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kaluza@karlin.mff.cuni.cz

Department of Probability, Charles University, Prague
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Introduction
This contribution dealt with stochastic convolution integral

∫ .
0 S(. − s)ψ(s) dMs driven by local mar-

tingale in Hilbert space with contraction C0−semigroup S(t). The maximal inequality and tail estimate

are presented.

The introduction is devoted to basic notation and a review of necessary objects (more information can

be found in [2] and [4]). In the second section is presented the maximal inequality of Burkholder-Davis-

Gundy type and the tail estimate for stochastic convolution. And the last section contains the Szekőfalvi-

Nagy theorem about semigroup representation by unitary dilatations and the Burkholder-Davis-Gundy

inequality.

We are working on stochastic basis (Ω,F , (Ft)t≥0,P) satisfying usual conditions. O is the σ−algebra

generated by real continuous adapted processes (σ−algebra of well measurable sets).

Let H and G are (real) separable Hilbert spaces. For x ∈ H and y ∈ G we define x ⊗ y ∈ L(H,G)

by the following formula (x⊗2 = x⊗ x)

x⊗ y : H −→ G;h 7−→ 〈x, h〉H y.
We denote (J1(H,G), ||.||1) the Banach space of Nuclear operators and (J2(H,G), 〈., .〉2) the Hilbert

space of Hilbert-Schmidt operators. The space of bounded linear operators is denoted L(H,G).

The family (St)t≥0 of bounded linear operators on G is called C0−semigroup on G, if S0 = I ,

St+s = St ◦ Ss for every s, t ≥ 0 and if R+ −→ G : t 7−→ Stx is continuous for every x ∈ G.

Then there always exist M < ∞ and w ∈ R such that ||St|| ≤ Mewt for all t ≥ 0. The C0−semigroup

(St)t≥0 is contraction C0−semigroup if ||St|| ≤ 1 for all t ≥ 0. Every C0−semigroup (St)t≥0 has its

generator (A,D(A)) and we write St ≡ eAt. If A is bounded, then eAt =
∑∞

k=0
Aktk

k! , otherwise it is just

a symbol for St.

The family (Ut)t∈R is unitary C0−group on G if U0 = I , Ut+s = Ut ◦ Us for every s, t ∈ R, for every

x ∈ G is R −→ G : t 7−→ Utx continuous and if Ut are unitary operators for every t ∈ R.

We denote M2
loc(H) respective M2

∞(H) the set of H−valued local L2−martingales respective square

integrable martingales with càdlàg paths. Note that M2
loc(H) = M2

∞,loc(H).

Let M ∈ M2
∞(H). Then there exists a real càdlàg process with paths of finite variation, denoted

by [M ] and called quadratic variation of M and a J1(H)−valued càdlàg process, denoted by [[M ]] and

called the tensor quadratic variation of M , both are uniquely defined (up to P−equality) with prop-

erty: For every increasing sequence (Πn) =
({

0 = tn0 < tn1 < . . . ր ∞
})

of subdivisions of R+ with

supi≥0 |tni+1 − tni |−−−−−−−−→n→∞ 0 and for every t ≥ 0 holds

[M ]t = lim
n→∞

(L1)

∞∑

i=0

∣∣∣
∣∣∣Mtni+1

∧t −Mtni ∧t
∣∣∣
∣∣∣
2

H
and [[M ]]t = lim

n→∞
(P)

∞∑

i=0

(
Mtni+1

∧t −Mtni ∧t
)⊗2

,

where the convergency in probability is the convergency of J2(H)−valued random variables. There exists

qM J1(H)−valued O−measurable stochastic process such that: qM take its values in positive selfadjoint

elements of J1(H), Tr qM(t, ω) = 1 for µ[M ] − a.e. t ≥ 0 P−a.s. and [[M ]]t =
∫

(0,t] qM d[M ] ∀t ≥ 0

P−a.s. The process qM is unique in this sense: if q is another process with the above properties, than

qM(t, ω) = q(t, ω) for µ[M ](ω)−a.e. t ≥ 0 P−a.s. For M ∈ M2
loc(H) we define the processes [M ] and

[[M ]] by localisation.

