Estimation of the scale parameter in Burr distribution

Erika Hönschová

honschova@fmph.uniba.sk Department of Applied Mathematics and Statistics, Comenius University, Bratislava

ABSTRACT

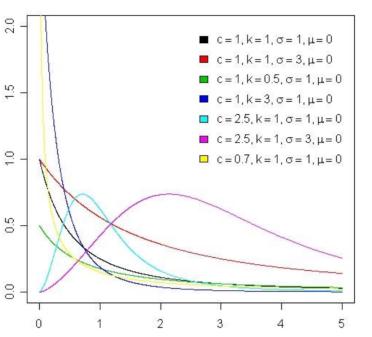
The poster presents an asymptotically normally distributed *L*-estimate of the scale parameter of the Burr distribution.

BURR DISTRIBUTION

Let X be a random variable with distribution function belonging to the location-scale family of the Burr distribution given by

$$F(x,\mu,\sigma,k,c) = 1 - \left(1 + \left(\frac{x-\mu}{\sigma}\right)^c\right)^{-k}$$
 for $x \ge \mu$,

where $k > 0, c > 0, \sigma > 0, \mu \in \mathcal{R}$. The Burr distribution has been applied in studies of household income, insurance risk, reliability analysis etc, e.g. by Tadikamalla [3], Embrechts and Schmidli [1], McDonald [2]

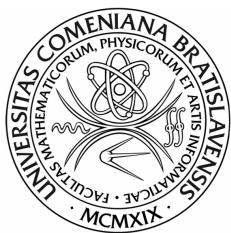


Probability density function

COMPARISON WITH ESTIMATE DERIVED BY VANNMAN

The estimation of the location and scale parameter in the spetial case c = 1 (known as Pareto distribution) was studied in [4], [5]. In [5] the author derived the BLUE, based on order statistic, when μ, k are known but only for k > 2. If $\frac{2}{n} < k \leq 2$, the estimate based on first m order statistics is derived, but under the condition m < n + 1 - 2/k. The asymptotic distribution of the estimate is unknown. The estimat derived in [5] with $m = n - \left|\frac{2}{k}\right|$ is given by:

$$\begin{split} \tilde{\sigma}_m &= \frac{1}{T_m} ((k+1) \sum_{i=1}^{m-1} B_i X_n^{(i)} + ((n-m+1) k - 1) B_k X_n^{(k)} \\ &\quad + (T_m + 2 - nk) \, \mu), \end{split}$$



ESTIMATION OF THE SCALE PARAMETER

We will use L-estimates in the form:

$$L_n = \sum_{i=1}^n c_{ni} X_n^{(i)}, \quad c_{ni} = \int_{(i-1)/n}^{i/n} J(u) du,$$

where $X_n^{(1)} \leq X_n^{(2)} \ldots \leq X_n^{(n)}$ are the order statistics and J(u) is a weights-generating function. Under various set of conditions imposed on the distribution function of the random sample and the weights-generating function, the asymptotic representation, given by the formula

$$\tilde{L}_n = \nu + \frac{1}{n} \sum_{i=1}^n \psi(X_i) + \mathcal{O}_P(\frac{1}{n}),$$
(1)

where

$$\nu = \int_{0}^{1} J(u)F^{-1}(u) \, \mathrm{d}u, \ \psi(x) = \int_{-\infty}^{+\infty} J(F(y))F(y) \, \mathrm{d}y - \int_{x}^{+\infty} J(F(y)) \, \mathrm{d}y,$$

holds. Let X_1, \ldots, X_n be a random sample from the Burr distribution. The parameters μ, k, c are assumed to be known. To estimate the scale parameter define

$$\phi(x) = \frac{1}{\mathcal{I}(\sigma)} \frac{\partial \ln \left(f(x, \mu, \sigma, k, c) \right)}{\partial \sigma}$$

where $\mathcal{I}(\sigma)$ denotes the Fisher information. Put

$$J(u) = \phi'(F^{-1}(u)) = \frac{(k+1)(k+2)}{k}(1-u)^{\frac{2}{k}}((1-u)^{-\frac{1}{k}}-1)^{\frac{c-1}{c}}$$

and define the estimate by

$$\hat{\sigma}_n = \sum_{i=1}^n c_{ni} \left(X_n^{(i)} - \mu \right). \tag{2}$$

where

$$T_m = \frac{nk - 2 - ((n - m)k - 2)B_m}{k + 2}$$
$$B_i = \left(1 - \frac{2}{k(n - i + 1)}\right)B_{i-1}, \ B_0 = 1$$

