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Lecture 1. Numerics of Incompressible Viscous Flow

We discuss the Galerkin finite element method for the discretization
of the Navier-Stokes equations. Particular emphasis is put on the
aspects of local and global error analysis, pressure stabilization, and
truncation to bounded domains.

Lecture 2. Goal-Oriented Adaptivity

We introduce the concept underlying the DWR (Dual Weighted
Residual) method for goal-oriented residual-based adaptivity in solving
the Navier-Stokes equations. This approach is presented for stationary
as well as nonstationary situations.

Lecture 3. Optimal Flow Control

We discuss the use of the DWR metrhod for adaptive discretization in
flow control and parameter estimation.

Lecture 4. Numerical Stability Analysis

We consider the numerical stability analysis of stationary flows
employing the concepts of linearized stability and pseudospectra.
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1.1 The mathematical model
The continuum mechanical model for the flow of a viscous Newtonian fluid

is the system of conservation equations for mass, momentum and energy:

∂tρ+ ∇ · [ρv] = 0 (1)

∂t(ρv) + ρv · ∇v −∇ · [µ∇v + 1
3µ∇ · vI] + ∇ptot = ρf (2)

∂t(cpρT ) + cpρv · ∇T −∇ · [λ∇T ] = h (3)

A state equation models the connection of pressure and density. In the

following, the fluid is assumed to be incompressible and the density to be

homogeneous, ρ ≡ ρ0 = const., so that (1) reduces to the constraint

∇ · v = 0. Further, in the isothermal case, setting ρ0 = 1, the

Navier-Stokes system can be written in short as

∂tv + v · ∇v − ν∆v + ∇p = f (4)

∇ · v = 0 (5)

with the kinematic viscosity ν > 0.



This system is supplemented by initial and boundary conditions

v|t=0 = v0, v|Γrigid
= 0, v|Γin

= vin, (µ∂nv + pn)|Γout
= 0 (6)

where Γrigid, Γin, Γout are the rigid part, the inflow part and the outflow

part, respectively, of the flow domain’s boundary. The role of the natural

outflow boundary condition on Γout will be discussed in more detail below.

In this formulation the flow domain may be two- or three-dimensional.

This model is made dimensionless through a scaling transformation with

the Reynolds number Re = UL/ν as the characteristic parameter, where

U is the reference velocity and L the characteristic length, e.g.,

U ≈ max |vin| and L ≈ diam(Ω).

We concentrate on laminar flows in which all relevant spatial and temporal

scales can be resolved, and no additional modeling of turbulence effects is

required. The numerical solution of this differential (-algebraic) system is

complicated mainly because of the incompressibility constraint, which

enforces the use of implicit methods.



The Galerkin FEM is based on a variational formulation of the problem

and determines “discrete” approximations of the primitive variables

velocity and pressure in certain finite dimensional trial spaces consisting of

piecewise polynomial functions. This discretization inherits most of the

structure of the continuous problem, which results in high computational

flexibility and provides the basis of a solid mathematical analysis.

Notation:

L2
0(Ω) =

{

ϕ ∈ L2(Ω) : (v, 1) = 0
}

, H1(Ω) =
{

v ∈ L2(Ω), ∇v ∈ L2(Ω)d
}

and H1
0 (Γ; Ω) =

{

v ∈ H1(Ω), v|Γ = 0
}

for some (non-trivial) part Γ of

the boundary ∂Ω, as well as the corresponding inner products and norms

(u, v) =

∫

Ω

uv dx, ‖v‖ = (v, v)1/2, (∇u,∇v) =

∫

Ω

∇u · ∇v dx.

These are all spaces of R-valued functions. Spaces of R
d-valued functions

v = (v1, . . . , vd) are denoted by boldface-type, e.g., H
1
0(Γ; Ω) = H1

0 (Γ; Ω)d .



