Models of nonlinear elasticity: Questions and progress

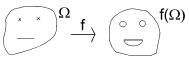
Stanislav Hencl

Charles University, Prague, Czech Republic

12.12. 2023, Colloquim MFF

Models in Nonlinear Elasticity - Deformation

Object of study: $\Omega \subset \mathbb{R}^n$ is a body, $n = 2, 3, ..., f : \Omega \to \mathbb{R}^n$ is a mapping (deformation of the body)

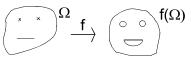


 $\exists Df(x)$: f close to linear $f(y) \approx f(x) + Df(x)(y-x)$.

$$x = [x_1, x_2]$$
 $f(x)$

Models in Nonlinear Elasticity - Deformation

Object of study: $\Omega \subset \mathbb{R}^n$ is a body, $n = 2, 3, ..., f : \Omega \to \mathbb{R}^n$ is a mapping (deformation of the body)



 $\exists Df(x)$: f close to linear $f(y) \approx f(x) + Df(x)(y-x)$.

$$x + [h, h] \qquad \left[\frac{\partial f_2(x)}{\partial x_1}, \frac{\partial f_2(x)}{\partial x_2}\right] h$$

$$vol = J_f(x)h^2$$

$$f(x) \qquad \left[\frac{\partial f_1(x)}{\partial x_1}, \frac{\partial f_1(x)}{\partial x_2}\right] h$$

Df(x) is $n \times n$ matrix of derivatives - deformation of segments $J_f(x) = \det Df(x)$ is Jacobian - deformation of volume $\int_A |J_f(x)| \ dx = |f(A)|$ if f is 1-1.

Models in Nonlinear Elasticity - Assumptions

Object of study: $\Omega \subset \mathbb{R}^n$ is a body, $n = 2, 3, ..., f : \Omega \to \mathbb{R}^n$ is a mapping (deformation of the body) Df(x) is $n \times n$ matrix of derivatives - deformation of segments $J_f(x) = \det Df(x)$ is Jacobian - deformation of volume

Motivation: J. Ball, V. Šverák - mathematical model for Nonlinear Elasticity. The mapping minimizes the elastic energy

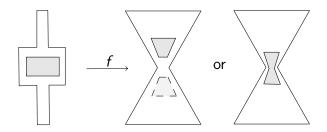
$$\min_{f} \int_{\Omega} W(Df(x)) \ dx$$

 $W(A) \to \infty$ for $|A| \to \infty$, $W(A) \to \infty$ for $\det A \to 0$.

Naturally $|W(A)| \ge |A|^p$, i.e. $\int_{\Omega} |Df(x)|^p dx < \infty$ and $J_f(x) > 0$ a.e. (=mapping does not change orientation).

Sobolev space $W^{1,p}(\Omega, \mathbf{R}^n) = \{f : \int_{\Omega} |Df(x)|^p dx < \infty\}.$

• Is there a minimizer of energy? Is it unique?



- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)

Cavities in rubber

- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)
- Is the mapping one-to-one? Does there exist inverse map f^{-1} ? (interpenetration of the matter)

- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)
- Is the mapping one-to-one? Does there exist inverse map f^{-1} ? (interpenetration of the matter)
- Does f map sets of zero measure to sets of zero measure? (Is a new material created from 'nothing'? Is some material 'lost' during the deformation?). Does $\int_A J_f = |f(A)|$ hold?

- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)
- Is the mapping one-to-one? Does there exist inverse map f^{-1} ? (interpenetration of the matter)
- Does f map sets of zero measure to sets of zero measure? (Is a new material created from 'nothing'? Is some material 'lost' during the deformation?). Does $\int_A J_f = |f(A)|$ hold?
- Does f preserve orientation, i.e. $J_f \ge 0$ a.e.? (Can the body turn over?)

- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)
- Is the mapping one-to-one? Does there exist inverse map f^{-1} ? (interpenetration of the matter)
- Does f map sets of zero measure to sets of zero measure? (Is a new material created from 'nothing'? Is some material 'lost' during the deformation?). Does $\int_A J_f = |f(A)|$ hold?
- Does f preserve orientation, i.e. $J_f \ge 0$ a.e.? (Can the body turn over?)
- Can we approximate it by piecewise linear homeomorphisms?

- Is there a minimizer of energy? Is it unique?
- Is f continuous? (Does the material break or are there any cavities created during the deformation?)
- Is the mapping one-to-one? Does there exist inverse map f^{-1} ? (interpenetration of the matter)
- Does f map sets of zero measure to sets of zero measure? (Is a new material created from 'nothing'? Is some material 'lost' during the deformation?). Does $\int_A J_f = |f(A)|$ hold?
- Does f preserve orientation, i.e. $J_f \ge 0$ a.e.? (Can the body turn over?)
- Can we approximate it by piecewise linear homeomorphisms?
- What are the properties of f^{-1} ? (Can we deform the body back to its original state?)

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f: \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

Motivation: a) change of variables formula - replace $|J_f|$ by J_f

- b) assumption $J_f \geq 0$ in models superfluous
- c) approximation

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f: \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f: \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Obstacles: $\exists f$ homeomorphism and Lipschitz, but $J_f = 0$ on a set of positive measure.

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f: \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Obstacles: $\exists f$ homeomorphism and Lipschitz, but $J_f = 0$ on a set of positive measure.

Theorem (H., Malý (2010))

Let $\Omega \subset \mathbf{R}^n$ be an open set, $n \geq 2$. Suppose that $f \in W^{1,p}(\Omega, \mathbf{R}^n)$ is a homeomorphism for some $p > \lfloor n/2 \rfloor$ $(p \geq 1 \text{ for } n = 2,3)$. Then $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.

Open problem: 1. How about $p \leq \lfloor n/2 \rfloor$.

2. Is there positively oriented f with $J_f \leq 0$?

Homeomorphisms with $J_f \equiv 0$

Area Formula : $\exists N \subset \Omega$ such that $\mathcal{L}_n(\Omega \setminus N) = \mathcal{L}_n(\Omega)$ but

$$0 = \int_{\Omega \setminus \mathcal{N}} J_f(x) = \int_{f(\Omega \setminus \mathcal{N})} 1 = \mathcal{L}_n(f(\Omega \setminus \mathcal{N}))$$

Homeomorphisms with $J_f \equiv 0$

Area Formula : $\exists N \subset \Omega$ such that $\mathcal{L}_n(\Omega \setminus N) = \mathcal{L}_n(\Omega)$ but

$$0 = \int_{\Omega \setminus \mathcal{N}} J_f(x) = \int_{f(\Omega \setminus \mathcal{N})} 1 = \mathcal{L}_n(f(\Omega \setminus \mathcal{N}))$$

$$\Rightarrow \mathcal{L}_n(N) = 0$$
 but $\mathcal{L}_n(f(N)) = \mathcal{L}_n(f(\Omega))$

Homeomorphisms with $J_f \equiv 0$

Area Formula : $\exists N \subset \Omega$ such that $\mathcal{L}_n(\Omega \setminus N) = \mathcal{L}_n(\Omega)$ but

$$0 = \int_{\Omega \setminus \mathcal{N}} J_f(x) = \int_{f(\Omega \setminus \mathcal{N})} 1 = \mathcal{L}_n(f(\Omega \setminus \mathcal{N}))$$

$$\Rightarrow \mathcal{L}_n(N) = 0$$
 but $\mathcal{L}_n(f(N)) = \mathcal{L}_n(f(\Omega))$

Theorem (H. (2011))

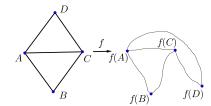
Let $n \ge 2$ and $1 \le p < n$. There is a homeomorphism $f \in W^{1,p}((0,1)^n,(0,1)^n)$ such that $J_f(x) = 0$ a.e.

