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3.1 Thoughts on adaptivity in optimization

General optimization problem (OPC) (u state, g control)

J(u,q) —» min,  A(u,q) =0

Notion of admissibility of states u = u(q)?
Discretization introduces perturbation of state equation.
Accuracy in discretization of PDEs is expensive.

The efficient numerical solution of OPCs governed by PDEs requires
work reduction by adaptive discretization.

In PDEs the choice of error measures is a delicate matter.

Accuracy requirements should observe intrinsic problem
sensitivities and is a modeling issue.




Goals of adaptivity in optimal control:

e What are the relevant error control criteria?

| J(un, qn) — J(u,q)| < TOL, lg —aqnll» < TOL

Alternative: Monitoring of convergence behavior of the scalar

quantity J(up,qp)

e Mesh adaptation criteria by local error indicators:

Nk > 0 = refine, nx ~0d = keep, nx K 0 = coarsen

Goal: Development of a universal approach for dimension reduction by
weakening admissibility requirements, which can be applied for general
systems of PDEs and general (Galerkin) discretization and does not rely

on mostly unknown (or worst-case oriented) coercivity properties.




3.2 Theoretical framework (revisited)

Computation of stationary point z € X of diff. functional L(-) by
Galerkin scheme in finite dim. subspace X; C X:

L'(z)(y) =0 WVyeX

L'(zp)(yn) =0 Yy, € Xp

Proposition 1 There holds the error representation

L(:U) — L(xh) — % \L’(a:h)(x—yh)j + Run, yn € Xy,

"~

weighted residual

where the remainder R 1s cubic in x—xy,.




Application to functional minimization

State variable u € V', control variable g € @) :
J(u,q) = min! A(u, q)(¢) = 0.

The state equation may be a stationary or nonstationary PDE.

Galerkin approximation in finite subspaces Vi, xQp C V X Q)

J(un,qn) = min!  Aup, qn)(¥n) = 0.

Lagrangian functional with adjoint variable \:

L(u,q,0) = J(u, q) — Alu, q)(N)




Continuous and discrete optimality systems (KKT systems):

’

Jo(un, an)(xn) —

|\ —Aun, qn)(n)

Residuals:

p* (M) () == Jy (un, qn) () — A% (un, qn) (-5 An)
n) () = Jg(un, qn)(+) — Ag(un, qn) (-5 An)




a) Natural concept in optimal control:

Error control w.r.t. cost functional J(-,-)

Proposition 2 There holds the error representation

T )~ I(unean) = 3 ")) + 7 p%(an)(a— Ina)

~” ~”~

dual residual control residual

2\

7

1
+ 5 plun)(A=InA) + R

primal residual

for arbitrary Ipu, In\ € Vi, and Inpq € Q. The remainder Ry s cubic in

the errors e :=u—up, €l :=q—qn, € :=A=M\}, .




b) Application in parameter identification

Model problem
—Au+qu=f in€, upgg=0

The goal is to determine the coeflicient ¢ by comparing the resulting

observation C'(u) with given measurements C

1 _ 1
J(u,q) = §HC(U)—C||?) +5allgl® — min! (0<a<1)

2

First-order optimality system:

(0, C(u)=C)o + (Ve, VA) + (gp, A) =0 Vo
a(x,q) + (xu,A\) =0 Vyx
(Vu, Vi) + (qu, ) = (f,) Vo




Adjoint equation for “identifiable” parameter ¢ > 0:
—AA+gh=u—u=0 = AX=0.

This may be achieved on coarse meshes.

e Choice of (artificial) cost functional for a posteriori error

control is questionable for mesh design.

e An energy-norm-type a posteriori error estimate for ||¢ — qn|lo can

be derived based on a coercivity estimates for the saddle-point
problem. However, the stability constant in this estimate is usually

unknown and depends on o~ *'.

e An a posteriori error estimate for a suitable expression of ¢ — ¢q; can

be derived by an “outer” duality argument.