This estimate is unbiased, with variance $V(\tilde{\sigma}_m) = \frac{\sigma^2}{T_m}$. The estimat defined by (2) is for c = 1 in the form

$$\hat{\sigma}_n = \sum_{i=1}^n c_{ni} (X_n^{(i)} - \mu), \ c_{ni} = (k+1) \left[\left(\frac{n-i+1}{n} \right)^{\frac{2}{k}+1} - \left(\frac{n-i}{n} \right)^{\frac{2}{k}+1} \right].$$

In the following table are this two estimates compared on the basis of 5000 simulations of samples from the Pareto distribution with $\mu = 0, \sigma = 1$. The 25% and 75% sample quantiles are computed for each sample of estimates.

n=20						
k	3	1	0.5	0.1		
$(Q1(\hat{\sigma}_n),Q3(\hat{\sigma}_n))$				(0.86, 3.17)		
$(Q1(\tilde{\sigma}_m),Q3(\tilde{\sigma}_m)))$	(0.79, 1.17)	(0.7, 1.2)	(0.6, 1.22)	*		

n=50					
3	1	0.5	0.1		
(0.9, 1.14)	(0.88, 1.21)	(0.86, 1.31)	(0.8, 1.46)		
(0.87, 1.12)	(0.82, 1.14)	(0.77, 1.17)	(0.5, 1.24)		
	3 (0.9, 1.14)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} n{=}50\\\hline 3 & 1 & 0.5\\\hline (0.9, 1.14) & (0.88, 1.21) & (0.86, 1.31)\\\hline (0.87, 1.12) & (0.82, 1.14) & (0.77, 1.17)\\\hline\end{array}$		

For n = 20, k = 0.1 is the estimate $\tilde{\sigma}_m$ not defined.

The estimate $\hat{\sigma}_n$ is useful mostly if k is small, and the sample size isn't large, because then the estimate $\tilde{\sigma}_m$ is not defined. We may also use it if $c \neq 1$, what allows to tune the frequency curve of the Burr distribution

For $c > \frac{1}{2}, k > 0$ the asymptotic representation (1) holds, with $\nu = \sigma$. Since $\int \psi(x) f(x) dx = 0$, by means of the central limit theorem it is easy to prove, that

 $\sqrt{n}(\hat{\sigma}_n - \sigma) \to N(0, V)$

in distribution, where $V = \frac{2+k}{kc^2}\sigma^2$. The function J(u) was computed in such a way, that $V = \frac{1}{\mathcal{I}(\sigma)}$, therefore the estimate $\hat{\sigma}_n$ is also **asymptot**ically efficient.

If it is tedious to compute the score c_{ni} , we may use the approximation $\tilde{c}_{ni} = \frac{1}{n}J(\frac{i}{n+1})$. If μ is not known we may estimate it by $\hat{\mu} = X_n^{(1)}$ and define the scale estimate by $\hat{\hat{\sigma}}_n = \sum_{i=1}^n c_{ni} \left(X_n^{(i)} - \hat{\mu} \right)$. For $\frac{1}{2} < c < 2$ $\sqrt{n}\left(\hat{\hat{\sigma}}_n - \sigma\right) \to N(0, \frac{2+k}{kc^2}\sigma^2)$ in distribution.

better to the observed data, because the observer may choose the values of both c and k to carry out the concerned data analysis.

References

- [1] Embrechts P. and Schmidli H.(1994) Modelling of extremal events in insurance and finance. Mathematical Methods of Operations Research 39 1-34. [2] McDonald. J. B. (1984) Some Generalized Functions for the Size Distribution of Income. Econometrica 53, 647–663. [3] Tadikamalla, P. R. (1980) A Look at the Burr and Related Distributions. International Statistical Review 48, 337-344
- [4] Kulldorf, G. and Vännman K. (1973) Estimation of the Location and Scale Parameters of a Pareto Distribution by Linear Functions of Order Statistics. Journal of the American Statistical Association. 68, 218–227.
- [5] Vännman K. (1976) Estimators Based on Order Statistics from a Pareto Distribution. Journal of the American Statistical Association. 71, 704–708.

Acknowledgement. The poster was supported by grant VEGA 1/3016/06.