D'Onofrio, H., Schiattarella: $n \geq 3$ also $f^{-1} \in W^{1,1}$ Liu, Malý: f can be a gradient mapping, using laminates Faraco, Mora-Corall, Oliva: laminates, sharp conditions also for $f \in W^{1,p}$, $f^{-1} \in W^{1,q}$ or $(\det Df)_k = 0$ a.e.

Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

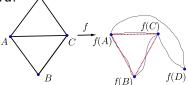
n=1 easy:

 $n \ge 2$ hard:



Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

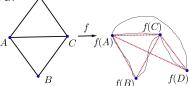
n > 2 hard: n=1 easy:



Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$?

n=1 easy:

 $n \ge 2$ hard:



Problem [Ball-Evans]: $\Omega \subset \mathbb{R}^n$ domain, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism. Can we find f_k piecewise affine (or diffeomorphisms) such that $f_k \to f$ in $W^{1,p}$? n = 1 easy: $n \geq 2$ hard:

It is not easy: triangulization or mollification destroy injectivity

 $\exists f_k \text{ smooth} \stackrel{\text{easy}}{\Rightarrow} \overset{\text{Pratelli&Mora-Corral}}{\Leftarrow} \exists f_k \text{ piecewise affine}$

Motivation

- Regularity for models in Nonlinear Elasticity Ball models min $\int W(Du)$ where $E(u) \to \infty$ as $J_u \to 0$
- Numerics finite elements method
- Easier proofs of known (and new) statements

Known results

C. Mora-Corral: f smooth up to one point

Theorem (Iwaniec, Kovalev, Onninen (2011))

Let n=2 and $1 . Given a homeomorphism <math>f \in W^{1,p}(\Omega, \mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k \to f$ in $W^{1,p}$, $f_k \rightrightarrows f$ and $f_k - f \in W_0^{1,p}$

Theorem (H., Pratelli (2018))

Let n = 2. Given a homeomorphism $f \in W^{1,1}(\Omega, \mathbf{R}^2)$ there are diffeomorphisms f_k with $f_k \to f$ in $W^{1,1}$, $f_k \rightrightarrows f$ and $f_k - f \in W_0^{1,p}(\Omega, \mathbf{R}^2)$.

Open problems

Open problems:

• $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$ - Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$ smooth?

Open problems

Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$ smooth?
- Anything about the approximation in n = 3?
 Is there a minimization where the minimizer is a diffeomorphism?
 Is there some improved construction by hand?

Open problems

Open problems:

- $n=2, p=2, f\in W^{1,2}, f^{-1}\in W^{1,2}$ Can we approximate? Are the minimizers of $\int |Df|^2 + \frac{|Df|^2}{J_f} (=\int |Df|^2 + \int |Df^{-1}|^2)$ smooth?
- Anything about the approximation in n = 3?
 Is there a minimization where the minimizer is a diffeomorphism?
 Is there some improved construction by hand?
- Is there some counterexample in dimension $n \ge 4$ in $W^{1,p}$, $p > \lfloor n/2 \rfloor$?

Theorem (Campbell, H., Tengvall, Vejnar (2016, 2018))

Let $n \ge 4$ and $1 \le p < \left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbf{R}^n)$ such that $\mathcal{L}^4(\{x: J_f(x) > 0\}) > 0$ and $\mathcal{L}^4(\{x: J_f(x) < 0\}) > 0$.

Theorem (Campbell, H., Tengvall, Vejnar (2016, 2018))

Let $n \geq 4$ and $1 \leq p < \left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbf{R}^n)$ such that $\mathcal{L}^4(\{x: J_f(x) > 0\}) > 0$ and $\mathcal{L}^4(\{x: J_f(x) < 0\}) > 0$.

Corollary: Let $n \ge 4$. For this $f \in W^{1,p}$ there are no diffeomorphisms (or piecewise affine homeomorphisms) with $f_k \to f$ in $W_{loc}^{1,p}((-1,1)^n, \mathbf{R}^n)$.

Theorem (Campbell, H., Tengvall, Vejnar (2016, 2018))

Let $n \geq 4$ and $1 \leq p < \left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbf{R}^n)$ such that $\mathcal{L}^4(\{x: J_f(x) > 0\}) > 0$ and $\mathcal{L}^4(\{x: J_f(x) < 0\}) > 0$.