(i) Error estimation based on stability

KKT system for U = (u,q, ) and ® = (o%, 0%, ¢o"):

AUY(®) =0

AU) (@) == (", C(u)—C)o + (Ve*, VA) + (g¢™, N)
+ a(e?, q) + (p%u, ) + (Vu, V') + (qu, ") = (f, ¢*)

Stability assumption (worst-case oriented, with [G(a) ~ a)

o AO)(@.0)

> fla)||®]lx, ®eX
vex ||V]x

Resulting “worst case” a posteriori error estimate

1
|U = Unllx < v(@)RUR)x+,  v(a) ~ —




(ii) Error estimation based on duality:

A posteriori error estimate (captures local features):
E(q) — E(qn) =n+ Pn+ R

e Discretization error:

n = 1p(uh)(z — Inz) + %pq(qh)(q — Ing) + %ﬂ*(zh)(u — Ihu)

2

e Dual problem: z eV
a,(u,q)(p,2) = —(G(G"G)'VE(q),C"(u)(p))o Vo€V
(G derivative of solution operator u = S(q) w.r.t. q)

e Remainder terms:
— R, 1s a cubic remainder term due to linearization

— |Pul < cllellv IC(w) = Cllo < n




3.3 An illustrative model case

Neumann boundary control in the stationary diffusion problem

— Au + s(u)

Control ¢ = q(x) such that

1 B Qo .
J(u,q) = Sllu—alf, + S lal, — min!  (@=1, a>0)

Variational formulation of state equation:

(V’LL, VWQ + (S(u)v w)ﬂ - (qa w)rc — (fa ¢)




KKT system in strong form:
—AXN+ s (u)A =0, in (2
OnAr, = U—ug, OpnAryure =0
aq — A, =0

—Au+ s(u) = f, in

Onury =0, OJpur, =4¢

Galerkin approximation: V;, = {Qi-elements}, Qp := {0,V .}

(nun—co)re + (Von, VAn)a + (s (un)en, An)a =0 Vo, € V),
a(qn, Xn)re — An, Xn)re =0 Vxp € Qp,
(Vup, Von)a + (s(un), ¥u)a — (fs¥n)a — (qr Yr)re =0 Yo, € Vi,




A posteriori error estimate:

| J(u, q) = J(un, qn)| < - > {ﬂKwK+PKwK+pKwK}
KeTy,

NK (reﬁnement indicators)

cell-residuals and weights for xj, = {un, qn, A} defined by

o = | Ballie + hi P lrnllore,  wie = lu—Inull i + byl |lu=Tnulox,

—1/2
Pl = hK/

U U —1/2 w 1/2
ol = IRk + b 2Iritllore,  wk = IA=InAllx + AR 2 IA—TnAox.

1/2

HT;]LH(?K, WK = hyt ||Cl—th||aK,

with arbitrary {lpu, Inq, In\} € Vi, xQp X V.

h|K = f+ Auy, — S(uh) R hK "= A)Np, — S/(uh))\h




(L[owu], T ¢ 00, (50,2, Tz 00
qufu‘ = 4 Opup, FC@Q\FC ) T});|F = OpAn, FC@Q\FO
| Ohun—qn, I' CT'c | On A t+up—u, I'Cl'o

r;]L|F ‘= Ah_QQha FCFC; r;]L|F — O, PgZPC

For comparison: “Energy norm” error indicators:

., o\ 12
Ny = Cz( > bk (pK)2)

KeTy,

(uA) —CI( Z h




Testcases

Configuration 1 Configuration 2

Observation boundary T o

Control/Observation boundary ==l
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Configuration 1

R'edu'ce'd energyl/ estim'ato'r R
Energy estimator
DWR estimator

1000 10000 100000

Results for n,, (left), and mesh efficiencies for ng and 7, (right)




Configuration 2

Universitaet Heidelberg, IWR, SFB 359 Universitaet Heidelberg, IWR, SFB 359
H. Kapp (with DEAL) min u max H. Kapp (with DEAL) min u max

Solutions for ng (left) and 7, (right)




Configuration 2

"'er;er'gy'_'u"' I
"energy_u+lambda" ---+-- ]
"dual_weighted"

N
512
15368
27800
07632
197408

PRI | N N N N M | N N N N PRI |
1000 10000 100000
Number of elements N

Results for n,, (left), and mesh efficiencies for ng and 7, (right)




3.4 Some algorithmical issues

3.4.1 Direct versus indirect approach

a) Direct approach: Reformulation as unconstrained optimal control
problem

i(q) == J(S(q),q) — min,

where S : () — V is the solution operator of the state equation

A(S(q),q)() =0 Yy eV,

The local existence and sufficient regularity of S is assumed. First and

second-order necessary conditions for an optimal ¢:

i'(¢)(0q) =0, j"(q)(dq,0q) >0 Viqe Q.

The derivatives of the reduced functional can be computed using the
Lagrangian £(u,¢,\) = J(u,q) — a(u, q)(\).




