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ABSTRACT We describe a method for simulating biomembranes of arbitrary shape. In contrast to other dynamically triangulated
surface (DTS) algorithms, our method provides a rich, quasi tangent-continuous, yet local description of the surface. We use
curved Nagata triangles, which we generalize to cubic order to achieve the requisite flexibility. The resulting interpolation can
be constructed locally without iterations, at the cost of having only approximate tangent continuity away from the vertices. This
allows us to provide a parallelized and fine-tuned Monte Carlo implementation. As a first example of the potential benefits of the
enhanced description, our method supports inhomogeneous lipid distributions as well as lipid mixing. It also supports restraints
and constraints of various types and is constructed to be as easily extensible as possible. We validate the approach by testing
its numerical accuracy, followed by reproducing the known Helfrich solutions for shapes with rotational symmetry. Finally, we
present some example applications, including curvature-driven demixing and stylized effects of proteins. Input files for these
examples, as well as the implementation itself, are freely available for researchers under the name OrganL.

Our method provides a straightforward way to simulate any biomembrane geometry. It overcomes some of the limitations of
previous dynamically triangulated surface (DTS) Monte Carlo schemes by providing a surface that contains an interpolant
which allows to assign meaningful functions of curvature to almost every point of the discretization, yet keeps much of the
simplicity of the common DTS schemes by not requiring any nonlocal information or iterations for its construction. Our tool
is easily extensible and facilitates the simulation of complex lipid and protein compositions on membrane surfaces at any
scale.

INTRODUCTION
A realistic multiscale model of (sub)cellular structures, such
as organelles remains a distant goal. Molecular dynamics
(MD) simulations provide detailed information on molecular
structure and surface binding but are limited by size and
time scales. Coarse-grained (CG) MD simulations provide
limited relief, as they still require to simulate particles of a
roughly molecular size and often entail a substantial loss of
accuracy and transferability.(1) The obvious starting point for
the mesoscopic description of lipid membrane-based systems
is provided by the (Evans-Canham)-Helfrich functional(2–4),
which has found wide application in membrane biophysics(5–
9) since its introduction in the seventies. Recently, efficient
techniques to extract its local parameters from atomistic MD
simulations have been developed.(10–14) Introducing molec-
ular specificity into the continuum model in this way has the
potential to allow the systematic construction of models for
slow processes at the cellular scale and to solve them using
modest computational means. An illustration was recently
provided for membrane fusion.(11) The heterogeneous na-
ture of biomembranes requires local and dynamic membrane
properties. However, even in the absence of such concerns,
the Helfrich functional is difficult to extremalize analyti-

cally as well as numerically. This is particularly true in the
absence of symmetries, as surfaces are hard to parameter-
ize in a general setting. Dynamically triangulated surface
(DTS) simulations, as pioneered(15) and developed(16, 17)
by Kroll and Gompper among others(18–20) are, therefore,
often employed to explore static as well as time-dependent
behavior of complex membrane structures.(21–24) The DTS
method, as it is established, is based on an operator discretiza-
tion over the vertices.(25) Such discretizations are widely
used in established packages(26, 27), such as Brakke’s surface
evolver(28), but the underlying construction does not allow for
any substructure on the faces, relegating all information to the
vertices. This leads, for example, to the practice of confining
membrane-deforming proteins to the mesh-vertices(27, 29)
and makes it difficult to compute accurate interaction energies
of membrane structures at curved interfaces. The insertion
of complex mixing and coupling terms or flow fields thus
requires a very fine mesh, even though actual changes in shape
are often of large scale when compared to the protein size. It
is, of course, possible to describe curvature in a continuous
manner, using splines(30) and there are other known finite el-
ement approaches.(31) The Nagata interpolation(32) is quasi
tangent continuous and, as we shall see, provides a sufficient
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degree of accuracy in the calculation of the curvature integrals
required for the Helfrich theory. However, it also has substan-
tial drawbacks. In particular, the interpolation requires the
provision of surface normals. Normal estimation on unstruc-
tured meshes remains a challenging problem and the standard
Nagata interpolant fails to give reasonable results for a wide
range of “unexpected” normals.(33) As the resolution of the
problems of the Nagata interpolant requires modification of
both the interpolant and commonly used Monte Carlo steps,
the Methods section necessarily contains a significant amount
of new methodology; in other words, it contains results.

