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Lecture Schedule
•

−∇2~u +∇p = ~0; ∇ · ~u = 0

•
~u · ∇~u− ν∇2~u +∇p = ~0; ∇ · ~u = 0

•
∂~u

∂t
+ ~u · ∇~u− ν∇2~u +∇p = 0; ∇ · ~u = 0

•
∂~u

∂t
+ ~u · ∇~u− ν∇2~u +∇p = ~jT ; ∇ · ~u = 0

∂T

∂t
+ ~u · ∇T − ν∇2T = 0










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Reference — lectures I & II

Chapters 5–6 (Stokes) & 7–8 (Steady Navier–Stokes) .
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References — lectures III & IV

David Kay & Philip Gresho & David Griffiths & David
Silvester Adaptive time-stepping for incompressible
flow; part II: Navier-Stokes equations
SIAM J. Scientific Computing, 32: 111–128, 2010.

Howard Elman, Milan Mihajlović and David Silvester.
Fast iterative solvers for buoyancy driven flow problems
J. Computational Physics, 230: 3900–3914, 2011.
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Lecture I
•

−∇2~u +∇p = ~0; ∇ · ~u = 0
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Poiseuille Flow: problem 5.1

Flow in [−1, 1]× [−1, 1] with Dirichlet boundary conditions:

~u (x, y) = ~0 for all (x, y) ∈ (−1, 1)× {−1, 1} ,

~u (x, y) =
(

1− y2, 0
)

for all (x, y) ∈ {−1} × (−1, 1) ,

and the Neumann condition

∂ux(x,y)
∂x − p (x, y) = 0

∂uy(x,y)
∂x = 0

}

for all (x, y) ∈ {1} × (−1, 1)
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Cavity Flow: problem 5.3

Flow in [−1, 1]× [−1, 1] with Dirichlet boundary conditions:

~u = ~0 on x = −1, 1 and y = −1.

~u =
((

1− x2
) (

1 + x2
)

, 0
)T

on y = 1.
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Stokes flow problem

−∇2~u +∇p = ~0 in Ω ⊂ R
d

∇ · ~u = 0 in Ω

~u = ~g on ΓD

∇~u · ~n− p~n = ~0 on ΓN
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Stokes flow problem

−∇2~u +∇p = ~0 in Ω ⊂ R
d

∇ · ~u = 0 in Ω

~u = ~g on ΓD

∇~u · ~n− p~n = ~0 on ΓN

Mixed formulation : find (~u, p) ∈ (H1
0(Ω))d × L2(Ω) such that

(∇~u,∇~v)− (∇ · ~v, p) = f(~v) ∀~v ∈ (H1
0 (Ω))d,

−(∇ · ~u, q) = g(q) ∀q ∈ L2(Ω).
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Generic structure

Find (~u, p) ∈ (H1
0 (Ω))d × L2(Ω) such that

(∇~u,∇~v)− (∇ · ~v, p) = f(~v) ∀~v ∈ (H1
0 (Ω))d,

−(∇ · ~u, q) = g(q) ∀q ∈ L2(Ω).

Abstract formulation : find (~u, p) ∈ V ×Q such that

a(~u, ~v) + b(~v, p) = f(~v) ∀~v ∈ V,

b(~u, q) = g(q) ∀q ∈ Q.
(V )

Where, V and Q represent Hilbert spaces; a : V × V → R is
a symmetric bounded bilinear form, b : V ×Q→ R is a
bounded bilinear form and f : V → R and g : Q→ R are
linear functionals.
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Saddle Point Structure

a(~u, ~v) + b(~v, p) = f(~v) ∀~v ∈ V,

b(~u, q) = g(q) ∀q ∈ Q.
(V )

To discover the structure we define dual spaces V ∗ and Q∗

respectively, with a duality pairing 〈·, ·〉.
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Saddle Point Structure

a(~u, ~v) + b(~v, p) = f(~v) ∀~v ∈ V,

b(~u, q) = g(q) ∀q ∈ Q.
(V )

To discover the structure we define dual spaces V ∗ and Q∗

respectively, with a duality pairing 〈·, ·〉. Then, if we
associate the bilinear forms a and b with operators
A : V → V ∗ and B : V → Q∗ so that

