
OrganL User Manual

Christoph Allolio, Hina Arif and Jovi K

Version 1.0 - 26.4.2024

1 Introduction and Disclaimer

OrganL is a Monte Carlo simulation tool for evolving (sub)cellular scale
membrane structures. The program implements a variety of curvature-
elastic energy functionals and couplings. It is designed to be extensible
with the final goal of simulating entire cellular organelles. The program is
written in portable C++ and designed for parallel execution. This manual
is provided together with a distribution of the program including several
examples.

WHEN THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION. IN NO EVENT UNLESS REQUIRED
BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPY-
RIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Warning

This is not free software (c) 2020-2024 Christoph Allolio
The code is subject to the Academic Software Licence (see LICENSE file
for details)

1

Contents

1 Introduction and Disclaimer 1

2 Installation and System Requirements 4
2.1 Linux Environment . 4
2.2 Building on Microsoft Windows . 4
2.3 Cross-compiling on Linux for MacOS 5

3 Usage 6

4 Features 7
4.1 Units . 7
4.2 Implemented Energy Functionals . 7
4.3 Edge Terms . 11
4.4 Lipid Mixing . 12

5 Input Files 12
5.1 Preparing the Files . 13
5.2 Mesh file . 13
5.3 Membrane Properties File (props.txt) 14
5.4 Control file . 17

5.4.1 Simulation Settings S . 18
5.4.2 Energy Settings E . 19
5.4.3 MC Settings M . 19

5.5 Lipid file . 19
5.6 Blocks file . 20

6 Output Files 22
6.1 Output Mesh (out.obj) . 22
6.2 Output Interpolant (out.plt) . 22
6.3 VTK Visual Summary (out.vtu) . 22
6.4 Output Membrane Properties (props out.txt): 22
6.5 Output to console. 22
6.6 VTU Files for Monitoring . 23
6.7 Report File: . 23
6.8 Restart Files: . 24

7 Resuming a Simulation 24
7.1 Continuing a Finished Simulation . 24
7.2 Continuing an Unfinished Simulation: 24

8 Visualization 25

2

9 Tips on Simulation Planning and Execution 26
9.1 Basic Strategy . 26
9.2 How to set targets and penalties . 27
9.3 How to optimize performance . 27
9.4 How to monitor accuracy . 27
9.5 How to set boundary conditions . 28

3

2 Installation and System Requirements

OrganL is written in C++ and can be compiled without the use of nonstandard
external libraries. During development, it has been compiled with GNU C++
11.4.0[3], with the default standard. This should correspond to C++ 17. To compile
the software, the CMake build system Version 3.0[1] or higher is recommended.
Parallel execution requires linking to the OpenMP libary[5]. Static Linux binaries
are available for x86-64 processors. Rudimentary Python bindings are available
and can be included by editing the CMakeList.txt file. These bindings require
PyBind11[6]. Users are encouraged to report the result of compiling organl for
Windows or ARM, Android and whatever is required. It is also possible to create
rudimentary python bindings uncommenting lines in the CMakeLists.txt file. These
bindings are not documented.

2.1 Linux Environment

On a normal Ubuntu machine, building the software from the source directory
should be as easy as

cd build

cmake ..

make

The resulting executable, is called organl. It is dynamically linked. To create
a static executable use

cmake .. -DSTATIC_LINK

This executable should be portable by default, but may not compile if you use an
exotic distribution. It does not require any further installation. In our cluster it
executes on wide variety of Linux versions without setting special paths.

If cmake is not available or fails, it is possible to build a parallel optimized
version in one line using GCC:

g++ main.cpp -fopenmp -o organl -O3

This has to be executed in the source code directory.

2.2 Building on Microsoft Windows

Start by setting up GCC and MinGW libraries on Windows. Recommended to
use the standalone build from WinLibs since it includes both GCC (cmake and
compilers like g++. clang++, clang-cl, etc.) and MinGW. Don’t forget to add

mingw32\bin or mingw64\bin to Environment Variables Path.

Further run the following commands in Command Prompt or Powershell from
the source directory:

4

https://winlibs.com/

mkdir build

cd build

cmake .. -G "MinGW Makefiles" -DCMAKE_CXX_COMPILER=g++

mingw32-make

The expected outcome is generating three executables named organl.exe , helf-

ins.exe and angle.exe .

Note that using other compilers like clang++ will require either explicitly spec-
ifying libraries or installing other dependencies, for example using llvm-clang based
compiler would require you to have MSVCRT (Microsoft Visual C++ Runtime) on
your system since it’s incompactible with the GCC library. Also change the cmake
Generator appropriately.

Generating static binaries might require specifying the full path of certain
MinGW libraries in the CMakeLists.txt , for example like so,

target_link_libraries(organl "D:/mingw64/bin/libdl.dll")

If cmake fails for some reason, it is possible to build a parallel optimized version in
one line using GCC:

g++ ../main.cpp -fopenmp -o organl.exe -O3

The build instructions in this subsection has been verified using GNU 13.2.0
and OpenMP 5.0.