METHODS
Discretization Scheme
The starting point of the Nagata interpolation scheme(32) is
the search for a quadratic edge interpolant >2 (C) between two
vertices x�, x� connected by a distance vector d = x� − x�.
We denote the (vector) coefficients of the interpolant with c1.
Defining

>2 (C) = x� + (d − c1) C + c1C
2, (1)

ensures that the interpolant goes to x� at C = 0 and x�
at C = 1. Furthermore, if the coefficient vector c1 is zero,
>2 (C) becomes a straight line connecting the vertices. The
key difference to other interpolation schemes is that instead
of solving for the coefficients by some boundary conditions
(such as equal derivative values) defined by the neighboring
patches, the Nagata scheme uses normal vectors n1, n2 to
determine the coefficients without any direct reference to
neighboring patches. Reproducing surface normal vectors
requires the knowledge of at least one more interpolated edge
to construct the tangent basis. However, for simplicity, Nagata
decided to merely consider tangent vectors of the single edge
interpolant

t(C) = >′2 (C) = d − c1 + 2c1C. (2)

A consistent normal vector requires the tangents t� = t(0)
and t� = t(1) at the endpoints to be orthogonal to the normal.
Hence, the conditions

n� · t� = n� · (d − c1) = 0, (3a)
n� · t� = n� · (d + c1) = 0, (3b)

need to be fulfilled. However, c1 has three elements. Hence the
resulting linear equation systemM for c1 is underdetermined.
As c1 controls the “curvature” of the interpolant, it makes
sense to insert the minimization of | |c1 | | as the third condition
to complete the system. Note that for | |c1 | | > 0, this norm
has no straightforward relation to curvature as it is commonly
defined on curves, as an analytical arc-length representation
is not possible. The pseudoinverse, also known as the Moore-
Penrose inverse of a matrixM, is a generalization of the matrix
inverse to nonsquare matrices. It guarantees fulfillment ofM,

while minimizing | |c1 | | (least squares). Following reference
(32), the pseudoinverse can be computed analytically via

M+ = lim
U→0+

(
M>M + UI

)−1
M>, (4)

leading to simple expressions for the determination of c1.
Fig. 1 shows the construction of an edge interpolant in a
non-pathological case.
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Figure 1: Quadratic (dotted line) and cubic (red line) Nagata
edge interpolants, for the case of well-behaved normal vectors.

This process fails to give the expected results for a wide
variety of pathological normal orientations. Singular points
and their remedies have been discussed by Nagata.(32) For
our purposes, it is sufficient that the interpolation will succeed
for smooth surfaces, as is required by the ordinary Helfrich
theory. It was discovered recently that the results for

(n� · d) (n� · d) ≥ 0, (5)

are problematic.(33) Some of the issues are illustrated in Fig. 2.
Namely, if both of the normal vectors are oriented in the same
way with respect to d, the quadratic interpolant will not lie
in the angle between normal vectors viewed along d. An
example of this arrangement is given in the left panel of Fig. 2,
where the two normals are approximately parallel and close
to orthogonal to d. Such a configuration of normal vectors
may arise readily, e.g. from a normal estimation with a small
perturbation of a flat mesh during the formation of a dimple.
The resulting interpolant describes a large "sideways" bow,
risking overlaps with other parts of themesh. Similar problems
occur in the event of twisting the normals as shown on the right
of Fig. 2. If the interpolant were to lie within the space spanned
by the normals and d, it would have to contain an inflection
point. For such cases, Nagata and subsequent authors advise
either subdivide the mesh to cover the inflection point or
to insert a flat line. In the case of a membrane simulation,
such an approach is difficult to implement, as there are no
underlying data to refine and a realistic expression of curvature
is required. Furthermore, our experiments with updating the
mesh with only quadratic patches were not successful. In
order to ameliorate the situation, we increase the interpolation
to cubic order:

>3 (C) = x� + (d − c1 − c2) C + c1C
2 + c2C

3. (6)
The derivative is given by

t = >′3 (C) = d − c1 − c2 + 2c1C + 3c2C
2. (7)
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As before, we impose the requirement of the tangent vectors
to be perpendicular to the normals at the endpoints. The
introduction of c2 means that the equation system now has
four degrees of freedom left to determine. Note that, e.g. the
arc-length variation of a curve between two points, for a given
set of tangent vectors will result in a straight line with an
infinitesimal kink; it is therefore expected that an arbitrary
increase of polynomial order will lead to an equivalent result.
In order to achieve a good interpolant, it is necessary to
require additional conditions. For the pseudoinverse operation
to work, these conditions have to come in the form of linear
equations. Therefore, we impose an additional estimate of
the binormal vector. This vector is orthogonal to the normal
vector and is estimated to be normal to the plane spanned by n
and d, the construction is intended to keep >′3 nearly parallel
to d. This leads to the following set of conditions:

n� · t� = 0, (8a)
n� · t� = 0, (8b)

(d × n�) · t� = 0, (8c)
(d × n�) · t� = 0. (8d)

As remarked previously, using the pseudoinverse for an
underdetermined system corresponds to solving a least squares
problem in the coefficient vector. This problem has an analyti-
cal solution, which we provide in the Supplementary Material,
together with the detailed algorithm which produces the edge
interpolant with a few vector multiplications. We find them to
be well-behaved, resulting in an interpolant very close to the
original Nagata formulation for the “nonpathological” cases
as well as a reasonable inflection point for the failure mode
described in Eq. (5). The additional condition introduced
minimizes the chance of edge overlap.