〈A~u, ~v〉 = a(~u, ~v) = 〈~u,A~v〉, 〈B~u, q〉 = b(~u, q) = 〈~u,B∗q〉 ;

we arrive at the infinite-dimensional saddle point system
(

A B∗
B 0

)(

~u

p

)

=

(

f

g

)

. (S)
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Optimal preconditioning
(

A B∗
B 0

)(

u

p

)

=

(

f

g

)

. (S)

Following Mardal & Winther [2010], a canonical
preconditioner is the 2× 2 block diagonal matrix operator
that maps the dual space V ∗ ×Q∗ back into the original
space V ×Q :

M =

(

M−1
11 0

0 M−1
22

)

.

Eigenvalues of the preconditioned operatorMK :

t

←− np

t t t t t t t t t t

nu −→

td
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Preconditioning ... Stokes

Mixed formulation : find (~u, p) ∈ V ×Q such that

(∇~u,∇~v) + (∇ · ~v, p) = f(~v) ∀~v ∈ V,

(∇ · ~u, q) = g(q) ∀q ∈ Q.
(V )

Spaces : V := (H1
0(Ω))d and Q = L2(Ω) so that the dual

spaces are V ∗ := (H−1(Ω))d and Q∗ := L2(Ω) respectively.
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(∇ · ~u, q) = g(q) ∀q ∈ Q.
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In practice, the velocity approximation needs to be
continuous across inter-element edges (e.g. Q1), whereas
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Preconditioning ... Stokes

Mixed formulation : find (~u, p) ∈ V ×Q such that

(∇~u,∇~v) + (∇ · ~v, p) = f(~v) ∀~v ∈ V,

(∇ · ~u, q) = g(q) ∀q ∈ Q.
(V )

Spaces : V := (H1
0(Ω))d and Q = L2(Ω) so that the dual

spaces are V ∗ := (H−1(Ω))d and Q∗ := L2(Ω) respectively.

In practice, the velocity approximation needs to be
continuous across inter-element edges (e.g. Q1), whereas
the pressure approximation can be discontinuous.
Canonical Stokes Preconditioner :

M =

(

(−∇2)−1 0

0 I−1

)

.
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Discretized approximation
[

A BT

B 0

][

u

p

]

=

[

f

g

]

(Sh)

That is, given Vh ⊂ V and Qh ⊂ Q : find (uh, ph) ∈ Vh ×Qh

such that

a(uh, v) + b(v, ph) = f(v) ∀v ∈ Vh,

b(uh, q) = g(q) ∀q ∈ Qh.
(Vh)
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Discretized approximation
[

A BT

B 0

][

u

p

]

=

[

f

g

]

(Sh)

That is, given Vh ⊂ V and Qh ⊂ Q : find (uh, ph) ∈ Vh ×Qh

such that

a(uh, v) + b(v, ph) = f(v) ∀v ∈ Vh,

b(uh, q) = g(q) ∀q ∈ Qh.
(Vh)

Ideal Stokes Preconditioner :

M =

(

A
−1 0

0 I
−1

)

.

See Rusten & Winther [1992], Silvester & Wathen [1994].
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Optimal Solver

Energy arguments lead to a natural norm for measuring the
quality of approximation for functions in the space V ×Q,

‖(u, p)‖V ×Q = ‖u‖V + ‖p‖Q .

This will be referred to as the energy norm.

Our goal is to construct an optimal iterative solver for (S)...
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Optimal Solver

Energy arguments lead to a natural norm for measuring the
quality of approximation for functions in the space V ×Q,

‖(u, p)‖V ×Q = ‖u‖V + ‖p‖Q .

This will be referred to as the energy norm.

Our goal is to construct an optimal iterative solver for (S)...
that is, we would like to construct a sequence of rapidly

converging iterates (u
(1)
h , p

(1)
h ), (u

(2)
h , p

(2)
h ), (u

(3)
h , p

(3)
h ), . . . with

the property that the iteration is terminated once the energy

norm of the algebraic error (uh − u
(m)
h , ph − p

(m)
h ) is

commensurate with the discretization error:

‖uh − u
(m)
h ‖V + ‖ph − p

(m)
h ‖Q ∼ ‖u− u

(m)
h ‖V + ‖p− p

(m)
h ‖Q.
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Issues

• The most natural iterative solver for a symmetric
indefinite system Kx = b is MINRES. This minimizes
the ℓ2–norm of the mth residual

‖r(m)‖ = ‖b−Kx(m)‖ = ‖K(x− x(m))‖

over the Krylov space

Km(K,b) = span {b,Kb, . . . ,Km−1b}.