Corollary: Let $n \ge 4$. For this $f \in W^{1,p}$ there are no diffeomorphisms (or piecewise affine homeomorphisms) with $f_k \to f$ in $W_{loc}^{1,p}((-1,1)^n, \mathbf{R}^n)$.

Proof by contradiction: $f_k \overset{W^{1,p}}{\to} f \overset{\text{subsequence}}{\to} Df_k(x) \to Df(x)$ for a.e. $x \Rightarrow J_{f_k}(x) \to J_f(x)$ for a.e. x. As f_k smooth $\Rightarrow J_{f_k} \geq 0$ a.e. or $J_{f_k} \leq 0$ a.e. Hence their pointwise limit does not change sign - contradiction.

Theorem (Campbell, H., Tengvall, Vejnar (2016, 2018))

Let $n \geq 4$ and $1 \leq p < \left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbf{R}^n)$ such that $\mathcal{L}^4(\{x: J_f(x) > 0\}) > 0$ and $\mathcal{L}^4(\{x: J_f(x) < 0\}) > 0$.

Corollary: Let $n \ge 4$. For this $f \in W^{1,p}$ there are no diffeomorphisms (or piecewise affine homeomorphisms) with $f_k \to f$ in $W_{loc}^{1,p}((-1,1)^n, \mathbf{R}^n)$.

Proof by contradiction: $f_k \stackrel{W^{1,p}}{\to} f \stackrel{\text{subsequence}}{\to} Df_k(x) \to Df(x)$ for a.e. $x \Rightarrow J_{f_k}(x) \to J_f(x)$ for a.e. x. As f_k smooth $\Rightarrow J_{f_k} \geq 0$ a.e. or $J_{f_k} \leq 0$ a.e. Hence their pointwise limit does not change sign - contradiction.

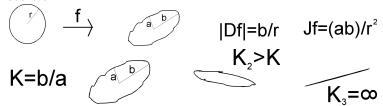
Example: \exists homeomorphism f(x) = x on $\partial [0,1]^n$ and $J_f < 0$ a.e. for n = 4 and $1 \le p < 3/2$.

Problem: Let $f \in W^{1,p}(\Omega, \mathbb{R}^n)$, $p \ge 1$, be a homeomorphism. When $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \Omega)$? (or BV)?

Problem: Let $f \in W^{1,p}(\Omega, \mathbb{R}^n)$, $p \ge 1$, be a homeomorphism. When $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \Omega)$? (or BV)?

Elementary example: There is a Lipschitz homeomorphism $f: [0,2] \times [0,1]^{n-1} \rightarrow [0,1]^n$ with $f^{-1} \notin W^{1,1}_{loc}([0,1]^n, \mathbf{R}^n)$. Proof (n=2): h(x) = x + C(x), $f(x,y) = [h^{-1}(x), y]$.

Definition: Homeomorphism $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^n)$ has finite distortion if $|Df(x)|^n \leq K(x)J_f(x)$ holds a.e., where $1 \leq K(x) < \infty$ a.e. Especially if $J_f > 0$ a.e. then f has finite distortion.



Problem: Let $f \in W^{1,p}(\Omega, \mathbb{R}^n)$, $p \ge 1$, be a homeomorphism. When $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \Omega)$? (or BV)?

Elementary example: There is a Lipschitz homeomorphism $f:[0,2]\times[0,1]^{n-1}\to[0,1]^n$ with $f^{-1}\notin W^{1,1}_{loc}([0,1]^n,\mathbf{R}^n)$. Proof (n=2): h(x)=x+C(x), $f(x,y)=[h^{-1}(x),y]$.

Theorem (H+Koskela (n = 2) 2006, Csörnyei+H+Malý 2010)

Suppose that $f \in W^{1,n-1}(\Omega, \mathbf{R}^n)$ is a homeomorphism of finite distortion. Then $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \mathbf{R}^n)$ and has finite distortion.