Interpolation of a Patch
In order to create a surface interpolant, the edge interpolants
have to be assembled into a surface. The patch interpolant
x2 ([, Z) for the original quadratic Nagata edges is also of
second order:

x2 ([, Z) = c̃00 + c̃10[ + c̃01Z + c̃11[Z + c̃20[
2 + c̃02Z

2. (9)
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Figure 2: Left panel: Quadratic (dotted line) and cubic (red
line) Nagata edge interpolants, for the case of normal vectors
with equal orientation n8 · d > 0. Right panel: Arrangement
for twisted normals with the additional condition of n2 · d ≈ 0.

The six coefficients of this polynomial are determined by
the requirement of the edges of the surface interpolant being
equal to the edge interpolants. More precisely, the functions
x2 ([, 0), x2 (1, Z), x2 ([, [) have to be exactly equal to the
Nagata edge interpolants. For a visualization of the structure,
see Fig. 3. The edge polynomials restrict the domain of the
interpolated patch to 0 ≤ [ ≤ 1 and 0 ≤ Z ≤ [.
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Figure 3: Left panel: Schematic of a patch interpolant as
constructed from the edge interpolants. Right panel: Domain
of the patch interpolant.

The third-order patch interpolant requires additional con-
ditions to be uniquely determined. It must reprodcue the
quadratic case when c2 = 0, resolving any ambiguity. A de-
tailed derivation is given in the Supplementary Material. In
our code, cubic edges are only used where the failure con-
dition in Eq. (5) is met as the alternatives of permitting bad
interpolants or inserting a straight line lead to heavy artifacts.
Excluding these configurations leads to the necessity of cre-
ating complicated, collective motions of the mesh (clustered
moves) to avoid trapping. The stand-alone accuracy of the
resulting interpolant is evaluated in the Results section.

Evaluation of the Helfrich Energy
For a closed surface, the Helfrich free energy �, supplemented
by surface tension f and pressure ? terms can be stated as

� =

∫
Surf.

dA
{
^

2
(�̃ − �()2 + ¯̂ � + f

}
+

∫
Vol.

dV?. (10)

In this equation, the geometrical quantities include the total
curvature �̃ (the sum of principal curvatures, in contrast to
the standard definition of the mean curvature � = 1

2 �̃), the
Gaussian curvature  � , the area element dA and the volume
element dV. The material parameters are the bending rigidity
^, the Gaussian bending modulus ¯̂ and the spontaneous or
intrinsic curvature �( . The pressure ? and surface tension
f can be interpreted as Lagrange multipliers on the total
surface and volume, respectively. In our scheme, � and + are
controlled instead by quadratic penalties and  � can typically
be ignored due to the Gauss-Bonnet theorem. We note, that +
can be obtained from the divergence theorem using the spatial
coordinate r as

+ =
1
3

∫
Vol.
∇ · r dV =

1
3

∫
Surf.

x · n̂ dA, (11)
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where n̂ is the surface unit normal vector as computed from
the patch interpolant x. If the surface is closed, it is sufficient
to work with surface integrals to evaluate all of �. The surface
integral is summed over all patches and in each patch is
discretized on the domain of the interpolant using a seventh-
order Gaussian quadrature scheme(34). Note the facility of
constructing parallel planes accounting explicitly for separate
monolayers and the availability of a reasonable direct way to
evaluate Gaussian curvature on a face. If the surface is open,
an additional term

�Γ =

∫
mΓ

[
^:� + g

]
dl (12)

needs to be added, where the integration is performed along
the boundary mΓ of the surface, and a geodesic curvature :�
as well as line tension g of the membrane need to be integrated
along the line element dl. On the level of the code, different
energy functionals are available via subclassing and all of
the above described terms can be computed. Some further
possibilities are described in the Supplementary Material,
most notably an implementation of area difference elasticity
(ADE)(35, 36) via control of the integrated mean curvature.
Local curvatures can be expressed in a simplified manner by
the coefficients. More details about the implementation are
given in the Supplementary Material.