It does not minimize the energy norm of the error.

• How does one compute an accurate estimate of the

discretization error ‖u− u
(m)
h ‖V + ‖p− p

(m)
h ‖Q ?
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Rest of the talk

• Well-posedness of (V ) and (Vh)
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Rest of the talk

• Well-posedness of (V ) and (Vh)

• Stable mixed approximation methods
• Unstable mixed approximation methods

• Optimally preconditioned MINRES:
• Mass matrix preconditioning
• Negative Laplacian preconditioning

• Estimating the inf-sup constant on the fly:
• Harmonic Ritz values

• A proof-of-concept implementation:
• EST_MINRES
• The IFISS 3.1 MATLAB Toolbox
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Well posedness ...

Abstract formulation : find (~u, p) ∈ V ×Q such that

(∇~u,∇~v)− (∇ · ~v, p) = ~f ∀~v ∈ V,

−(∇ · ~u, q) = 0 ∀q ∈ Q,
(V )

with norms ‖~u‖V := (∇u,∇u)1/2 and ‖p‖Q := (p, p)1/2.

Discrete formulation : find (~uh, ph) ∈ Vh ×Qh

a(~uh, ~vh) + b(~vh, ph) = ~f ∀~vh ∈ Vh

b(~uh, qh) = 0 ∀qh ∈ Qh.
(Vh)
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... inf-sup stability

Theorem Brezzi [1974]. Given bounded bilinear forms a (·, ·)
and b (·, ·), two conditions are sufficient for the existence
and uniqueness of solutions to the Stokes problem in its
discrete form:
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... inf-sup stability

Theorem Brezzi [1974]. Given bounded bilinear forms a (·, ·)
and b (·, ·), two conditions are sufficient for the existence
and uniqueness of solutions to the Stokes problem in its
discrete form:

1. Vh – coercivity: there exists a constant α (= 1) such that

a (~vh, ~vh) ≥ α ‖~vh‖2V ∀~vh ∈ Vh.

2. Discrete “inf-sup” condition: there exists a constant
γ ≥ γ∗ > 0 such that

sup
~vh∈Vh

~vh 6=~0

b (~vh, qh)

‖~vh‖V
≥ γ ‖qh‖Q ∀qh ∈ Qh.
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Furthermore, if (~u, p) is the weak solution of the Stokes
problem, and if there exists a constant γ ≥ γ∗ > 0 such that

sup
~vh∈Vh

~vh 6=~0

b (~vh, qh)

‖~vh‖V
≥ γ ‖qh‖Q ∀qh ∈ Qh.

then there exists a constant C(γ∗) > 0 such that

‖~u− ~uh‖V +‖p− ph‖Q ≤ C

{

inf
~vh∈Vh

‖~u− ~vh‖V + inf
qh∈Qh

‖p− qh‖Q
}

.

Kacov 2011 – p. 19/39



Two different inf-sup stable mixed approximation methods
are implemented in IFISS:

t t

tt

t

t

t

t t

d d

dd

Q2–Q1 element (also referred to as Taylor-Hood).
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Two different inf-sup stable mixed approximation methods
are implemented in IFISS:

t t

tt

t

t

t

t t

d d

dd

Q2–Q1 element (also referred to as Taylor-Hood).

t t

tt

t

t

t

t t b6-

Q2–P−1 element : ◦ pressure;
↑→ pressure derivative
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Two unstable low-order mixed approximation methods are
implemented in IFISS:

u u

uu

e

Q1–P0 element : • two velocity components; ◦ pressure
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Two unstable low-order mixed approximation methods are
implemented in IFISS:

u u

uu

e

Q1–P0 element : • two velocity components; ◦ pressure

u u

uu

e e

ee

Q1–Q1 element : • two velocity components; ◦ pressure
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Stokes Preconditioner I

t t

tt

t

t

t

t t

d d

dd

Q2–Q1 element (• two velocity components; ◦ pressure).