Computation of optimal control by Newton-SQP method

7"(@")(6q", x) = —7'(¢")(x) Vx € Q,

with update ¢"*! := ¢ + d¢" . Solution of Newton steps by Krylov-space

methods requires evaluation of directional derivatives

7" (@")(6q", x), 7 (d")(x), x fixed,

given by

7' (q)(6q) = L, (u,q,\)(dq),
7" (q)(6q,0r) = L}, (u,q, \)(0q, 67) + Ly, (u, q, N)(0u, o)
+ LY (u, g, \)(6X, 67)

where for given dq, 0r the quantities du,d\ are obtained by solving

certain auxiliary linear problems.




b) Indirect approach: Direct solution of the fully coupled discretized
KKT system (e.g., by MG method)

( )

Ju(uny qn)(@n) — Ay (Uhy qn) (@n, An)

Jo(uny qn)(xn) — AL (U, qn) (Xns An)
\ —A(Uhth)(wh) J

There are various pros and cons, particularly in nonstationary situations!

NO FURTHER DETAILS, as this issues would deserve an extra lecture.




3.4.2 Balancing iteration and discretization error

We consider the linear-quadratic optimization problem

J(u,q) = 5llu—ull* + 5allgl* — min,

—Au=f+¢q in Q, u=0 on 09.

on Q:=(0,1)? with force f, distribution %, and o = 1072

The Euler-Lagrange approach uses the Lagrangian
L(u,q,A) := J(u,q) + (f + ¢, A) = (Vu, VA),

with the adjoint variable A € V. Then, for any optimal solution

{u,q} € V x @ there exists an adjoint solution A € V' such that the triplet
{u,q, \} is a stationary point of the Lagrangian, i.e., it solves the following
(linear) saddle point system:




(Vo, VA) = (u,0) = =(u, ) Yo eV,
(G A) +alx,q) =0 Vxe@,
(Vu, V) = (q,¢) = (f,¢) Yy eV.
Using conforming bilinear ()1 elements for discretizing all three variables

{u,q, \} in associated finite element subspaces V;, C V and @} C @ leads
to the discrete saddle point problems

(Von, VAp) = (un, on) = — (U, on) Von € Vi,
(Xns, An) +alxn,qn) =0 Yxpn € Qp,
(Vun, Vor) — (g, ¥n) = (f,%n) Vion € Vi,

These linear saddle point problems are solved by a MG method using a

block ILU iteration as smoother.




Proposition. Let {u,q,A\} € V. x Q x V be the solution of the KKT
system and {up, G, 5\h} e Vi, X Qn X Vi, the approrimative finite element
solution of the discrete KKT system on the finest mesh Ty . Then, we have
the following error representation:

J(u,q) — J(Tin, @n) = 30" (@n, Ap)(u—ap) + 50 (Gn An)(g—an)

~

)(A—An) + p(iin, Gn) (An)

with the residuals




Numerical example with smooth exact solution

The discretized KK'T system solved by the adaptive multigrid method

using the V-cycle and again 4 + 4-block-ILU smoothing steps.

MG with block ILU smoothing, o = 1072.

N

E

#1t

by,

Tk

81

289
1089
3985
13321
47201
163 361

1.64e-4
3.75e-5
1.05e-5
2.67e-6
6.65e-7
1.76e-7
4.89e-8

1.78e-4
4.16e-5
1.02e-5
2.54e-6
6.48e-7
1.70e-7
4.69e-8

2.19e-4
4.39e-5
1.03e-5
2.55e-6
6.49e-7
1.69e-7
4.68e-8




The discretized KKT system solved by the adaptive multigrid method

using only one undamped block-Jacobi smoothing step.

MG II with block Jacobi smoothing, o = 1077

N

E

4Tt

by,

Th

h
Ieff

81

289
1089
3985
13321
47201
171969

1.84e-4
4.36e-5
1.10e-5
2.69e-6
6.94e-7
1.95e-7
7.24e-8

2.20e-4
4.40e-5
1.03e-5
2.55e-6
6.47e-7
1.69e-7
4.42e-8

1.78e-4
4.16e-5
1.02e-5
2.56e-6
6.69e-7
1.90e-7
6.93e-8

1.23
1.05
1.01
0.99
0.96
0.88
0.63




3.5 Applications




3.5.1 Drag minimization

Example from optimal flow control

Stationary Navier-Stokes equations for w := {v, p}:
—vAv+v-Vo+Vp=0 V-v=0

v =0, vlp, =v", vo,v—np|pr... =0

1_‘rig,‘id out

Goal: Minimize drag by Neumann control (pressure drop)

2
Jdrag = 5D /SnTa(fU,p)el ds

Reynolds number Re = U?D/v =40 (initially stationary flow)




Variational formulation:

A(u,)(@) =0 VeV
A(UWJ)W) = V(V’U, V¢) + (’U | V’UW) o (qa n - 7vb)l"(;z o (p7 V- ¢) o (X7 V- ’U)

uncontrolled flow

controlled flow

optimally adapted mesh




Uniform refinement versus adaptive refinement for Re = 40

Uniform refinement || Adaptive refinement
N Jdrag N Jdrag
10512 3.31321 1572 3.28625
41504 3.21096 4264 3.16723
164928 3.11800 11146 3.11972

Remarks.
L .. t  opt
e Optimization cycle for determining ¢,”",u;"" on sparse meshes and

.. ~opt
recovery of admissible state ;" on fine mesh:

A@@P, @) (n) =0 Vapy, €V,

e Question: Stability of stationary “optimal” state?