Parallelized MC Implementation
Moves
We use a standard Metropolis Monte-Carlo (MC) algorithm to
evolve the interpolated surface and sample the Boltzmann dis-
tribution of the underlying energy functional. The advantage
of this setup is that fluctuations, such as membrane undu-
lations are automatically included in the simulation results.
The sampling of a finite temperature distribution also implies
our code is not an optimization code. In contrast to standard
DTS, we also have to consider the changes of the normals in
the sampling of equilibrium geometries. We provide vertex
moves, normal moves and so-called deep vertex moves. In ad-
dition to this, we have also implemented a basic bond-flipping
“Alexander” move and a new type of move associated with
lipid composition on a face. Due to the local nature of these
moves, the code is easily parallelizable. In Fig. 4, we show
the part of the local mesh that is modified, as it needs to be
checked for validity and is updated in every step. The normal
move does not change any of the mesh vertices. In order to
generate the move, we create a vector d from a Gaussian
distribution

38 = Z ; %(Z) = 1
f
√

2c
4
−Z 2

2f2 , (13)

where the components 38 are set to separate Gaussian random
variables. The pseudorandom variables Z are generated using
aMersenne-Twister algorithm, initialized by a time-dependent

Figure 4: Implemented MC-moves: a) Normal move and
its update range, b) vertex move and it is update and face
orientation check range, c) Deep vertex move, d) Alexander
move, e) Lipid transfer move. The legend describes the update
schemes, face updates and orientation checks.

seed. The proposed new normal vector is then obtained as

n% =
n + d
‖n + d‖ . (14)

Note that the probability of proposing −d is the same as
the probability of proposing d, due to the symmetry of the
Gaussian distribution. The variance, f, can be adjusted auto-
matically. For proposal probability, we find

%(n% |n) = %(n|n%), (15)

which helps to ensure detailed balance and allows us to
compute the acceptance probability as

�(n% |n) = min
{
1, 4−VΔ�

}
, (16)

where Δ� is the change in the total free energy associated
with the move and V = (:))−1. We state � in units of :) ,
cancelling V. The change in energy can be computed locally
by considering only the triangles which contain this normal,
hence it is trivially parallelizable. The only difficulty pertains
to the evaluation of changes to the global quantities + and �.
For a global “restraint” on a function Φ to Φ0, with an energy
contribution of the form

_

2
(Φ −Φ0)2 = �Φ. (17)

The change ΔΦ due to a local MC step leads to an energy
change of

Δ�Φ =
_

2
ΔΦ(ΔΦ − 2(Φ −Φ0)). (18)

This means, that a local scheme requires the storage of the
current global value Φ. However, Φ can be updated using ΔΦ
if the current local contribution to Φ is stored on the face.
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In order to accept the proposed normal, it will also have to
produce valid cubic or quadratic face interpolants. To ensure
this, we require the proposed normal to be at a minimum
angle to the other triangle normals n8 , so that

n? · n8 > n = 0.01. (19)

Finally, a collision check is performed. This collision check
is delayed because of the great computation expense of eval-
uating the neighbor list. The second move to consider is the
vertex move. Again, a vector is sampled from a normal distri-
bution and added to the previous position. The same sort of
symmetry argument, leading to Eq. (15) applies. The change
of a vertex has more spatially extended consequences than the
change of a normal, see Fig. 4, b). Of course, the triangles in
the immediate vicinity of the initial vertex have to be updated.
The acceptance criterion in Eq. (16) is applied. Moreover, the
acceptance of the vertex move requires

^(x8 , x 9 , x: ) >
c

16
, (20)

for all of the angles in the triangle. The “deep-vertex” move
from Fig. 4c, removes the normal vectors as independent
degrees of freedom, determining them by the faces of the
underlying triangular mesh. The way this is achieved is by
reconstructing all normals affected by a vertex move, i.e.
all normals on vertices neighboring the modified vertex are
re-estimated using our normal estimation algorithm. Under
these conditions, the move is fully reversible. This would not
necessarily be true if the move was to only update the normal
on its own vertex, because under these conditions the vertex
normals of the surrounding faces would no longer correspond
to their estimated values. As a remedy, we “quench” the
normals to their estimated values before using this move or
to use it standalone. Because of the potential issues, this
move has been deactivated by default. Our MC scheme is
also set-up in such a way as to minimize irreversibility by the
organization of theMarkov chain. In particular, for each degree
of freedom, multiple trials(37) are proposed until acceptance,
so that for each MC step (almost) all degrees of freedom
have moved. The total step can, therefore, be interpreted as a
factorization of individual symmetric steps.(38) Furthermore,
we have implemented a mechanism of automated propagation,
which ensures all other energy carrying objects are updated
together with the faces, such object can e.g. include edge terms.
Algorithmic details on the MC scheme and the automatic
construction of decoupled parallel execution loads are given
in the Supplementary Material. The "Alexander"/bond-flip
move show in Fig. 4 d) is currently set to be accepted only
if it decreases energy. Our automatic parallelization scheme,
described in the SI relies on tracking the dependencies of each
degree of freedom as determined from mesh. As the move
changes the mesh topology, the parallelization structure of
the code needs to be updated, and neighbor lists rebuilt after
each round of bond-flipping moves. Hence, the remeshing

move is executed only occasionally and (mostly) serially. As
the number of faces is conserved, face properties (such as
local bending rigidity) can remain associated with a fixed
face, currently, no redistribution occurs. The Alexander move
is associated with the edge which is flipped. The lipid mixing
move shown in Fig. 4 e) is also edge-associated, random lipids
are chosen from the population of both faces and transferred
to another face. More information is found in the lipid mixing
section.