M =

(

A
−1
∗ 0

0 I
−1
∗

)

.

• Negative Laplacian preconditioning ((−∇2)−1 operator)

λ ≤ uT
Au

uT A∗u
≤ Λ.
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HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.
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λ ≤ uT
Au

uT A∗u
≤ Λ.

Using black-box AMG
nv is the number of V-cycles performed.

nv 1 2 4

grid λ Λ λ Λ λ Λ

uniform 8× 8 0.864 1.000 0.981 1.000 1.000 1.00
uniform 32× 32 0.831 1.000 0.971 1.000 0.999 1.00

stretched 32× 32 0.447 1.000 0.694 1.000 0.906 1.00
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Stokes Preconditioner II

t t

tt

t

t

t

t t

d d

dd

Q2–Q1 element (• two velocity components; ◦ pressure).

M =

(

A
−1
∗ 0

0 I
−1
∗

)

.

• Mass matrix preconditioning (I−1 operator)

θ ≤ pT
Ip

pT I∗ p
≤ Θ.
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θ ≤ pT
Ip

pT I∗ p
≤ Θ.

Wathen & Rees [2009]
Using Chebyshev accelerated Jacobi
its is the number of acceleration steps performed.

its 5 10 20

grid θ Θ θ Θ θ Θ

uniform 16× 16 0.883 1.234 0.986 1.003 1.000 1.00
uniform 64× 64 0.883 1.234 0.986 1.003 1.000 1.00

stretched 64× 64 0.883 1.234 0.986 1.003 1.000 1.00
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Back to the Issues ...

• The most natural iterative solver for a symmetric
indefinite system Kx = b is MINRES. This minimizes
the ℓ2–norm of the mth residual

‖r(m)‖ = ‖b−Kx(m)‖ = ‖K(x− x(m))‖

over the Krylov space

Km(K,b) = span {b,Kb, . . . ,Km−1b}.
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Back to the Issues ...

• The most natural iterative solver for a symmetric
indefinite system Kx = b is MINRES. This minimizes
the ℓ2–norm of the mth residual

‖r(m)‖ = ‖b−Kx(m)‖ = ‖K(x− x(m))‖

over the Krylov space

Km(K,b) = span {b,Kb, . . . ,Km−1b}.

We want to compute constants c and C such that

c ‖e(m)‖E ≤ ‖r(m)‖M ≤ C ‖e(m)‖E,

where e(m) = x− x(m), r(m) = Ke(m), and M = E−1 with
E the block diagonal matrix representing the norms
associated with the underlying space V ×Q.
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... Stokes flow case

c ‖e(m)‖E ≤ ‖r(m)‖M ≤ C ‖e(m)‖E

K =

[

A BT

B 0

]

, E =

[

A 0

0 I

]

, M−1 =

[

A∗ 0

0 I∗

]

.
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... Stokes flow case

c ‖e(m)‖E ≤ ‖r(m)‖M ≤ C ‖e(m)‖E

K =

[

A BT

B 0

]

, E =

[

A 0

0 I

]

, M−1 =

[

A∗ 0

0 I∗

]

.

Inf-Sup stability :

γ2 ≤ qTBA
−1BTq

qT Iq
≤ Γ2 ≤ d

Eigenvalue bounds : (from Silvester & Wathen [1994])

c2 = γ2

(

1 + 1/2 γ2−
√

1 + 1/4 γ4

)

∼ 1/2γ
4; C2 = max

{

2 + Γ2, 2Γ2
}

Stopping heuristic : ‖e(m)‖E ≤
√

2
γ2 ‖r(m)‖M .
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Flow over a Step: problem 5.2
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Step flow: precomputed value: γ2 ≈ 0.0247
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10
−6

10
−4

10
−2

10
0

10
2

iteration number  k

nv=4

 

 

√
2/γ 2 | |rk| |M∗
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Dynamic inf-sup constant ...

Can we estimate the value of γ2 on-the-fly?
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Dynamic inf-sup constant ...

Can we estimate the value of γ2 on-the-fly?
Maybe yes:

s

λ−

s s

λ+

sc

Inverting the eigenvalue bounds on the largest negative
value λ− and the smallest positive eigenvalue λ+ of the
matrix MK:

λ− ≤ 1/2
(

δ −
√

δ2 + 4δγ2
)

and δ < λ+,

leads to the computable estimate

γ2
k =

(

λ2
− − λ−λ+

)

/λ+.

All we need to do is to estimate λ− and λ+ using the
harmonic Ritz values... EST_MINRES.
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Harmonic Ritz values ...

t

λ−

t t

λ+

td

Eigenvalues of the preconditioned matrix K̂ = MK.
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Harmonic Ritz values ...

t

λ−

t t

λ+

td

Eigenvalues of the preconditioned matrix K̂ = MK.
At step m of MINRES the Harmonic Ritz values θ1, . . . , θm

are the roots of the residual polynomial φm, defined as
r(m) = φm(K̂)b̂, with φm(θ) = 1

φ̂m(0)
φ̂(θ).

They are also the eigenvalues of the following problem:

T T
m Tmu = θ Tmu,

where Tm is the tridiagonal Lanczos matrix, and Tm is the
row augmented counterpart.
See Morgan [1991], Freund [1992] and Paige et al. [1995].
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Step flow: γ2 estimated at each iteration
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Back to the Issues ...

• How does one compute an accurate estimate of the

discretization error ‖~u− ~u
(m)
h ‖V + ‖p− p

(m)
h ‖Q ?
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Back to the Issues ...

• How does one compute an accurate estimate of the

discretization error ‖~u− ~u
(m)
h ‖V + ‖p− p

(m)
h ‖Q ?

• That is, given a candidate solution (~uh, ph) ∈ Vh ×Qh

(not necessarily the Galerkin solution), we want to
compute an estimate η which is equivalent to the exact
error in the sense that

c η ≤ ‖~u− ~uh‖V + ‖p− ph‖Q ≤ C η,

with C/c ∼ O(1).

Qifeng Liao & David Silvester.
A simple yet effective a posteriori estimator for classical
mixed approximation of Stokes equations
Appl. Numer. Math., 2011.
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c η(m) ≤
∥

∥

∥
∇(~u− ~u

(m)
h )

∥

∥

∥
+
∥

∥

∥
p− p

(m)
h

∥

∥

∥
≤ C η(m)

with C/c ∼ O(1).
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c η(m) ≤
∥

∥

∥
∇(~u− ~u

(m)
h )

∥

∥

∥
+
∥

∥

∥
p− p

(m)
h

∥

∥

∥
≤ C η(m)

with C/c ∼ O(1).

Refined stopping heuristic :

‖e(m)‖E ≤
√

2

γ2
m
‖r(m)‖M ≤ η(m)
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Step flow: refined stopping heuristic

0 10 20 30 40

10
−6

10
−4

10
−2

10
0

10
2

iteration number  k

nv=1

 

 

√
2/γ 2

k | |rk| |M∗

ηk ∼ | |er rk| |V ×Q

| |rk| |M∗

0 10 20 30 40

10
−6

10
−4

10
−2

10
0

10
2

iteration number  k

nv=4

 

 

√
2/γ 2

k | |rk| |M∗

ηk

| |rk| |M∗

Kacov 2011 – p. 36/39



Square cavity flow: refined stopping heuristic
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Square cavity flow: refined stopping heuristic
iteration counts k∗ vs spatial accuracy resolution

grid k∗ η ‖∇ · ~uh‖
uniform 8× 8 10 9.71× 10−1 2.97× 10−2

uniform 16× 16 17 2.54× 10−1 3.66× 10−3

uniform 32× 32 21 6.51× 10−2 4.56× 10−4

uniform 64× 64 24 1.64× 10−2 5.69× 10−5

O(h2) O(h3)
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What have we achieved?

• Efficient linear algebra: convergence rate is
independent of h.

• Black-box implementation: No parameters have to be
estimated a priori!
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What have we achieved?

• Efficient linear algebra: convergence rate is
independent of h.

• Black-box implementation: No parameters have to be
estimated a priori!

Further Reading ...

David Silvester & Valeria Simoncini.
EST_MINRES: An optimal iterative solver for symmetric
indefinite systems stemming from mixed approximation
ACM Trans. Math. Softw., vol. 37 no. 4, 2010.
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