2.3 Cross-compiling on Linux for MacOS

This section aims to explain the setup for cross-compiling with Linux for MacOS in
clang using the OSXCross[2] toolchain. For detailed instruction, refer their official
Github page. Following are the brief instructions for the same - Download and build
OSXCross toolchain using clang and install in <path>/osxcross by running:

TARGET_DIR=<path> ./build.sh

Now add <path>/target/bin to the PATH variable to invoke the cross-compiler

in terminal. This is essential everything that follows. Compiling for MacOS requires
its SDK and other compactible libraries. The SDK may be extracted from the
official Xcode Disk image. Start by downloading Xcode from Apple’s Website,
you might be required to sign in with an Apple ID. Install dependencies make ,

libssl-devel , lzma-devel and libxml2-devel . Now run,

5

https://github.com/tpoechtrager/osxcross?tab=readme-ov-file#how-does-it-work
https://developer.apple.com/download/all/

./tools/gen_sdk_package_pbzx.sh <xcode>.xip

Move the compiled SDK into tarballs/ directory. Compile the inlinecode osxcross-
macports in the osxcross directory by running the corresponding cmake file. These
contain headers and openmp compactibility among others. Now the toolchain is
ready to use. It may be invoked just like gcc or clang, but by compiler binary
with o64-clang instead. To cross-compile organl now, navigate to the source/

directory and run the following:

o64-clang++ -fopenmp -v ../main.cpp -o organl_macos

Similarly compile other required binaries like angle_macos or helfins_macos

by replacing main.cpp with angle.cpp or helfins.cpp respectively. Compil-

ing the source using cmake and OSXCross toolchain is possible but requires quite
extended configurations, and requires the paths to various libraries to be specified
manually since the cmake doesn’t have any generator for this toolchain. Compiling
fully static binaries for MacOS is not possible using the flag -static for reasons
given here.

Some commonly encountered problems are listed below:

• fatal error: ’omp.h’ file not found: Easiest way to solve this is to copy paste
omp.h file from gcc to /usr/local/lib/clang/17/include . The actual

paths might vary depending on installation but should be similar.

• osxcross-macport public key not matching: Make sure you downloaded the
original files from Offical apple’s website. If the problem persists commend
out exit 1 in the osxcross-macport code.

• ld: library not found for -lomp; clang++: error: linker command failed - This
is due to missing libomp.dylib in the PATH - install libomp using osxcross-
macports to /usr/local/lib or add the path if already installed.

Strictly speaking, since these problems are not directly related to our package, its
best to refer OSXCross Issues page for these and other problems that might arise.

The instructions in this subsection is tested using Xcode Disk image version 15.2
and targets MacOS Sonoma v14 and Darwin v23 systems. The MacOS binaries in
the binaries/ directory is NOT runtime validated.

3 Usage

Copy the appropriate organl binary for your platform from /binaries/ into this
folder. In its own directory, the program can be executed using the command line:

6

https://stackoverflow.com/questions/3801011/ld-library-not-found-for-lcrt0-o-on-osx-10-6-with-gcc-clang-static-flag
https://github.com/tpoechtrager/osxcross/issues

./organl {filename.obj} [ADE | CHF | EAP | EAH | DCH | DCG]

[LIP] [BNE | TAU]

Here, arguments in curly brackets are necessary, whereas arguments in square brack-
ets are optional. The filename.obj is a mesh file in wavefront obj format. The first
set of options in square brackets refers to the choice of energy functional and the
[LIP] option in the command line is used to enable lipid mixing. The last two terms
refer to separate edge energies. If no energy functional is specified, the DCH option
is used.

4 Features

The core functionality of the code is to perform Metropolis-Hastings Monte Carlo
to sample the Boltzmann distribution of thin-shell energy functionals associated
with the deformation of liquid biomembranes.

For a free membrane, the Helfrich free energy FHF can be expressed as:

FHF =

∫
Surf.

dA

{
κ

2
(H − JS)2

}
. (1)

In this equation, the geometric quantities include mean curvature (H), and the
area element (dA). The material parameters consist of bending rigidity (κ), and
spontaneous or intrinsic curvature (JS).

Clarification

• The pure Helfrich functional without Js is scale invariant, and requires
additional input for simulations.

• In agreement with biological convention, the curvature H is defined as
c1 +c2, with cn the principal curvatures of the surface. The curvature
of a surface depends on the orientation of normals chosen by the user.

• Js, also sometimes written as c0 is defined in relation to H.

4.1 Units

The program uses kT units. While there is no direct reference to any length scale,
we recommend nm as a unit, and use when providing lipid specific information.

4.2 Implemented Energy Functionals

As indicated by the command line options, various energy functionals are available,
allowing users to choose the most suitable energy functional for their simulation
requirements. Here’s a brief overview of the available parameters:
CHF (Constrained Helfrich Functional) The CHF represents the pure Helfrich

7

functional with additional constraints implemented using penalities. (So strictly
speaking they are restraints). It can be expressed as

FCHF = FHF +
λ0

2

(
A0 −

∫
Surf.

dA

)2

+
λ1

2

(
V0 −

∫
V ol

dV

)2

, (2)

where FHF is the standard Helfrich energy. This approach can also be reinterpreted
as being ”variationally equivalent” to the standard version of the Helfrich Energy
with pressure p and surface tension σ

F =

∫
Surf.

dA

{
κ

2
(H − JS)2 + σ

}
+

∫
V ol

pdV, (3)

where σ can be computed from a second order elastic modulus KA

σ = KA(A−A0). (4)

and p is compute from an analogous compressibility property

p = −KB(V − V0). (5)

This means that the penalties λi can also be assigned physical meaning, given that
no material is fully incompressible. In the energy file the Energy is reported split
into FHF and FC = FCHF − FHF , where FC is reported as Constraint Energy.

Clarification

• The Volume V is computed using the divergence theorem as stated in
the manuscript. Please check the normal orientation of your mesh.

• the values of λi and V0 and A0 refer to global parameters and need
to be set in the run control via LAMBDA and DEF keywords.