Mesh Properties and Constraints
Constraints
It is possible to selectively block or remove parts of the mesh
from active evolution. The former can be accomplished by
removing some properties while retaining the mesh points.
The latter is accomplished via block objects, which prevent
updating parts of the mesh, e.g. only the G coordinate of a
vertex or a normal. Blocks provide a simple way of imple-
menting sophisticated boundary conditions. As an example,
it is possible to allow the boundary of the mesh to evolve
in-plane only while the normal vectors, and hence the tangent
basis is kept constant. The block objects can also be used to
suppress remeshing and lipid flow across membrane edges.
We provide a utility to load simple coordinate and normal
freezes via text files. The final distribution of our software
contains a manual and selection tools to assist with preparing
the blocks. By editing the source code, block objects can also
be used to constrain curvilinear coordinates.

Face Properties
As energy and integral evaluations are performed over the
faces, it makes sense to also store information about the
parameters ^, �B, �0 and others on them. In fact, each face
contains an arbitrary collection of properties, which are ac-
cessed via a text key. Such properties can be assigned at load
as well as at run time and are automatically included in output
visualizations. This allows us to dynamically store and export
information about composition as well as to compute modified
elastic properties and local coupling terms on the fly.

Lipid Mixing
The implemented energy functionals would also allow to com-
pute the energy directly for a composition. However, a proper
implementation of lipid mixing requires the lipid composition
to be dynamic and, therefore, requires the definition of mixing
rules and moves which manipulate it. Ideally, the modification
of the lipid composition should be transparent to most of the
energies computed from it. In the literature, it has often been
proposed to compute the bending rigidity ^ as(39, 40) via a
harmonic average of the single lipid moduli ^8:

1
^
=

∑
8

q8
1
^8

. (21)
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Here q8 refers to the volume fraction, which is calculated as

q8 =
<8�8∑
9 < 9� 9

, (22)

with �8 the area per lipid of the lipid species 8. This means,
that we assume that the area per lipid does not change while
mixing. The area per lipid �8 is a reference area contributing
to �0, so that mixing/bending and stretching are not coupled.
By<8 , we refer to the number of lipids of species 8 present in a
triangle. Of course, completely different behavior is possible.
An example occurs during a phase transition to gel or L$
phase. As long as the behavior is well-defined it is easy to
implement the requisite models in our code. The spontaneous
curvature is computed as

�B =
∑
8

q82
0
B,8 , (23)

where 20
8
is spontaneous curvature of the pure 8.(13, 41) We

have recently tested the validity of these equations against
atomistic molecular dynamics results.(42) Furthermore, the
mixing entropy of the lipid composition with a total occupancy
of lipids " on a side/leaflet of a triangle can be estimated as
ideal in the surface fractions(41):

�mix = :)"
∑
8

q8lnq8 . (24)

This free energy is added to the energy in the form of a penalty.
In this way, it can be used with all energy functionals. Real
valued molar fractions q8 and lipid occupancies <8 presume
that the lipid composition of a triangle is a macroscopic
quantity. As the mixing entropy is temperature dependent,
the temperature is provided via the inverse temperature V.
Furthermore, both leaflets in a bilayer are considered, and their
properties are computed separately, and then added together.
The curvature 20 is added with an inverse sign to that of the
opposite leaflet. The equilibrium area of a face �0 is computed
from the areas per lipid on each leaflet, the �0 are then averaged
(we recommend setting up the simulation with equal �0 for
both leaflets). The implemented approach models only the
bilayer midplane, so that the finite and variable thickness of
the actual bilayer is neglected. There is also the possibility to
use a stylized protein, whose move will be integer valued and
which will override the curvature generated by the lipids. In
order to simulate lipid mixing, an exchange move has been
implemented. On each leaflet:

1. Select two lipid types at random from adjacent faces.

2. Generate two random amounts of lipids to be moved.

3. Move the two lipids between the adjacent faces and
recompute the energies, including mixing energy.

4. Accept or reject the move.

Uniform random numbers are used for the exchange move. In
order for the move to be allowed, the total occupancy must be
above a certain threshold, e.g. zero. Currently, themoves are set
so that the total �0 of each face and leaflet does not change by
lipid exchange flow. This serves to prevent mesh degeneration.
While we are not aware of an equivalent implementation,
similar ideas have been explored in the past.(43)

Collision Detection
In a naive implementation, the detection of potential collisions
between any pair of elements in a set of = triangles requires
O(=2) operations. To mitigate the computational expense of
the collision detection, we implemented a neighbor-list based
broad (44) search that aims to reduce the number of explicit
intersections which have to be computed. The broad search is
followed by a narrow phase that relies on the popular (45–47)
fast triangle-triangle intersection test of Möller (48). As the
mesh faces are cubic surfaces, the use of the Möller algorithm
is a compromise between precision and computational cost.

Penalties and Errors
For the calculation of the energy, and the consistency of the
interpolation, we require a consistent definition of the surface
integral everywhere on the surface and to evaluate the same
for an arbitrary subdomain∫

Patch
5 d�, (25)

where 5 may depend on derivatives of the surface or might
be a differential form. For example, a smooth surface in R3

will fulfill ∫
�

∇ × n̂ · dG =
∮
m�

n̂ · dl = 0, (26)

for any closed, finite area � with boundary m�, tangent vector
dl and oriented surface element dG, and . It is easily shown that
∇ × n̂ = 0 is fulfilled everywhere inside an interpolated patch.
If dl is a tangent vector of an edge interpolant, integrating
around the boundary of each patchwill also fulfill the condition
as even where normals are ambiguous/discontinuous on the
edge interpolant, both are orthogonal to the tangent vector
which follows the boundary line by construction. However, we
need more regularity than this, as we are interested in integrals
of �̃ and �̃2. On a patch boundary, one of the tangent vectors,
i.e. the one taken along the edge interpolant is identical to
that of its neighboring patch. Away from the vertex, the other
tangent vector may be different so that for an identical point
at the edge two different tangent vectors are obtained. Quasi-
tangent continuity means that tangent continuity is ensured
only at the vertices so that in general, our interpolant is only
C0 continuous, across edges but the computation of curvature
requires derivatives of n in any direction, in particular the
total curvature �̃, i.e. the covariant normal divergence

�̃ = ∇ · n̂, (27)
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has to be (square) integrable on the surface. At the edge, one
tangent vector is shared (hence the same normal curvature
in one direction(49)). If the normal vector at this point is
also identical, it is possible to construct a local orthogonal
tangent basis, this second tangent (t⊥) defines a shared normal
n̂ as it stands orthogonal to the edge direction and n at all
times. Tangent, i.e. C1 continuity is sufficient to guarantee
some curvature integral properties, but does not guarantee
continuity of the curvature itself. Furthermore, numerical
experiments showed that the patch interpolant does not always
reproduce the vertex normals used to create it. For example,
one of the edge interpolants may have parallel tangents at
the endpoints during construction or might generate normal
vectors of opposite orientation. Hence, before accepting a
move it is verified that

n̂Mesh n̂Nagata ≥ 1 − n . (28)

We use n = 0.005 as numerical tolerance for normal repro-
duction. In Fig. 4 of the Supplementary Material, we show
how enforcing normal reproduction helps to enhance tangent
continuity. In order to bring the discretization closer to a C1

continuity, we define the following energy scale

� = [(^ + 1) (1 + �0�
2
B ) + �2

0 �]. (29)

The individual terms in this intensity are spatial-scale free
energy units. They are set to cover all sources of energy in
the problem so that a significant �B does not damage the
regularizing penalty. Now, we split the tangent basis into two
parts,

t= = >′; t⊥ = >′ × n̂. (30)

We then require that at the midpoint of an edge

t̂⊥,<
!
=

1
2
( t̂⊥,0 + t̂⊥,1), (31)

where the subscripts (0,1) denote the normalized average value
of t⊥ at the endpoints of the edge interpolants. By controlling
the evolution of t̂⊥, in each triangle, we enforce the continuity
of normals at the center of the triangle, biasing towards
C1 continuity without requiring information from adjacent
triangles. Deviation from Eq. 31 carries a quadratic penalty
depending on �. In the Supplementary Material, we quantify
the approximate tangent continuity and show its conservation
in a production run. We also penalize too small triangle areas
(starting < 40%�0) and deviations from an equilibrium angle
(|U | < 0.316) with quadratic penalties proportional to �. The
interpolant is highly tolerant of different penalties, as long as
they are sufficiently strong. The area penalty serves mainly
to prevent mesh degeneration. This mesh degeneration is less
of a problem for the interpolant than for the MC algorithm,
as the admissible step size becomes highly in-homogeneous.
Similarly, the angle penalty mostly serves to prevent the
locking and overlap of triangles. The numerical values of the
penalty terms are given in the Supplementary Material.

Input and Output Formats
The mesh input file format for this code is wavefront obj.
Meshes of this format can be generated and exported from
many free and standard tools. If the original obj file does not
contain normals, they will be reconstructed from neighboring
face normals in a simple weighting scheme(50). The program
also exports this type of mesh, in addition to XML-VTK(51)
unstructured grid files (.vtu). These are readily available and
can be visualized and processed with the Paraview software
package(52).

RESULTS AND DISCUSSION
Example Meshes
It is difficult to unit-test the error of the interpolation. The
easiest way to proceed is to demonstrate the accuracy for
example meshes. These example meshes are not the result of
a simulation, but are generated geometric objects. The results
are shown in Fig. 5. For the unit icosphere mesh Fig. 5 a), the
corresponding values are a total curvature of 12.518, energy
of 24.959^ and area of 12.5662. The Gaussian curvature
integral evaluates to 12.4707. The theoretical values for area,
curvature and Gaussian curvature are 4c ≈ 12.5664 for ' = 1.
The theoretical energy is 8c^. The volume error is negligible.
We also tested the icosphere using purely cubic interpolants.
Area and volume accuracy remained unaffected, but energy
decreased to 24.736^ and curvature to 12.44. For the catenoid
the absolute error was similarly increased by 0.24^. We note,
that the quadratic interpolation appears more robust, but errors
remain small. At present, we do not know how important
integration order is for error control. We fall back on the
quadratic interpolant, when normals allow it. The toroidal
mesh Fig. 5 b) has a total  integral of -0.2 over the surface,
the theoretical value is zero. The catenoid mesh Fig. 5 c),
mainly due to the difficult normal estimation at the edges,
results in a total curvature integral of -0.27 over all faces and
a total Helfrich energy of 0.22^ over an area of 17.63 units.
Any minimal surface has � = 0 everywhere, so the theoretical
value for mean curvature integrals is zero. The catenoid also
has an Euler characteristic of 0. As such, integrating  over
the mesh and :� over the edges results in two terms canceling
to 0.032, close to the expected result.. This illustrates the
high accuracy of our scheme for good quality meshes. The
flat triangle mesh Fig. 5 d) does have a mean and Gaussian
curvature identically zero. Its :� boundary integral evaluates
to 6.28, close to the theoretical value of 2c for the Euler
index of one. In the lower panel, we show the convergence of
Gaussian and mean curvature for the platonic solids. For their
computation, we used analytical normals.

Helfrich Shapes
In order to validate the interpolant and our MC algorithms, we
reproduced the behavior of the known rotationally symmet-
ric shapes of the Helfrich Hamiltonian. The corresponding
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Figure 5: Upper part: Four example meshes, with mean cur-
vatures (left column) and Gaussian curvatures (right column)
plotted as averages over face integrals, normal orientation
gives negative H to the sphere. a) Icosphere mesh (642 ver-
tices, 1280 faces) b) Toroidal mesh (1152 faces, 576 vertices),
R1=1, R2 = 2. c) Catenoid Mesh. (2340 faces, 1209 vertices)
Flat mesh (162 faces, 100 vertices. The mean curvature and
Gaussian curvature scale are shared between meshes. Lower
part: Convergence test of mean (blue) and Gaussian curvature
(green) integrals for a range of platonic solids and icospheres.

minima have been well explored and confirmed recently by
independent techniques.(25, 30) Results are shown in Fig. 6.
We have generated all the points using a discocyte starting
geometry, by moving the volume restraint and keeping the
area constant. In particular, thanks to the MC implementation
we are able to transform prolate to discocyte and vice-versa
near the theoretical limits, which are indicated by the dot-
ted vertical lines with the numerical values marked in Fig
6.(25, 30) The prolate state can be somewhat metastable, so
that, with fast pulling some “wormlike” shapes were obtained.
Discoid geometries readily transition to prolate ones: the point
to on right of the line at E0 0.65 has a prolate long axis. The
transition from discocyte to stomatocyte was also observed
and occurred via collision and repulsion of the stomatocyte
dimples. We provide documentation of these transitions as
videos, showing how we can generate each shape from each
other. The values we show for E0 > 0.1, represent sampling
averages over 20K steps, after more than 1M equilibration

steps at the stationary shape as we have not implemented
gradients. In theory, the minimal energy is 8c^ for the sphere
at E0 = 1, and 16c^ for the stomatocyte (in the limit a sphere
inside as sphere), with a supralinear increase in the prolate
regime.(35) The theoretical curve is shifted by the thermal
energy U. The value of U was estimated by comparing the
minimal curvature energy of an icosphere at E0 = 1 at rest,
found when annealing only the normals and edge flipping at
V = 1000 to its simulation average energy at the simulation
conditions, the difference is ≈ 0.7·8c^. The geometries shown
in Fig. 6 also show of the curvature on each individual face
(only the average values are mapped on each face).

  

H [R
0
-1]

I. II. III.

0.59 0.65

Figure 6: Results for spherical vesicles, including the shapes
for stomatocytes I., discocytes and oblate II., prolate III. shapes
obtained using volume and area constraints. The blue line
indicates the theoretical value for the stomatocyte. U is due
to the thermal energy of the degrees of freedom of the mesh.
All results are derived from the 1280 face / 642 icosphere
mesh. Starting point was a discocyte geometry. The energies
are average values over the equilibrated part of the run.

For this simulation, only the global surface area � and the
global volume + were restrained. From these was computed
the reduced volume

a0 =
6+
�3/2
√
c. (32)

When the space inside the vesicle becomes too small, i.e. at
a0 < 0.2 fluctuations deform the mesh and the neck becomes
heavily penalized. While we believe it might be possible to
go even lower with appropriate penalties, this seems to be
quite sufficient for most stomatocyte shapes. In the Supporting
Material we provide further simulation details. Equivalent
inputs are also part of the OrganL distribution.

Examples: Curvature Bias and Lipid Mixing
The sampling of the standard Helfrich minima in Fig. 6 is
just a precondition for the more advanced methods. With a
robust description of the surface, it also becomes possible
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to add the lipid moves described in the previous section. For
the purposes of clarity, we have chosen only one leaflet to
have a strong curvature. In Fig. 7 a), the comparison of a
mixed patch with �B = 0 is shown. A protrusion is stabilized
by curvature-driven lipid demixing. The lipid population and
local �B are visualized together in central and right panels. The
boundary of the simulation is constrained. The lipid demixing
effects in the example are intended for illustration purposes,
they result from the boundary conditions, lipid parameters and
restraints applied, and do not indicate that ideal mixtures will
spontaneously demix to create deformations under realistic
conditions.

  

a)

b) c)

Figure 7: a) Coupling of lipid mixing and curvature gener-
ation with membrane geometry. Left panel: Simulation of
lipid mixing without curvature, Central panel distribution of
curved lipid and budding triggered by the same. Right panel,
spontaneous curvature. b) ADE simulation starting from pro-
late geometry (left), as implemented by a global curvature
restraint. c) Comparison of lipid budding and constriction
with high spontaneous curvature (left), and neck-constricting
protein mimicks (right). All spherical cap simulations had
968 faces and 509 vertices, the ADE simulation used a prolate
starting geometry (642 vertices, 1280 faces).

Apart from a restriction on volume and surface integrals,
it is also possible to restrict the mean curvature integral. This
is equivalent to the ADE formulation, as area differences
create global curvature restrictions. One example of such an
ADE simulation is shown in Fig. 7 b). The left side is the
starting geometry and only the curvature restriction enforces
the panhandle shape. Finally, it is possible to slightly relax
the penalties to bring forth more flexibility. Under these
conditions, it is possible to create and constrict multiple buds
from a small spherical cap and generate deformations on
buddings, etc. One example is shown in Fig. 7 c), which
points towards the possibilities that can be reached by the
refinement of moves and the introduction of explicit proteins.
Example input files are distributed with the software. We also
provide for the possibility to explicitly work with Gaussian
curvature, line tension and open meshes, but these features
are untested with evolving meshes.

CONCLUSION
We described a method for the mesoscopic modeling of
lipid membranes and related systems, based on a powerful
but simple discretization scheme. This scheme has been
introduced here to address previous weaknesses of the Nagata
interpolant and provides a new approach to DTS simulations.
What distinguishes our method is the possibility to assign
extra structure, such as differentiable functions to the faces
and edges. Our method also provides a direct correspondence
between analytical formulation of the curvature elastic theory
and its implementation. Consequently, we also introduce a
feature-rich implementation in the form of a Monte Carlo
code. The software was shown to be capable of modeling
the well-known rotational equilibrium shapes of the Helfrich
energy, at least semi-quantitatively and was empirically found
to provide correct relative energies. In its present form, the
method introduced here is potentially useful for predicting
e.g. the effect of lipid compositions, boundaries and proteins
in a number of stylized ways. Our software, OrganL, can be
used to study viral budding, curvature sorting and cellular
shapes, membrane shape fluctuations and many other effects.
The implementation design allows for easy extension of the
code to include new couplings, adding e.g. a cytoskeleton.
As an example we included edge element-dependent energy
contributions for open meshes. The current limitations are the
lack of explicit surface-surface interactions beyond collisions
(such as protein membrane interactions), gradient, for explicit
forces for fluid-structure interaction and topological changes,
such as membrane fusion.
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SUPPLEMENTARY MATERIAL
The Supplementary Material contains a detailed derivation of
the interpolants, algorithmic details about collision detection,
quadrature and parallel execution as well as data structures,
penalty constants and other numerical parameters (such as sim-
ulation run parameters) and a description of additional energy
functionals. It also contains more information about control-
ling tangent continuity. The program source code, supplemen-
tary videos and manual are available from the corresponding
author or under https://github.com/allolio/organl.
The program is free of charge for non-commercial use.
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