L∗ (M) is the space of stochastic processes X with values in linear operators from H to G such that:

i) ∀(t, ω) ∈ R
+× Ω q

1
2

M(t, ω)(H) ⊆ DX(t, ω),

ii) ∀h ∈ H the process X ◦ q
1
2

M(h) is O−measurable (G−valued),

iii) ∀(t, ω) ∈ R
+× Ω X(t, ω) ◦ q

1
2

M(t, ω) is Hilbert-Schmidt operator and E

∞∫
0

∣∣∣
∣∣∣X ◦ q

1
2

M

∣∣∣
∣∣∣
2

2
d[M ] <∞.

We understand the space L∗ as the space of classes of equivalence, where X ∼ Y iff

E

∞∫
0

∣∣∣
∣∣∣(X − Y ) ◦ q

1
2

M

∣∣∣
∣∣∣
2

2
d[M ] = 0. The mapping (X, Y ) 7−→ E

∫∞
0 Tr (X ◦ qM ◦ Y ∗) d[M ] is a scalar

product on L∗.
Let M ∈ M2

∞(H) and X ∈ E (L (H,G)), i.e.

X =

n∑

i=1

xiI(si,ti]×Fi
+ x0I{0}×F0

, where n ∈ N, xi ∈ L(H,G), 0 ≤ si ≤ ti and Fi ∈ Fsi ∀i = 0, . . . , n.

We define the stochastic integral of process X with respect to M as follows

∫
X dM :=

{
n∑

i=1

IFi
xi

(
Mti∧t −Msi∧t

)}

t≥0

. (1)

Clearly E (L (H,G)) ⊆ L∗ (M) and Λ2 (M) denote the space of processes from L∗ (M) which can be

aproximated by processes from E (L (H,G)) in L∗ (M). The stochastic integral of X ∈ Λ2 (M) is de-

fined as a limit (in M2
∞) of stochastic integrals of the aproximating sequence. We are working with the

standard generalisation of this stochastic integral by localisation.

Maximal inequality and tail estimate
The integrand of stochastic convolution integral (2) depends on the upper limit of the integral and in

general it is not a martingale. If the semigroup can be extended to a C0−group, we can take the factor

eAt in front of the integral in (2) and the convolution is then an image of stochastic integral by a bounded

linear operator eAt. We follow this idea and we use the representation theorem 4, as in [3]. This restricts

results to contraction semigroups.

The first question is what can we tell about paths of stochastic convolutions?

Proposition 1 Let M ∈ M2
loc(H), ψ ∈ Λ2

loc(M) and let (eAt)t≥0 is a contractive C0−semigroup

on Hilbert space G. Then the stochastic convolution integral

MA,ψ(t) ≡
∫ t

0

eA(t−s)ψ(s) dMs, t ≥ 0, (2)

has càdlàg paths in G. If M is continuous then MA,ψ is continuous as well.

Sketch of proof: We apply Sz.-Nagy Theorem 4:

∫ t

0

eA(t−s)ψ(s) dMs = PUt

∫ t

0

U−sπψ(s) dMs =: PUtNt, (3)

where N ∈ M2
loc(G̃). Than we use the right continuity of N and strong continuity of group (Ut)t∈R. �

Now we prove the inequality of Burgholder-Davis-Gundy type for convolution integrals, but still only

in the case of contraction semigroup (eAt)t≥0. The result is already known for continuous integrator M

(because in this case quadratic variation coincide with compensator). There already exist a weaker version

for M general and stochastic integral based on compensator (see inequality (1.10) in [3]). The reason to

define stochastic integral via quadratic variation is to know its quadratic variation. This allow us to use

the BDG-inequality (7).

Theorem 2 For every p ≥ 1 there exists a constant Cp < ∞ such that for every M ∈ M2
loc(H),

ψ ∈ Λ2
loc(M), τ stopping time and every contractive C0−semigroup (eAt)t≥0 on Hilbert space G is

E

(
sup

0≤t≤τ

∣∣∣∣
∣∣∣∣
∫ t

0

eA(t−s)ψ(s) dMs

∣∣∣∣
∣∣∣∣
p

G

)
≤ Cp

pE

((∫ τ

0

∣∣∣
∣∣∣ψ(s)q

1
2

M(s)
∣∣∣
∣∣∣
2

J2(H,G)
d[M ]s

)p
2

)
. (4)

It is possible to set Cp = 2p for p ≥ 2 (the constant is the same as the one in the BDG-

inequality (7)). If we limit ourself to continuous martingales, we can choose Cp such that

Cp = O(
√
p) as p −→ ∞.