3.5.2 Estimation of reaction rates
Example from parameter estimation

Reaction-diffusion problem

B-Vu—pAu= f(u) in Q
u=1u on I'y,, OJ,u=0 on N\,

Arrhenius-type reaction law

E

1l —wu

)u(l — u)

To determine are A and E from “measured” line averages

/ uds, 1=1,...,10.
I';

f(u) = Aexp ( —




Measurements:

vertical line-integrals of

concentration

Initial solution for A = 54.6, F = 0.15 (left),
Estimated solution for A = 992.3, E = 0.07 (right)




relative error

PR T T S |

100000




3.5.3 Application to model calibration
Example from diffusion model calibration

Reactive flow problem with diffusion model of Fick’s type:

div (pv) =0
(pv-V)v+divri+Vp=0
pv-VT—cglv-Q:fT

pv-Vyp +V - (e DpVyr) = fr k=1,...,9

Measurements:

point-values of

concentrations




Multicomponent diffusion (reference solution), Fick’s law (initial

parameters), Fitted Fick’s law (estimated parameters)

Locally refined meshes (zooms)




3.6 Extensions

3.6.1 Nonstationary problems

“Initial control” in the nonstationary semi-linear diffusion problem
Ou —Au+ s(u) = f in Qpr = Q2x(0,T],
Opu =0 on dN), up—g = q.

Control ¢ = q(x) such that

1 B Q :
J(u,q) == 5lu(-T) —alg + Slgls — min!

Variational formulation in space-time domain Q7 = Q x (0,7 :

(675“7 w)QT + (Vu, vw)QT + (S(U)v 7vD)QT
= (f,¥)or + (¢ —u(0),¢(0))o Yy eV




Lagrange formalism yields first-order necessary optimality condition in
form of a saddle-point problem for {u,q, \}:

—(0,0:N)@r + (Vo, VA)qr + (¢, 8 (WA )qr = (p(T), u(T) -1 — A(T))a
(A(0) + ag, x)a =0
(Orw, ¥)@r + (Vu, Vi), + (s(u), ¥)qr = (¢ —u(0),¥(0))n
for all admissible test triplets {¢,y,¢}. In strong form:
—OA— AN+ S (WA =0 in Q7
Neer = u(T)—t, OpApq =0
Alt=0 = —0g

Oru — Au+ s(u) =0 in Qr

U= = ¢, OpUjpn =0




Discretization of the saddle-point problem by a space-time finite element
Galerkin discretization using the so-called

“cG(1)” (“continuous Galerkin” = Crank-Nicolson scheme)

time discretization method. Time grid
D=t < ... <t < ..<ty=T1T, km = tm—tm—1,

with corresponding sequence of spatial meshes T} and finite element
spaces th consisting of spatially continuous functions which are cellwise
bilinear in space and polynomial (constant or linear) in time.

Problem: Storing the primal solution over the whole time interval

requires enormous storage space.

Efficient solution by check-pointing trading storage (“S”) for work
(“W”). Recursive (“multi-level”) check-pointing results in ( M time steps):

Smin = O(log,(M)), Winin = O(Mlog,(M)).




3.6.2 Control and state constraints

Distributed control of linear diffusion problem

Observation boundary I

KKT system in strong form:

— AN+ (u)A =0, inQ, OnAry, = Ury —U, OpAryury =0
f7 n Qa anUH‘N — 07 anu|PC = q




A posteriori error estimate:  p% 1= ||agn + aPy, (@A) &

J = Jnlmne = > {pkwi + ok wic + Pk wk |,
KeT,

Adapted mesh

Optimal control




Il Il Il
1000 10000 100000

Local versus uniform mesh refinement




le-08 L L L
1000 10000 100000

Local versus uniform mesh refinement

State constraints

Strategy: Penaltization of constraints and reduction to (singularly

perturbed) unconstraint problem.

Problems: Solution method and error estimates robust w.r.t.

penaltization parameter? (under work; W. Wollner)




