequence of random

variables with a distribution function G(·);

Change-point problem:
We assume a model with possible discontinuities
(change-points) up the the order p ∈ N, where p
is an order of local polynomial approximation!
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◮ asymptotic normality derived under some common assumptions
related to nonparametric regression and M-estimates theory;

◮ asymptotically unbiased M-smoother estimate of the unknown
regression function m(x), for some x ∈ [0, 1], where we assume
the domain of interest for X to be the interval [0, 1];

◮ asymptotic normality derived also for all order derivatives m(ν)(x)
of the unknown regression function m(·), for some x ∈ [0, 1] and
ν ∈ {1, 2, . . . , p};
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Heteroscedasticity
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Homoscedasticity

Under the notation:
◮ where c−1 = λ′G(0) is a common term coming naturally form an

M-estimates theory and c−1

x respectively is its analogy for
heteroskedastic case given by
c−1

x =x λ
′
G(0) = −

[
∂
∂t

∫∞
−∞ψ(e · σ(x)− t)dG(e)

]
{t=0}

.

◮ moreover, S1 and S2 being (p + 1)× (p + 1) matrices with elements
si,j =

∫
1

−1
ui+jK(u)du in case of S1 and s∗i,j =

∫
1

−1
ui+jK2(u)du in case

of S2, for i, j = 0, 1, . . . , p, where p ∈ N is a degree of local
polynomial approximation;

◮ vectors~eν, ~hN respectively, stands for a vector with zeros everywhere
and a one on its ν th place and (1, h−1

N , . . . , h−p);
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◮ for the test about the change-point occurrence at
some x0 ∈ [0, 1] the test statistics
TN(x0) =

√
NhN ·

∣∣∣m̂(ν)
+ (x0)− m̂

(ν)
− (x0)

∣∣∣ follows the
same distribution (up to the additive constant) as the
one derived above;

◮ however, this distribution heavily depends on some
unknown quantities⇒ bootstrap approximation for
the unknown distribution;

Bootstrapping algorithms:

a) compute (estimate) residuals êi = Yi − m̂(Xi), for i = 1, . . . ,N;
b) centering of residuals: ẽi = êi − 1

N

∑
i êi;

c) resample new residuals e∗i from {ẽi, . . . , ẽN} with replacement, for
i = 1, . . . ,N.

d) apply a bias-correction procedure where e∗i ← e∗i + aN · Zi, such
that Zi’s are independent centered random variables and aN is a
bias-corrected bandwidth;

e) define new data points (Xi, Y∗i ), where Y∗i = m̂(Xi) + e∗i ;
f) use new data to compute the test statistics TN(x0)→ repeat for a

sufficient number of times to mimic the unknown distribution;

Homoscedasticity

a) compute residuals êi = Yi − m̂(Xi), for i = 1, . . . ,N;

b) compute standardized residuals as ẽi =
êi− 1

N

∑
j êj√

1

N

∑
j(êj− 1

N

∑
l êl)2

;

c) similarly to the previous case, let e∗i = ẽi + aN · Zi;
d) form a new data set (Xi, Y∗i ), where Y∗i = m̂(Xi) + σ̂(Xi) · e∗i ,

where σ̂(·) is a nonparametric estimate of the variance function
under the considered model;

e) use the new data set to compute the test statistic→ repeat to
mimic the distribution under the interest;

Heteroscedasticity

Simulations
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R E S U L T S Loss function TN(x0 = 0.3) TN(x0 = 0.5) TN(x0 = 0.8)
from the simulations used for minimization → slope: 0.338 → slope: -3.24 → change-point

Homoscedasticity
Squared loss 0.340 (0.364) −0.495 (0.397) 0.373 (0.307)
L1 norm 0.183 (0.232) −0.196 (0.299) 0.262 (0.153)
Huber function 0.182 (0.228) −0.191 (0.279) 0.275 (0.182)

Heteroscedasticity
Squared loss 0.387 (0.369) −0.395 (0.380) 0.403 (0.335)
L1 norm 0.194 (0.240) −0.236 (0.319) 0.312 (0.188)
Huber function 0.190 (0.235) −0.211 (0.322) 0.305 (0.190)

Considered for the test statistic TN(x0) =
√

NhN · (m̂+(x0))− m̂−(x0)) for a data set with 10 % of outlying observations.

Results

*
*

*
*

*
*
**

*

*
**
**
*

*
**
* *

*

*

*

**

*

*
*
*
*
*

*

***

*

*
*

*

*
*
*
*

*
* *

*
***
*

**
*
*
*

*
*

*

* *
*

*
**
***
*

*

*

**

*

***
*
*
*

**

*

**
* *

*
***
*
***

**
**

*

*

*

** *
*
* *

*

*

*

*

*

*

*
**

*
* *

*

*

*
*
*
*

*

*

***
*

*
* *

*
*
**

*
******

*
*

*

*
**

*
*
*

*

*

*
*

* *

*
*
**

*

**
**

*

*

*

*

*

**

*

***
*

*
*
*
*
*
**
*
***

*

**
*

*
*

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0

Design point

R
e

g
re

s
s
io

n
 p

o
in

ts *

*

*

*

* *

*

*

*

*

*

*

*
*

*

*

original function
squared loss
L_1 norm
Huber function

Test statistics values

D
e

n
s
it
y

−0.5 0.0 0.5

0
.0

0
.5

1
.0

1
.5

2
.0

Local polynomial estimation methods with robust approach...

while taking into account all order discontinuities up to the order of approximation.

Application to a hypothesis testing problem ...

about the occurrence of a change-point at some x0 ∈ [0, 1].

An extensive simulation study proposed ...

in order to see how the algorithms behave.
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