Proof: The assertion results from (3) and Burkholder-Davis-Gundy inequality (Theorem 5). �

If we consider only continuous M ∈ M2
loc(H), we can use the Burkholder-Davis-Gundy inequality with

Cp = O(
√
p) as p −→ ∞ and the stochastic convolution is exponential L2−integrable (in our setting

with contraction C0−semigroup). See Proposition 2.1 in [3].

If M is generally not continuous, we prove only the exponential L1−integrability of stochastic convo-

lutions. The reason is that for generall M the BDG-inequality holds only with Cp = O(p) as p −→ ∞.

Proposition 3 There exist constants λ > 0 and Cλ < ∞ such that for every local martingale

M ∈ M2
loc(H), each stopping time τ and any κ ∈ (0,∞) the estimate

E exp

{
λ√
κ

sup
0≤t≤τ

∣∣∣∣
∣∣∣∣
∫ t

0

eA(t−s)ψ(s) dMs

∣∣∣∣
∣∣∣∣
G

}
≤ Cλ

holds for all processes ψ ∈ Λ2
loc(M) satisfying

ess sup
Ω

∫ τ

0

∣∣∣
∣∣∣ψ(s)q

1
2

M(s)
∣∣∣
∣∣∣
2

J2(H,G)
d[M ]s ≤ κ. (5)

In particular, an exponential tail estimate

P

{
sup

0≤t≤τ

∣∣∣∣
∣∣∣∣
∫ t

0

eA(t−s)ψ(s) dMs

∣∣∣∣
∣∣∣∣ ≥ ǫ

}
≤ Cλ exp

{
− λǫ√

κ

}

holds for all ǫ > 0.

Sketch of proof: We use the Theorem 2 and the series representation of an exponential. �

C0−semigroup eAt is quasi-contractive if there exist w ∈ R such that
∣∣∣∣eAt

∣∣∣∣ ≤ ewt for all t ≥ 0. Let

w > 0. Then S̃t := e−wteAt is a contraction C0−semigroup and the maximal inequality (4) has the form

E

(
sup

0≤t≤τ

∣∣∣∣
∣∣∣∣
∫ t

0

eA(t−s)ψ(s) dMs

∣∣∣∣
∣∣∣∣
p

G

)
≤ Cp

p(e
w ess sup τ )pE

((∫ τ

0

∣∣∣
∣∣∣ψ(s)q

1
2

M(s)
∣∣∣
∣∣∣
2

J2(H,G)
d[M ]s

)p
2

)
. (6)

Similarly, for every α > 1 the Proposition 3 is true if we consider only stopping times τ satisfying

ew ess sup τ ≤ α. The constant Cλ then depends on α and λ.

Apendix
Theorem 4 (Szekőfalvi-Nagy) Let (eAt)t≥0 is a contractive C0−semigroup on a Hilbert space

G, then there exist a Hilbert superspace G̃ of G and an unitary C0−group (Ut)t∈R on G̃ such that

π∗ ◦Ut ◦ π = eAt, ∀t ≥ 0, where π : G −→ G̃ is an isometric embedding. P = π∗ is an orthogonal

projection from G̃ on G. If G is separable, then the space G̃ can be chosen separable.

Proof: [1], section 7.2. �

Theorem 5 (Burkholder-Davis-Gundy inequality) ∀p ≥ 1 ∃ cp, Cp ∈ R such that for any

M ∈ Mloc(H) and any τ stopping time is

cpE [M ]
p
2
τ ≤ E sup

t≥0
||Mt∧τ ||p ≤ Cp

pE [M ]
p
2
τ . (7)

It is possible to set Cp = 2p. If we limit ourself to continuous martingales, we can choose Cp such

that Cp = O(
√
p) as p −→ ∞.

For more information on this result see [3], pages 104-105.
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