ROBUST 2008

Pribylina, 8. – 12.9.2008

MODEL PRO NÁHODNÉ SJEDNOCENÍ INTERAGUJÍCÍCH KRUHŮ Kateřina Helisová*, Jesper Møller**

*Univerzita Karlova v Praze/České vysoké učení technické v Praze, ČR **Aalborg University, Dánsko

helisova@karlin.mff.cuni.cz

SOUHRN

Poster shrnuje statistické výsledky z [2] týkající se analýzy obrazu keřů vřesu. Ty byly modelovány jako náhodná množina daná konečným sjednocením kruhů se středy v omezené množině $S \subset \mathbb{R}^2$, mezi nimiž se vyskytují vzájemné interakce.

HUSTOTA KONFIGURACE

Označme b = b(z, r) kruh se středem v bodě $z \in \mathbb{R}^2$ a poloměrem $r \in (0, \infty)$. Ztotožníme-li b s bodem $x = (z, r) \in \mathbb{R}^2 \times (0, \infty)$, pak sjednocení $\bigcup_{i \in I} b_i = \bigcup_{i \in I} b(z_i, r_i), I \subseteq \mathbb{N}$, můžeme ztotožnit s bodovým procesem na $\mathbb{R}^2 \times (0, \infty)$. **Vztažný proces:** Poissonův bodový proces Y (tj. vztažný Booleovský model je

SIMULACE

náhodná množina daná sjednocením kruhů odpovídajících procesu Y) s mírou intenzity $\rho(z) dz Q(dr)$ na $\mathbb{R}^2 \times (0, \infty)$, kde ρ značí funkci intenzity bodového procesu středů a Q je rozdělení poloměrů kruhů.

Model: Sjednocení kruhů odpovídající bodovému procesu **X**, který je absolutně spojitý vzhledem k Poissonovu procesu Y a je vzhledem k němu daný hustotou $f(\mathbf{x})$ pro konečnou konfiguraci bodů $\mathbf{x} = \{x_1, \ldots, x_n\}.$

Předpoklad: X je konečný bodový proces definovaný na $S \times (0, R)$, kde $S \subset \mathbb{R}^2$ je omezená množina taková, že $\int_S \rho(z) dz > 0$, a $R < \infty$.

Tvar hustoty:

 $f_{\theta}(\mathbf{x}) = \frac{1}{c_{\theta}} \exp\left(\theta_1 A(\mathcal{U}_{\mathbf{x}}) + \theta_2 L(\mathcal{U}_{\mathbf{x}}) + \theta_3 N_{cc}(\mathcal{U}_{\mathbf{x}}) + \theta_4 N_{h}(\mathcal{U}_{\mathbf{x}})\right)$

 $\theta = (\theta_1, \theta_2, \theta_3, \theta_4) \dots$ vektor parametrů, $c_{\theta} \dots$ normovací konstanta, $A(\mathcal{U}_{\mathbf{x}}) \dots$ plocha sjednocení kruhů odpovídajících konfiguraci \mathbf{x} , $L(\mathcal{U}_{\mathbf{x}}) \dots$ obvod sjednocení kruhů odpovídajících konfiguraci \mathbf{x} , $N_{cc}(\mathcal{U}_{\mathbf{x}}) \dots$ počet spojitých komponent sjednocení kruhů odpovídajících \mathbf{x} , $N_{h}(\mathcal{U}_{\mathbf{x}}) \dots$ počet děr sjednocení kruhů odpovídajících \mathbf{x} .

ODHAD PARAMETRŮ

Mějme pozorování $\mathcal{U}_{\mathbf{x}}$ a pišme hustotu ve tvaru $f_{\theta}(\mathbf{x}) = h_{\theta}(\mathbf{x})/c_{\theta}$. **Logaritmicko-věrohodnostní funkce:** $l(\theta) = \theta_1 A(\mathcal{U}_{\mathbf{x}}) + \theta_2 L(\mathcal{U}_{\mathbf{x}}) + \ldots - \log c_{\theta}$. **Problém:** c_{θ} nemá explicitní vyjádření. **Řešení:** Pro pevný vektor θ_0 lze maximalizovat poměr věrohodností $l(\theta) - l(\theta_0) = \log(h_{\theta}(\mathbf{x})/h_{\theta_0}(\mathbf{x})) - \log(c_{\theta}/c_{\theta_0})$, který lze aproximovat pomocí $l(\theta) - l(\theta_0) = \log(h_{\theta}(\mathbf{x})/h_{\theta_0}(\mathbf{x})) - \log \frac{1}{n} \sum_{m=0}^{n-1} h_{\theta}(Z_m)/h_{\theta_0}(Z_m)$,

Obrázek 2: Simulace (a) vztažných Booleovských modelů (R1)-(R3) (zleva doprava) a (b) fitovaných (A, L, N_{cc}) -interakčních modelů vzhledem ke vztažným procesům (R1)-(R3) (rovněž zleva doprava).

TESTOVÁNÍ VHODNOSTI MODELU

Nechť $\mathbf{A} \subset \mathbb{R}^2$ je množina pozorovaná v (omezeném) okně $W \subset \mathbb{R}^2$ a G je množina pixelů digitálního záznamu \mathbf{A} .

Normovaná sférická kontaktní distribuční funkce

Nechť $D = \inf\{r \ge 0 : \mathbf{A} \cap b(0, r) \ne \emptyset\}.$ Sférická kontaktní distribuční funkce: $H(r) = P(D \le r | D > 0), r \ge 0.$ Neparametrický odhad: $\hat{H}(r) = \frac{\sum_{u \in G} \mathbf{1}[u \not\in \mathbf{A}, u+b(0,r) \subset W, (u+b(0,r)) \cap \mathbf{A} \ne \emptyset]}{\sum_{u \in G} \mathbf{1}[u \not\in \mathbf{A}, u+b(0,r) \subset W]}.$ Normovaná sférická kontaktní distribuční funkce: $T(r) = -\frac{1}{r} \log(1 - H(r)).$ Pro vztažné Booleovské modely: $T(r) = 2\rho \pi EQ + \rho \pi r.$

kde Z_m jsou realizace z hustoty $f_{\theta_0}(\mathbf{x})$ získané pomocí MCMC simulací.