Requires: 2 LAMBDAS and 2 DEF (A0 and V0)

DCH (Double Constraint Helfrich): [DEFAULT] DCH adds an additional

per face restraint to yield

FDCH = FCHF +
∑
i

Ki

2
(Ai −A0,i)

2, (6)

or fully

λ0

2

(
A0 −

∫
Surf.

dA

)2

+
λ1

2

(
V0 −

∫
V ol

dV

)2

+
∑
i

Ki

2
(Ai −A0,i)

2, (7)

where

Ai =

∫
Si

dA (8)

8

In this case, Ki and A0,i are local and stored on the faces, and Ai is computed for
each face. These values can be set in the mesh properties, and can in principle be
computed on the fly during the simulation.
This additional constraint can be used to tightly control mesh quality, where nec-
essary, to control lipid population and even to restrict membrane fluidity. Note,

• the energy contributions due to Ki are reported as part of the Energy and
not the constraint energy FC .

• it is possible to set both λi and Ki to zero reducing the energy to CHF or
EAH.

Warning

• The Ki added to the faces will affect the penalty energy scale I even
when DCH is not used.

• Setting A0,i in a way that is incompatiple with A0 can lead to unpre-
dictable behavior. It is recommended to set A0 =

∑
iA0,i

• High values of Ki will lead to lower acceptance probabilities and steps.

Requires: 2 LAMBDAS and 2 DEF (A0 and V0)

EAH (Elastic Area Helfrich): This functional allows users to study the Helfrich
functional without global restraints. It is equivalent to DCH with both λi = 0

FEAH = FHF +
∑
i

Ki

2
(Ai −A0,i)

2. (9)

This should be the fastest and simplest Energy implemented. Unfortunately, it
does not allow to access FHF directly so this can be done from a restart using the
tool

helfins

Requires: 0 LAMBDAS and 0 DEF

EAP (Elastic Area Pressure): The EAP functional can be used to simulate the
effect of constant pressure. Adequate he extended functional can be expressed as:

FEAP = FHF −
∫
V ol

dVp+
∑
i

Ki

2
(Ai −A0,i)

2 = FEAH −
∫
V ol

dVp. (10)

Note, the constant pressure has to be supplied as a DEF and care has to be taken
with the sign. At present, positive pressure increases V . There is no constraint
energy. This can be a good choice for a subsystem.

9

Clarification

What limits the volume in this simulation is the elastic energy of the faces,
Ki and p must be chosen together, e.g. by comparing tension and pressure
for a certain stretch of the surface.

Requires: 0 LAMBDAS and 1 DEF (p)

DCG (Double Constraint Gaussian Curvature): The DCG functional can
be used to simulate the effect of a locally different Gaussian bending modulus κ
and the Gaussian curvature K. The extended functional can be expressed as

FDCG = FDCH +

∫
Surf.

κKdA. (11)

The modulus κ is usually negative and very hard to measure, some reasonable
first guess would be −0.8κ. The restraints are the same as those for the Double
constraint Helfrich Energy.

Clarification

Note, that this only makes sense if κ is highly inhomogeneous, as otherwise
the Gauss-Bonnet theorem will turn the integral into a topological constant.
If your system has an open boundary, you should choose a Bonnet edge
energy term in addition to this functional.

Requires: 2 LAMBDAS and 2 DEF

ADE (Area Difference Elasticity): This functional corresponds to triple con-
straint Helfrich energy, where the constraints are defined for the area, volume, and
the integrated mean curvature. This enables simulations of membranes with differ-
ent global areas on each leaflet. The extended ADE-like functional is like the DCH
functional, but with an additional restraint.

F = FDCH +
λ2

2

{∫
Surf.

HdA−M0

}2

. (12)

Here the area difference between leaflets ∆A and the bilayer thickness D enter
as

M =

∫
Surf.

HdA =
∆A

D
. (13)

10

This is the result of a truncated expansion, for details see [4]. The ADE model al-
lows to account for the fact, that in a finite thickness curved bilayer the negatively
curved leaflet has a smaller area than the postively curved apposed leaflet.

Requires: 3 LAMBDAS and 3 DEF (A0, V0, M0)

All of the above mentioned functionals have been implemented in addition to
the standard Helfrich energy as described in eq. 1.

4.3 Edge Terms

Edge terms are disabled by default, however they can be added at the command
line level. The program will then proceed to detect the boundaries of the given
mesh and add the Edge terms to it. It will report the number of edges found.

TAU (Line Tension): This is the simplest term to add, an line integral along the
detected mesh boundaries Gamma is added to the existing energy FA:

F = FA +

∫
∂Γ

τd`, (14)

here the line tension is τ and d` is the line element. This term can also be
applied inside the mesh, to e.g. control mixing but this is not controllable from the
command line.

Clarification

The line tension will try to shrink the membrane edge, but the boundary
is at present not being automatically remeshed, so there is a natural limit
to the amount the edge can shrink due to the penalties controlling triangle
quality and area.

BNE (Bonnet Edge): This term is necessary for the use of the Gauss-Bonnet
theorem, a line integral along the detected mesh boundaries Γ is added to the
existing energy FA:

F = FA +

∫
∂Γ

[
κkG + τ

]
d`+

∑
i

κθi (15)

here the line tension is τ and d` is the line element and κ is the Gaussian bending
modulus. On the mesh edges, the geodesic curvature of the edge kG is computed.

11

At vertices between the edges, the angles θi are the angles between tangents as
computed from on the end point of the edges. The summation is counterclockwise
with respect to the surface normal. This term exists, because while the vertex
shares the same tangent space for both faces the direction of the edge may be
discontinous.

Clarification

This term should be combined with a face evaluation of the Gaussian curva-
ture. Numerical accuracy can then be checked by comparison to the respec-
tive topological index. Note: We presume the mesh to be oriented at the
edges, the direction of the mesh orientation at the edges can be a potential
source of problems for θi, please for debugging check the sign of the edge
term.

4.4 Lipid Mixing

Lipid mixing can be combined with all energy functionals. It enters the energy in
two ways: Firstly, on each face, the values for κ, Js, A0 are computed from the lipid
compositions. Secondly, the entropy of the lipid mixture on each face is computed
using ideal mixing (see the manuscript). A0 are simply summed up from the lipid
raw numbers Finally, a set of special tricks are implemented.

• Mock proteins. These ”proteins” override the Js value on a face. When they
move, they more in integer numbers.

• Mock charges, which confer a penalty of q2
tot. qtot is computed by summing

lipid and protein charges.

These latter details are not meant as serious descriptions of proteins or electrostat-
ics, but as stubs. modifying lipid.hpp quite easily allows to add arbitrary function-
ality. The use of lipid mixing requires specifying lipid properties in (lipids.txt) and
lipid populations in (props.txt).

Clarification

While the lipid composition automatically defines an equilibrium area A0,
on each face, it is up to the user to make sure that this value makes sense
and does not contradict global restraints. Also, KA,i needs to be reasonably
tight. Otherwise, the effect will be equivalent to large ”global composition
fluctuations”.

5 Input Files

To initiate and control simulations, the following files are required or supported:
Required

12

• Mesh file (.obj): Represents the biomembrane as a triangular mesh. While
equilateral triangles are preferred, the code can accommodate various mesh
geometries.

• Membrane properties file (props.txt): Contains the properties of the
mesh and lipid proportions for each leaflet. The props file maps additional
information to mesh faces.

• Simulation control file (control.txt): Contains the simulation run pa-
rameters that control the simulation process.

If these files are not present, the simulation will not start.
Optional

• Blocks file (blocks.txt): Contains information about the boundary block-
ade for the mesh file offering a means to define and manipulate boundary
conditions.

• Lipid file (lipids.txt): Contains the definition and parameters of the lipids
used in simulations. This file is required only for the simulations involving
lipid mixing. It will be ignored otherwise.

5.1 Preparing the Files

The files with fixed names should be present in the directory from which the organl
executable is called. All files should be text files, ideally in the encoding of the
system. There very simply python scripts in the tools subfolder of the source
directory, which can assist with scaling the mesh or gernerating a blocks.txt. The
reader is advised to simply read these scripts. Equilibrium angles can be generated
using the tool

angle

built together with organl.

5.2 Mesh file

Mesh files have to Wavefront OBJ mesh file format (see e.g. here). They be
generated using software such as Meshlab, Gmsh, and Blender, saving the 3D object
in the .obj file format. Only a subset of this format is implemented. The obj file
should adhere to a specific structure, organized as follows:

v -99.632080 -150.000000 118.736885

v 99.632080 -150.000000 -118.736885

v -118.736885 150.000000 99.632080

...

vn -0.875467 -0.019886 1.407969

vn 1.246150 -0.019616 -0.956209

vn -0.993825 0.040642 1.097860

13

https://en.wikipedia.org/wiki/Wavefront_.obj_file

...

f 315 96 316

f 99 319 555

f 106 107 108

...

The mesh file represents the geometry and topology of the biomembrane. It uses
specific parameters to define different aspects of the mesh:
v: Represents a new vertex information followed by the coordinates of the vertices.
vn: Denotes the normal information for each triangle followed by the normal vector
in cartesian representation.
f: Specifies a face, i.e. a triangle, indicating the vertex indices that form each
triangular face.

Warning

• At present only triangular meshes are supported.

• It is advised to make sure the mesh is properly oriented. The program
will try to fix small problems and display a warning

• Texture and materials information is not supported.

• Many programs output face definitions as

f 733//733 21//21 565//565

These double values need to be removed, e.g. by a regular expression
such as

s/\/\/[0-9]*\w//g

as found in vi and sed.

5.3 Membrane Properties File (props.txt)

The props.txt file is used for defining face membrane properties, such as the number
and type of lipids, or the equilibrium area. Important properties that should be
supplied for each simulation and face are

1. A0 (equilibrium area per triangle)

2. kappa (bending rigidity, κ)

3. An0, An1, An2 (equilibrium angles of each triangle)

14

However, any key can be used and consequently, it is possible to add arbitrary
numerical data on the faces. Such data, could be e.g. the number of lipids of a
certain type.

Setting Face Properties:

There are two methods for defining lipid proportions within the props file:
I. Using ”*” Wildcard: In this approach, an asterisk ”*” serves as a wildcard
to apply the same property and value uniformly to all faces of the biomembrane.
This simplifies setting values for all faces..
II. Providing Information per face: Alternatively, specific lipid composition
values are assigned to individual faces of the membrane. The file would list the
property for each triangle face separately.

Clarification

It is possible to provide the same properties serveral times in the file. The
last mention will overwrite previous values. Face numbering starts with
zero.

Here is an example of the file format:

* A0 92

* kappa 30

* An1 2.6

* An0 2.6

* An2 2.6

* Ka 4e-2

* POPE 127.228194312151

* _POPE 127.228194312151

* POPC 52.3880800108858

* _POPC 217.03633147367

* DYPC 22.4520342903796

* _DYPC 7.48401143012655

* TLCL2 101.034154306708

* PLPI 29.9360457205062

* _PLPI 7.48401143012655

* _TLCL2 33.6780514355695

* _SLPS 22.4520342903796

* _MICOS 0

0 _MICOS 1

1 _MICOS 1

2 _MICOS 1

...

15

This file includes the distribution of lipids between leaflets, indicated by the ’un-
derscore’ symbol (” ”). Key parameters include:
A0: Represents the area per triangle (nm2). Users can increase A0 by up to 20%
to prevent explosion.
kappa: Denotes the bending rigidity (kT). It can be adjusted to simulate mem-
branes with varying rigidity. Lower values represent softer membranes, while higher
values depict more rigid structures.
kappag: Denotes the Gaussian bending modulus (kT). It can be adjusted to
simulate membranes with tendency to Gaussian curvature. It will have no effect
unless the corresponding energy functional or edge terms are activated.
tau: A line tension in (kTnm−1), this term is only active if a corresponding Edge
term is activated.
c0: Spontaneous curvature Js (nm−1). This value can be set locally. The default
is zero. It is recommended to use lipid mixing with inhomogeneous c0 as remeshing
will lead to travelling faces (we will implement Edge Blockades soon).
An0, An1, and An2: Define the angles of each triangle, ensuring the quality
of triangles within the simulation. These angles can be generated for example
follows:

angles {meshfile.obj} [X] | grep An > angles.txt

If some argument [X] is specified, the equilbrium angles are determined using the
mesh connectivity, otherwise it is simply assumed the mesh angles are in equilibrium
in the specificed obj file. The angles.txt file can be appended to props.txt

Clarification

Note that remeshing will overwrite the equilibrium angles using based on a
connectivity estimate (I.e. they will add up to 360°). The penalties in the
angle will not kick in until a significant absolute deviation is achieved.

Ka: Represents the bulk modulus (kT/nm2). For many energy functionals, Ka
plays an important role in controlling area and pressure effectively. Reasonable
values here depend on the mesh spacing, this spacing is printed out by the organl
at the beginning of each run.

Clarification

This value also affects the penalty energy scale, it should be set to zero
where local compressibility is not known and demanded.

Lipidname, Lipidname: The population of lipids of a given name on the face.
The underscore is interpreted as putting lipid on the apposite leaflet. Both
leaflets should be populated with an equivalent A0. At present, the inter-
nally used A0 is the average value of the leaflets. Lipid moves are set to conserve
this value.

16

Clarification

At present, area difference elasticity effects have to be set manually and the
ADE functional has to be used.

The tool addfacemanip.py in the tools folder can be used to set face properties
based on some selection.

addfacemanip.py {meshfile.obj} key value ’statement’

for example

python3 addfacemanip.py rbc.obj c0 10 ’x>0’

will generate output compatible with props.txt that sets c0 to 10 for all faces whose
vertices have x coordinates larger than 0 in the file rbc.obj.

5.4 Control file

The control.txt file set the control parameters of the simulations, such as the number
of steps, temperature etc. It is thus necessary to pay attention to it.
The control.txt can for example look like this:

S updateNghbrsEvery 400

S nghbRadius 800

S nMCSteps 200000

S RFreq 50

S RFile scan.log

S writeEvery 500

#S autoTuneUntil 1000

S updateDefEvery 500

S remeshEvery 750

S remeshIter 10

#S Beta 1

E LAMBDA 0 9e-6

E LAMBDA 1 1e-9

E RATE 0 1.005679

E RATE 1 -1.000526

E DEF 0 4.5e+5

E DEF 1 6.3e+6

M STEP 0 2.6

M STEP 1 1.5

Each line in the control.txt file corresponds to a specific control setting, includ-
ing parameters like:
S: Lines starting with ”S” are settings for the entire simulation, the format is one

17

key and one value, typically a natural number.
E: Lines starting with ”E” are for energy constraint and restraints parameters
(LAMBDA, INCR and DEF), they usually take two values, one index, correspond-
ing to e.g. i of λi and one value. Their meaning is easily understood in context of
the energy functionals discussed at the beginning.
M: Lines starting with ”M” are for Monte Carlo parameters (STEP). The format
is M STEP index stepsize.

5.4.1 Simulation Settings S

The file contains various simulation settings such prepended with the letter S:
updateNghbrsEvery: This parameter determines how often neighbors are up-
dated in the simulation. It sets the number of steps after which the neighbor list
will be updated.
nghbRadius: It sets the radius for neighbor calculations, used for detecting po-
tential collisions between elements in a set of triangles. The value should be chosen
carefully to avoid overlapping triangles during the simulation. A reasonable guess
should be higher than the edge length of the triangle and the step size of the
simulation. Too high values will slow down the execution considerably.
nMCSteps: The number of Monte Carlo steps is specified here, setting the dura-
tion of the simulation.
writeEvery: This parameter controls the frequency of wring restart object files,
vtu analysis files and the printout of a current summary of the energies. All global
quantities will be updated.
autoTuneUntil This sets the maximum step number until which the MC step will
be adjusted. To be precise, it will adjust the MC step size every step, based on
the acceptance rate. It will then try to bring the acceptance rate to roughly 30 %,
decreasing the step size, if acceptance gets to low or increasing it otherwise. The
current acceptance and stepsize will be printed in every step. The default is zero.

Clarification

The autotuning is not failsafe. If the MC acceptance cannot be improved by
reducing the step size, the stepsize will collapse. It may be smart to start
with a high initial step size.

DeepVertexOnly Enables exclusive use of the DeepVertexMove.

Clarification

This move can get stuck if the normal estimation is not good. Make sure to
have the mesh in good order.

RFreq Set the frequency of updating the report file, and output file which can be
used for live monitoring of the simulation and generating time evolution plots. For
more information, see the output section. Per default, no reporting is done.

18

RFile Set the filename of the report file. Default: report.log
updateDefEvery: It defines how frequently target values (DEF) are updated dur-
ing the simulation. together with INCR settings, this allows to gradually increase
volume, area and curvature.
remeshEvery: Set the number of step until remeshing is attempted. Remeshing
is done in a ”session”, this means, that remeshing will be attempted at every edge.
The session does not end there, however (see below). The default is no remeshing
(-1).
remeshIter: Once remeshing is started, a Alexander moves are interlaced with
other moves on the mesh for the number of iterations specified here.
Beta: The inverse temperature 1

kT to be used in the MC algorithm. Default is 1.

5.4.2 Energy Settings E

LAMBDA: The penalty constant λ as understood in the definition of the corre-
sponding energy set when calling the code. A rational number (float notation) is
expected.
DEF: Represents the target values for specific constraints defined in the simula-
tions. The number of DEF values also depends on the functional being used for
the simulation. A rational number is expected
INCR: This parameter influences the rate of change in the target values (DEF)
after a specified number of simulations defined by ’updateDefEvery’ parameter.
It can either increment or decrement the target values, affecting the simulation’s
output rate. This parameter has a default of not changing.

5.4.3 MC Settings M

STEP: Sets the Monte Carlo step size. By default, the first move, with index 0
is a vertex move, as discussed in the paper. The index 1 is a normal move. The
lipid mixing move, will be added, if the program is called with lipid mixing, it will
have index 2. The Alexander move is separately handled in remeshing and will not
have a stepsize. The Deep vertex move, is currently disabled by default. It can be
uncommented in main.cpp. Defaults depend on the type of MC step.
Comments can be added using the # sign, as shown in the example.

5.5 Lipid file

The ”lipids.txt” file contains the names and paramaters of lipids. Only lipids de-
fined in this file, will be interpreted correctly in the ”props.txt” file.
An example of a ”lipids.txt” file is as follows:

Name c0 kappa APL d charge kappa_g mu B

DOPC 0.0 11.56 0.6802 1.924 0

DYPC -0.0 10.94 0.6820 1.7565 0

POPC 0.06 12.93 0.6580 1.9605 0

19

DOPE -0.24 15.83 0.6164 2.049 0

DYPE -0.22 14.29 0.6185 1.859 0

POPE -0.14 19.05 0.5897 2.067 0

TLCL2 -0.2 16.07 1.3429 1.863 -1

PLPI 0.1 13.81 0.6390 1.9315 -1

SLPS -0.0 18.09 0.5993 2.1085 -1

MICOS 0.5 100.0 -1 1.8 0

...

Besides the first line, which is commented out, each line in the file defines a specific
lipid, and within that line, the following parameters are requested:
Name: The name of the lipid, uniquely identifying its properties.
c0: Spontaneous curvature (nm−1), indicating the Js of the pure lipid.
kappa: Bending rigidity of the pure lipid (kT).
APL: Stands for the area per lipid (nm2).charge: Charge of the lipid.

Clarification

Setting the APL to -1 defines the label as a protein mimick. Setting a charge
leads to the charge interaction penalty. It is currently recommended not to
use charges.

Dummy Variables

The following parameters will be read in but are not currently used. Not yet im-
plemented. d: Monolayer thickness (nm).
kappa g: Gaussian bending modulus associated with the lipid type [kT]. Note:
This is currently not enable for lipids, but only for mock-proteins.
mu: Nonideal mixing parameter.
B: Index of further interaction terms.

5.6 Blocks file

The blocks.txt file is used to freeze parts of the simulation, or mesh respectively.
An example of a ”blocks.txt” file is given below:

Vertex 0 0

Vertex 0 1

Vertex 0 2

Normal 0 0

Normal 0 1

Vertex 1 0

Edge 131 155

...

20

Each line in the file corresponds to a vertex or normal in the mesh, the indexing
begins at 0. Appearance in this file results in freezing of the mentioned coordinate.
Vertex: This keyword indicates the blockade of a vertex, followed by two numbers.
The first is the index of the vertex to be blocked. The second is the component of
the cartesian vertex position vector to be blocked. For example the first line in the
given excerpt of a file freezes the x coordinate of the first vertex of the mesh (with
index 0), the second line freezes the y component etc.
Normal: This line represents a normal vector, which defines the orientation of a
surface or face. The first number is an index, and the second two numbers represent
the radial components of the normal vector to be blocked.

Clarification

Blocking specific components of normals is not working at this moment,
instead the whole normal vector has to be blocked.

Edge: This line represents an Edge of an element, which defines the topology of
the mesh. The first number is an index of a vertex, and the second number is
another vertex index. The edge is identified by looking for a face in which these
vertices are connected.

Clarification

Blocking Edges does not block the vertices or distance between vertices
constituting and edge. What is blocked instead is the fliping of the edge
and lipid flow across the edge. This feature is thus intended to conserve
regions of uniform membrane properties. Note: The boundary of the region
thus blocked might need to be fixed further using other blocks or line tension
energies.

By listing vertices and normals in the ”blocks.txt” file, users can designate
which areas or structural components should be either constrained (fixed) during
the simulation. The tool

genfreeze.py [meshfile.obj] [a | n | v | c] [’python statement’]

Can be used to generate these text files, by specifying a selection rule in the
form of a python statement on the mesh coordinates. Other options are to block all
verticales (v) normals (n) or both (a). One example of setting up e.g. a blockade
is :

genfreeze.py sshsphere_orient.obj c ’(x**2+y**2)**(1/2) < 1’ > blocks.txt

This will block everything inside the cylinder with radius one. Further filtering
can then be performed e.g. using grep. Standard UNIX piping can be used to
further refine the block. We provide the tool to automatically detect edges between
zones of different spontaneous curvature and generating blocks.

21

autobound [meshfile.obj]

This tool has to be compiled separately from autobound.cpp in the source
directory. It requires a props.txt file to detect the boundaries. Concretely it tests
if the value of “c0” is the same on both sides of an Edge, if not, it generates a
blockade commando.

6 Output Files

Final Output: At the end of the simulation, the simulation tool generates several
output files completion of the simulation:

6.1 Output Mesh (out.obj)

This represents the final geometry of the simulation.

6.2 Output Interpolant (out.plt)

The mesh interpolant given as cartesian point coordinates. It can be processed,
e.g. with gnuplot.

6.3 VTK Visual Summary (out.vtu)

The mesh interpolant and mesh properties together with many calculated quantities
(such as curvature on a face etc. in VTK XML format, readable by paraview. This
format is a text format and is also human readable.

6.4 Output Membrane Properties (props out.txt):

This file is mainly relevant for lipid mixing simulations. It provides the biomem-
brane properties at the end of the simulation the format of the input file props.txt.

Continuous output:

6.5 Output to console.

The simulation does continuously output to console. It is recommended to pipe
the output into some some file, e.g. output.log. Error messages will be sometimes
send to stderr, but will result in crashs. The program will mirror back simulation
parameters, mesh properties, blocks and the degrees of freedom of the simulation
as well as the scale of the mesh (very first line). The user is strongly advised
to monitor this file during the first minutes of a new simulation.

22

6.6 VTU Files for Monitoring

At the interval set by ”writeEvery” in the control file, the simulation generates vi-
sual progress data in VTU format, which facilitates easy visualization and analysis.
Users can employ software like ParaView to efficiently explore and interpret the
simulation data. By using ParaView, users can investigate elastic and geometri-
cal properties like A0, Area, Energy, Ka, kappa, c0, etc. Additionally, it provides
information about the lipid proportion within the membrane. Please see the Visu-
alization section for details. The filenames are

prog0_[Stepnumber].vtu

They can be used to create movies of mesh evolution.

6.7 Report File:

On demand, a report file (.log file) will also be generated during the simulation,
at the frequence RFreq, with the name set by RName as given in the run control
(control.txt). This file serves to monitor the status of the simulation during the run
an to generate statistics on energy etc. Each column of the energy file represents
different parameters, organized in the following order (e.g. for [DCH] simulation):

1. Monte Carlo Step

2. ’0’ Entity id for future version

3. Total Energy (without Penalties)

4. Area

5. Volume

6. M = Integrated Curvature

7. Reduced volume according to the equation, ν0 = 6V
A3/2

√
π, for global surface

area A and the global volume V

8. Penalty Energy ”Constraint Energy”

9. Triangle quality; G1 Diagnostic calculated from the tangents lines of the
apposite triangles.

10. Edge Energy

11. ’0’ representing first DEF

12. DEF (area)

13. ’1’ representing the second DEF

14. DEF (volume)
. . . and so on .

23

Clarification

Only the values that are computed can be monitored here, an energy that
will not depend on e.g. the Volume will not track it. Quantities which are
not tracked, are only updated at the writeEvery (restart drop) frequency,
this means things can look static, but are not. You may consider using a
DCH energy to track your simulation. The report file will always append.
Multiple runs can leave traces in it.

6.8 Restart Files:

At the writeEvery frequency, restart files are written in obj format. Their name is

restart0_[Stepnumber].obj

So that the simulation can be restarted not only from the end, but also from inter-
mediate steps. The obj files may also be used to compute statistics on geometric
features.

7 Resuming a Simulation

As the output geometry files have the same format as the input files, it is straigh-
forward to restart a simulation.

7.1 Continuing a Finished Simulation

If the simulation finished, to continue it is sufficient to use out.obj as input mesh-
file. And, if necessary, copy props out.txt to props.txt. In the case of updated
definitions, the final values should be updated in the control.txt file.

7.2 Continuing an Unfinished Simulation:

If a restart file exists, e.g. at the step number 200000, the job can be continued
with

./organl restart0_200000.obj

Every information on mixing and default angles will be lost, as it is in the
props.txt file. It can, however theoretically be recovered from the corresponding
vtu file. Often, re-equilibration of lipids is fast.
It is essential to note that the frequency at which mesh files are generated is deter-
mined by the parameter ‘writeEvery‘ in the control file. For example, if users specify
‘S writeEvery 500‘, the code will produce .obj and .vtu file after every 500 Monte
Carlo steps. Users should adjust this parameter to suit their specific requirements
for intermediate data and the potential need to restart the simulation.

24

8 Visualization

There are several ways to visualize results. The most powerful one is probably the
visualization of vtu files by paraview.

Figure 1: Paraview allows the visualization of curved elements. While these
are not exactly identical to the Nagata elements, they are close enough

Figure 2: Paraview provides access to many quantities amenable to visual-
ization. Lipid types are automaticall exported into the vtu files.

The OBJ files created by the program can also be visualized in paraview, but
are compatible with rendering sofwarew, such as blender. A gnuplot compatible
file, out.plt is created at the end of a simulation. It can be plotted e.g. by calling

25

splot "out.plt" using 1:2:3 w l

inside gnuplot. For more information see the respective software documentations
of these tools.

9 Tips on Simulation Planning and Execution

9.1 Basic Strategy

1. Each run should be done in its own subdirectory, to avoid overwriting files.
Make sure all input files are present.

2. At the beginning of the simulation parameters should be fine tuned. This
means, that instead of going directly into production very small runs of 10-
500 steps, with low reporting intervals should be performed.

3. The console output should be studied for warnings, it should be checked, if
blocks are correctly read in.

4. the scale of the mesh should be examined. Find the mesh scale

INFO: Average Edge Length

as well as the initial volume, area and energy in the output. Your neigh-
bourlist cutoff should be larger than the average edge lenght at least.

5. Run with good behavior by setting restraint targets to or close to the intial
values.

6. It makes sense to compare DCH and CHF energies to check if A0 values are
reasonable.

7. It can make sense to run with very low κ or β for short time, so see the
direction things take.

8. Check the

G1 Diagnostic

value it should remain above 0.94.

In particular check/plot columns of the report file to see if quantitites
explode or behave in an anomalous manner. Read the follow on sections
on setting KA A0 LAMBDAS and DEFS

26

9.2 How to set targets and penalties

When setting DEF and LAMBDA values for your simulation, the LAMBDA has
to be high enough to ensure the corresponding property is tightly controlled. One
example would be that e.g. 5 % deviation from the targed would be about 10
% of the total energy of the system. The report file and initial dry runs can
be used to estimate this total energy. Consequently your DEF target value is
very far from the current state, you risk wrecking the mesh by dominating all
other energy (including penalty) terms. Either set LAMBDA it so low, that even
initially the penalty is only some tens of percents of the intial energy or use the
INCR mechanism to gradually get to the target. It is possible to combine these
techniques. The individual surface penalties KA should also be chosen in a scale-
depdendent manner. A tenfold increase in triangle surface should cost more than
the average energy per triangle etc.

9.3 How to optimize performance

If at all possible, use a high quality equilateral mesh. Remeshing can be done, e.g.
using meshlab. My rules of thumb for optimizing performances is,

• Keep the neighbor list cutoff as small as possible. If necessary trade frequent
neighbor list updates for short cutoffs. It is possible to use restarts to continue
before an overlap occurs.

• Monte Carlo step size above acceptance rate. It is recommended to set e.g.
the initial step size of the Vertex step to ca. 2-3 x the average edge length,
then set autoadjust for 200-1000 steps and then increase the final result by
ca. 20 % This applies only to vertex steps, normal steps should be kept
around 1.

• Keep the mesh as small as possible. It should not be necessary to use much
more than 1000 faces for any cell shape. If necessary use blocks and cutouts
to restrict the size.

• Use a workstation with many cores and good single core performance.

9.4 How to monitor accuracy

The worst problems arise either from mesh degeneration or from too high MC steps.
If a phenomenon looks surprising, there are two main ways to get better results

1. reducing the step size or

2. controlling the mesh with A0 and KA values.

If the G1 criterion in the report falls below 0.85, the simulation is very likely pro-
ducing complete garbage, at least at that moment. The energy contributions should
be decomposed, too high penalties indicate wrong DEFs, too high energies, can be
due to too high MC steps or wrong parameters. Monitor the mesh with paraview,

27

and look at the homogeneity of areas, triangle sizes should not be different by sev-
eral orders of magnitude. Triangles can be controlled on an individual level using
KA. Long-term drifts against a penalty are a sign of the breakdown of reversibility
and must be tackled. Please check the various energy functional descriptions for
further advice, specific to a situation.

9.5 How to set boundary conditions

The way to set geometric boundary conditions is via the blocks.txt file. For example,
it is possible to set a Dirichlet boundary conditions of the membrane, i.e. fixed
coordinates by fixing the vertices at the boundary in the blocks.txt file, using, e.g.
the tool described in this section. If the normals on the boundary are also frozen
then so is the entire edge interpolant and hence also a tangent vector along the edge.
Going further inward allows to ensure a good measure of tangen continuity on the
edges. More sophisticated partial blockades are also possible using components of
the vectors, e.g. restraining the boundary to a plane. By setting Edge blocks,
it is e.g. possible to set a region of fixed lipid composition. Any combination of
blockades is possible. See Section 5.6 and the examples for more details.

References

[1] CMake Build System 3.0. URL https://cmake.org/.

[2] macOS Cross toolchain for Linux and *BSD. URL https://github.com/

tpoechtrager/osxcross.

[3] GNU C++ Compiler 11.4.0, 2023. URL https://gcc.gnu.org/.

[4] L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner. Budding transitions of
fluid-bilayer vesicles: The effect of area-difference elasticity. Phys. Rev. E, 49:
5389–5407, Jun 1994. doi: 10.1103/PhysRevE.49.5389.

[5] OpenMP API 5.2. OpenMP Architecture Review Board, 2021. URL https:

//www.openmp.org/.

[6] J. Wenzel. PyBind11 Documentation. URL https://pybind11.readthedocs.

io/en/stable/.

28

https://cmake.org/
https://github.com/tpoechtrager/osxcross
https://github.com/tpoechtrager/osxcross
https://gcc.gnu.org/
https://www.openmp.org/
https://www.openmp.org/
https://pybind11.readthedocs.io/en/stable/
https://pybind11.readthedocs.io/en/stable/

	Introduction and Disclaimer
	Installation and System Requirements
	Linux Environment
	Building on Microsoft Windows
	Cross-compiling on Linux for MacOS

	Usage
	Features
	Units
	Implemented Energy Functionals
	Edge Terms
	Lipid Mixing

	Input Files
	Preparing the Files
	Mesh file
	Membrane Properties File (props.txt)
	Control file
	Simulation Settings S
	Energy Settings E
	MC Settings M

	Lipid file
	Blocks file

	Output Files
	Output Mesh (out.obj)
	Output Interpolant (out.plt)
	VTK Visual Summary (out.vtu)
	Output Membrane Properties (props_out.txt):
	Output to console.
	VTU Files for Monitoring
	Report File:
	Restart Files:

	Resuming a Simulation
	Continuing a Finished Simulation
	Continuing an Unfinished Simulation:

	Visualization
	Tips on Simulation Planning and Execution
	Basic Strategy
	How to set targets and penalties
	How to optimize performance
	How to monitor accuracy
	How to set boundary conditions