Problem: Let $f \in W^{1,p}(\Omega, \mathbb{R}^n)$, $p \ge 1$, be a homeomorphism. When $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \Omega)$? (or BV)?

Elementary example: There is a Lipschitz homeomorphism $f: [0,2] \times [0,1]^{n-1} \rightarrow [0,1]^n$ with $f^{-1} \notin W^{1,1}_{loc}([0,1]^n, \mathbb{R}^n)$. Proof (n=2): h(x) = x + C(x), $f(x,y) = [h^{-1}(x), y]$.

Theorem (H+Koskela (n = 2) 2006, Csörnyei+H+Malý 2010)

Suppose that $f \in W^{1,n-1}(\Omega, \mathbf{R}^n)$ is a homeomorphism of finite distortion. Then $f^{-1} \in W^{1,1}_{loc}(f(\Omega), \mathbf{R}^n)$ and has finite distortion.

Theorem

Suppose that $f \in W^{1,n-1}_{loc}(\Omega, \mathbf{R}^n)$ is a homeomorphism of finite distortion and moreover we assume that $K \in L^{n-1}(\Omega)$. Then $f^{-1} \in W^{1,n}_{loc}(f(\Omega), \mathbf{R}^n)$.

BV regularity of the inverse

Theorem (Csörnyei+H.+Malý (2010))

Suppose that $f \in W^{1,n-1}(\Omega \mathbb{R}^n)$ is a homeomorphism. Then $f^{-1} \in BV_{loc}(f(\Omega), \mathbb{R}^n)$.

Definition

We say that $h \in BV(\Omega)$ if $h \in L^1(\Omega)$ and $D_i h = \mu_i$ are signed Radon measures with finite total variation:

$$\int_{\Omega} h D_i \varphi \ dx = -\int_{\Omega} \varphi \ d\mu_i, \text{ for all } \varphi \in C_0^{\infty}(\Omega).$$

We say that $f \in BV(\Omega; \mathbf{R}^n)$ if $f_i \in BV(\Omega)$.

BV regularity of the inverse

Theorem (Csörnyei+H.+Malý (2010))

Suppose that $f \in W^{1,n-1}(\Omega \mathbb{R}^n)$ is a homeomorphism. Then $f^{-1} \in BV_{loc}(f(\Omega), \mathbb{R}^n)$.

Theorem

Let $0 < \varepsilon < 1$ and $n \ge 3$. There is a homeomorphism of finite distortion $f \in W^{1,n-1-\varepsilon}((-1,1)^n; \mathbf{R}^n)$ such that $f^{-1} \notin BV_{loc}(f(\Omega); \mathbf{R}^n)$. ('because $|\nabla f^{-1}| \notin L^1_{loc}$ ')

BV regularity of the inverse

Theorem (Csörnyei+H.+Malý (2010))

Suppose that $f \in W^{1,n-1}(\Omega \mathbb{R}^n)$ is a homeomorphism. Then $f^{-1} \in BV_{loc}(f(\Omega), \mathbb{R}^n)$.

Theorem

Let $0 < \varepsilon < 1$ and $n \ge 3$. There is a homeomorphism of finite distortion $f \in W^{1,n-1-\varepsilon}((-1,1)^n; \mathbf{R}^n)$ such that $f^{-1} \notin BV_{loc}(f(\Omega); \mathbf{R}^n)$. ('because $|\nabla f^{-1}| \notin L^1_{loc}$ ')

$$\int_{f(\Omega)} |Df^{-1}(y)| \ dy = \int_{\Omega} |Df^{-1}(f(x))| J_f(x) \ dx$$

$$\stackrel{f^{-1} \circ f = \mathrm{id}}{=} \int_{\Omega} |(Df(x))^{-1}| J_f(x) \ dx$$

$$\stackrel{A \text{ adj } A = \det AI}{=} \int_{\Omega} |\operatorname{adj } Df(x)| \ dx \le \int_{\Omega} |Df(x)|^{n-1} \ dx$$