WALDŮV TEST

 $H:\theta M=0,$ kdeM je
 $p\times k$ -rozměrná matice hodnostik
ap je délka vektoru $\theta.$ Waldova statistik
a $(\hat{\theta}M)(M^Tj(\hat{\theta})^{-1}M)(\hat{\theta}M)^T$ má asymptoticky χ^2_k -rozdělení. Plat
í $H':\theta_i=0 \Longleftrightarrow H:\theta M=0,$ kdeM je
 $p\times$ 1-rozměrná matice se všemi prvky rovnými nule kromě
 i-tého, který je roven 1.

DATA

Obrázek 1: Keře vřesu (označené černou bavou) na ploše 10×20m v Jädraås ve Švédsku (data z roku 1981).

Vztažné procesy

• $\rho = 2.45$ a Q má rozdělení $N(0.26, 0.16^2)$ zúžené na interval [0, 0.50] (R1), • $\rho = 2.45$ a Q má rovnoměrné rozdělení na intervalu [0, 0.53] (R2), • $\rho = 1.16$ a Q má rovnoměrné rozdělení na intervalu [0, 0.53] (R3).

Odhady parametrů a Waldův test na datech

	$ heta_1$	$ heta_2$	$ heta_3$	$ heta_4$
(R1)	-2.14	0.89	-1.78	-1.01

Obrázek 3: Odhad $\hat{T}(r)$ získaný z dat (plná křivka), teoretická T(r) pro Booleovský model (čerchovaná křivka), 2.5 % a 97.5 % obálky získané z 39 simulací Booleovského modelu (tečkovaná křivka) a 2.5 % a 97.5 % obálky získané z 39 simulací fitovaného modelu (čárkovaná křivka) pro vztažné procesy (zleva doprava) (R1)-(R3).

Kovarianční funkce

Kovarianční funkce: $C(r) = P(u \in \mathbf{A}, v \in \mathbf{A}) \text{ pro } u, v \in \mathbb{R}^2 : ||u - v|| = r.$ Neparametrický odhad: $\hat{C}(r) = \frac{\sum_{u,v \in G} \mathbf{1}[||u - v|| = r, \{u,v\} \subset \mathbf{A}]}{\sum_{u,v \in G} \mathbf{1}[||u - v|| = r]}.$ Booleovské modely: $C(r) = 2p - 1 + (1 - p)^2 \exp\left(\rho E\left[2Q^2 \arccos \frac{Q}{2r} - \frac{r}{2}\sqrt{4Q^2 - r^2}\right]\right).$

Obrázek 4: Odhad $\hat{C}(r)$ získaný z dat (plná křivka), teoretická C(r) pro Booleovský model (čerchovaná křivka), 2.5 % a 97.5 % obálky získané z 39 simulací Booleovského modelu (tečkovaná křivka) a 2.5 % a 97.5 % obálky získané z 39 simulací fitovaného modelu (čárkovaná křivka) pro vztažné procesy (zleva doprava) (R1)-(R3).

Dilatace množiny

Nechť $\mathbf{A}_{\oplus r} = \bigcup_{u \in \mathbf{A}} b(u, r)$ je zvětšení a $\mathbf{A}_{\ominus r} = \{u : b(u, r) \subseteq \mathbf{A}\}$ zmenšení množiny \mathbf{A} o hodnotu r.

Dilatace:
$$d(r) = \frac{|\mathbf{A}_{\oplus r} \cap W_{\oplus r}|}{|W_{\oplus r}|}$$

Wald	7.45	17.89	48.96	2.14
(R2)	-4.81	1.17	-2.26	-0.69
Wald	37.04	29.77	83.66	1.01
(R3)	-3.67	1.62	-2.25	-0.13
Wald	17.01	46.67	73.01	0.04

Kritická hodnota $\chi_1^2(0.95) = 3.842 \Rightarrow \theta_4 = 0 \Rightarrow N_h$ z hustoty vypustíme.

	$ heta_1$	$ heta_2$	θ_3
(R1)	-2.33	0.92	-1.77
Wald	9.54	21.01	46.89
(R2)	-4.91	1.18	-2.25
Wald	38.02	32.33	78.78
(R3)	-3.71	1.64	-2.25
Wald	17.04	47.11	73.89

Všechny parametry označeny za nenulové \Rightarrow konečné hodnoty parametrů v modelu.

Obrázek 5: Dilatace dat (plná křivka), 2.5 % a 97.5 % obálky získané z 39 simulací Booleovského modelu (tečkovaná křivka) a 2.5 % a 97.5 % obálky z 39 simulací fitovaného modelu (čárkovaná křivka) pro vztažné procesy (zleva doprava) (R1)-(R3).

Poděkování: Výzkum byl podporován granty GAČR 201/06/0302 a GAČR 201/05/H007 a grantem 272-06-0442 "Point process modelling and statistical inference" (Danish Natural Science Research Council).

Literatura

 [1] MØLLER, J., HELISOVÁ, K. (2008). Power diagrams and interaction processes for unions of discs. Advances in Applied Probability, 40(2), 321–347.

[2] MØLLER, J., HELISOVÁ, K. (2008). Likelihood inference for unions of interacting discs. Připravuje se.

[3] MØLLER, J., WAAGEPETERSEN, R. P. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton.