Bootstrapping of M-smoothers IN Homoscedastic and
Heteroscedastic Models
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Local polynomial estimation methods with robust approach...

» observations {(X;,Y;); i =1,...,N} for some )

N € N form a random sample from F(x, y);
» conditional dependence of Y given X modelled

by m(x) under nonparametric assumptions; . . . .
. . . » asymptotic normality derived under some common assumptions
- under the given variance = two possibilities: related to nonparametric regression and M-estimates theory;

» asymptotically unbiased M-smoother estimate of the unknown
regression function m(x), for some x € [0, 1], where we assume

the domain of interest for X to be the interval [0, 1];

~ asymptotic normality derived also for all order derivatives m®) (x)

HOmOSCedaStiCity of the{ unknown r}egression function m(.), for some x € [0, 1] and
ve11,2,...,p;,

» for some unknown variance parameter o* > 0;

Y,‘ — m(X,) —I—O'(Xi)é'i, 1 = 1,...,N;

2E P
Nhy - [i1® (x) — m® (x)‘ PN (0, szb% ce, hn'S7'SST 1hNe,,+1>

Heteroscedasticity

» for some common variance function o (-) > 0;
» for g;'s to be an I.1.d. sequence of random HOmOSCedaStICIty

variables with a distribution function G(-);

ZE 2 . o .
A NhN . fh(y) (x) — m(y) (x)| i} N (0, W . EI+1hNTS;1SZS;1hNEy+1>

We assume a model with possible discontinuities
(change-points) up the the order p € N, where p

IS an order of local polynomial approximation!

Heteroscedasticity

Application to a hypothesis testing problem ... _ _
» where ¢! = A\/;(0) is a common term coming naturally form an

M-estimates theory and ¢_ ! respectively is its analogy for
l l heteroskedastic case given by
—1 7/ _ __ |0 [ . _
1= NG(0) = — |2 [, (e o (x) — HAG(e)] e

» moreover, S; and S, being (p + 1) X (p + 1) matrices with elements

1 i+7 : « _ 1 i+1 :
» for the test about the change-point occurrence at sij = J_qw"7K(u)du in case of Sy and sj; = [_; u"/K*(u)du in case
of Sy, fori,j =0,1,...,p, where p € N is a degree of local

some xy € |0, 1] the test statistics nolynomial approximation:

follows the » vectors ¢,, hy respectively, stands for a vector with zeros everywhere
and a one on its v™ place and (1, hy ', . . . , h7);

same distribution (up to the additive constant) as the
one derived above;

» however, this distribution heavily depends on some
unknown guantities for

S T _
the unknown distribution;

a) compute (estimate) residuals &; = Y; — m(X;), fori = 1,...,N; 1T qu'dflt - B

b) centering of residuals: e; = é; — x> &;; B | | | | g et —
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c) resample new residuals ef from {e;, . . ., ex} With replacement, for
i=1,...,N.

Design point Test statistics values

d) apply a bias-correction procedure where e <— e} + an - Z;, such
that Z;'s are independent centered random variables and ay IS a
bias-corrected bandwidth;

e) define new data points (X;, Y"), where Y = m(X;) + e};

f) use new data to compute the test statistics Tn(xp) — repeat for a
sufficient number of times to mimic the unknown distribution;

Homoscedasticity

RESULTS Loss function Tn(xg = 0.3) Tn(xg =0.5) Tn(x9 = 0.8)
from the simulations used for minimization — slope: 0.338 — slope: -3.24 — change-point

SVETER RS 0.340 (0.364) —0.495 (0.397) 0.373 (0.307)
Homoscedasticity | L; horm 0.183 (0.232) —0.196 (0.299) 0.262 (0.153)

Huber function  0.182 (0.228) —0.191 (0.279) 0.275 (0.182)

Squared loss 0.387 (0.369) —0.395 (0.380) 0.403 (0.335)
Heteroscedasticity | L; horm 0.194 (0.240) —0.236 (0.319) 0.312 (0.188)
Huber function  0.190 (0.235) —0.211 (0.322) 0.305 (0.190)

Considered for the test statistic Tn(x9) = v/ Nhy - (111 (x9)) — m_(x)) for a data set with 10 % of outlying observations.

Results

a) compute residuals e; = Y; — m(X;),fori =1,...,N;
- 1 -
ei—ﬁ Z].e]- _

N i@ e
c) similarly to the previous case, let el = e; + an - Z;;
d) form a new data set (X;, Y), where Y = m(X;) 4+ 6(X;) - e,
where & (-) is a nonparametric estimate of the variance function
under the considered model,

e) use the new data set to compute the test statistic — repeat to
mimic the distribution under the interest;

Heteroscedasticity

b) compute standardized residuals as e; =
] Bickel P.J. and Freedman D.A., Some Asymptotic Theory for the Bootstrap; The Annals of Statistics, (1981), Vol.9, No.6, 1196-1217.
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An extensive simulation study proposed ...
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