The pressure p in the Navier-Stokes equations is uniquely (possibly up to

a constant) determined by the velocity field v. There holds the stability

estimate (“inf-sup” stability)

inf
q∈L2(Ω)

sup
ϕ∈H

1
0(Γ;Ω)

(q,∇·ϕ)

‖q‖ ‖∇ϕ‖ ≥ γ0 > 0 (7)

where L2(Ω) has to be replaced by L2
0(Ω) in the case Γ = ∂Ω. Finally, we

introduce the bilinear and trilinear forms

a(u, v) := ν(∇u,∇v) , b(p, v) := −(p,∇·v) , n(u, v, w) := (u · ∇v, w)

and the abbreviations

H := H
1
0(Γ; Ω), L := L2(Ω)

(

L := L2
0(Ω) in the case Γ = ∂Ω

)

where Γ = Γin ∪ Γrigid.



The variational formulation of the Navier-Stokes problem (4), (5) reads as

follows: Find functions v(·, t) ∈ vin + H and p(·, t) ∈ L , where v(·, t) is

continuous on [0, T ] and continuously differentiable on (0, T ], such that

v|t=0 = v0, and

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, v) = (f, ϕ) ∀ϕ ∈ H (8)

(∇·v, χ) = 0 ∀χ ∈ L (9)

It is well known that in two space dimensions the pure Dirichlet problem

(8), (9), with Γout = ∅, possesses a unique solution on any time interval

[0, T ], which is also a classical solution if the data of the problem are

smooth enough. For small viscosity, i.e., large Reynolds number, this

solution may be unstable.

In three dimensions, the existence of a unique solution is known only for

sufficiently small data, e.g., ‖∇v0‖ ≈ ν, or on sufficiently short intervals of

time, 0 ≤ t ≤ T , with T ≈ ν. The proof or disproof of the general result

would be worth a million Dollar.



1.2 Regularity of solutions

Formally, even for large Reynolds number, the Navier-Stokes equations are

of elliptic type in the stationary and of parabolic type in the nonstationary

case. This means that qualitatively the solution of the problem should be

as regular as the data and the boundary of the flow domain permit.

However, numerical approximation depends on quantitative regularity

properties of the solution. For example, the presence of a strong boundary

layer or part of the boundary with large curvature may strongly effect the

accuracy on realistic meshes, though the solution is qualitatively smooth.

The regularity estimates for the solutions of the Navier-Stokes equations

provided in the mathematical literature are mostly of such a qualitative

character and have only limited value in predicting the performance of a

concrete numerical computation. Therefore, we do not list these results

but rather concentrate on some aspects of regularity which are peculiar to

the incompressible Navier-Stokes equations.



1.2.1 Domain with irregular boundary

For Reynolds number of small to moderate size, the solution of the

Navier-Stokes equations on (nonconvex) polygonal or polyhedral domains

exhibits “corner singularities”. Using polar coordinates (r, θ) around the

corner in 2d, the solution can be written in the form

v(r, θ) = Arαϕ(θ) + ṽ(r, θ), p(r, θ) = Brα−1ψ(θ) + p̃(r, θ)

with a certain α > 0 , some analytic functions ϕ, ψ, and more “regular”

components ṽ and p̃. The exponent α characterizes the regularity of v

and p at the corner, i.e., for r → 0, and is mainly determined by the linear

“Stokes part” of the equation.

Corner singularities cause a significant reduction of accuracy in the

numerical approximation especially near the corner point but also in the

interior of the computational domain where the solution itself is smooth.

This so-called “pollution effect” can be suppressed, for instance, by

adaptive local mesh refinement.



The structure of such corner singularities has been thoroughly analyzed in

the literature. Although, the Stokes problem contains the Laplacian ∆ in

the momentum equation, the incompressibility constraint makes it behave

quite differently. In fact, the common stream-function formulation of the

2d Stokes problem is a scalar fourth-order equation involving the

biharmonic operator ∆2. This equivalent formulation can be used for

deriving regularity results and explicit representations of corner

singularities for the 2d Navier-Stokes equations on arbitrary polygonal

domains and general boundary conditions. For example, pipe flow over a

backward-facing step, with inner angle ω = 3
2π, exhibits a corner

singularity of the form

v(r, θ) ≈ Ar0.54...ϕ(θ), p(r, θ) ≈ Br−0.45...ψ(θ)

i.e., vorticity ∇×v as well as pressure p become singular at the tip of the

step.



Such singularities not only occur at corners, they can also be caused by

changes in the boundary conditions. For example, the sudden change from

Dirichlet to Neumann boundary conditions results in a singular behavior of

the form |p(r, θ)| ≈ Br−0.5. The extreme case is reached for the ‘lid-driven

cavity’ where in the upper corners the boundary data is discontinuous

resulting in a singularity |p(r, θ)| ≈ Br−1, such that the solution does not

belong to (vin + H) × L .

The analysis of “corner and edge singularities” for 3d domains is rather

difficult and not completely settled yet. The only general rules are that

corner singularities are weaker than edge singularities, and 3d edge

singularities look very much like the corresponding corner singularities in

the 2d cross-sections.



1.2.2 Solution behavior as t → 0

For the purposes of numerical analysis one needs regularity of the solution

uniformly down to t = 0, which turns out to be a delicate requirement. To

illustrate this, let us assume that the solution {v, p} is uniformly smooth

as t→ 0 . Then, applying the divergence operator to the Navier-Stokes

equations and letting t→ 0 implies:

∇ · (∂tv + v · ∇v) = ∇ · (ν∆v −∇p) → ∇·(v0 · ∇v0) = −∆p0, in Ω

∂tv + v · ∇v = ν∆v −∇p → ∂tg|t=0 + v0 · ∇v0 = ν∆v0 −∇p0, on ∂Ω

where g is the boundary data, v0 the initial velocity and

p0 := limt→0 p(t) the “initial pressure”. Hence, in the limit t = 0, we

obtain an overdetermined Neumann problem for the initial pressure

including the compatibility condition

∂τp
0
|∂Ω = τ ·(ν∆v0 − ∂tg|t=0 − v0·∇v0) (10)

where τ is the tangent direction along ∂Ω.



If this compatibility condition is violated, then the solution cannot remain

smooth as t→ 0 , particularly,

‖∂2
t v(t)‖ + ‖∇3v(t)‖ + ‖∇2p(t)‖ → ∞ (t→ 0).

Since p0 is not known, (10) is a global condition which generally cannot be

verified for given data. An example for such a situation is flow between

constantly accelerated concentric spheres (“Taylor problem”).

In view of this generally unavoidable regularity defect of the solution of the

Navier-Stokes equations at t = 0 , the use of higher-order discretization

appears questionable unless they are shown to possess the ‘smoothing

property’, i.e. to exhibit their full order of convergence at positive time

t > 0. This reflects the well-known “smoothing behavior” of the continuous

solution {v, p} as t→ 0. This smoothing property has been established

for various discretization schemes for the Navier-Stokes equations.



1.2.3 Solution behavior as t → ∞
The constants in the a priori error estimates available in the literature for

space and time discretization of the Navier-Stokes equation generally

depend exponentially on the Reynolds number Re ≈ ν−1 and on time T .

In general, this exponential dependence is unavoidable, due to the use of

Gronwall’s inequality in the derivation of these estimates, and may also be

natural in the case of unstable solutions. Since even in the range of

laminar flows e20 ≈ 108, e100 ≈ 1043, the practical meaning of a priori

error estimates containing such constants is questionable. If the solution to

be computed were known to possess certain stability properties, for

instance to be “exponentially stable”, then the exponential dependence on

T can be suppressed, so justifying long-time flow simulation. However,

such stability assumptions are usually not verifiable by a priori analysis

but may be justified in many situations by experimental evidence.

Consequently, reliable flow simulation requires computable a posteriori

error bounds in terms of the approximate solution.



1.3 Artificial boundary conditions: truncation
to bounded domains

The variational formulation (8), (9) does not contain an explicit reference

to any “outflow boundary condition”. Suppose that the solution

v ∈ vin + H, p ∈ L is sufficiently smooth. Then, integration by parts and

varying ϕ ∈ H in the terms

ν(∇v,∇ϕ) − (p,∇ · ϕ) = (ν∂nv − pn, ϕ)Γout
+ (−ν∆v + ∇p, ϕ)

yields the already mentioned “natural” outflow boundary condition

ν∂nv − pn = 0 on Γout (11)

This condition has proven to be well suited in modeling almost parallel

flows. It occurs in the variational formulation of the problem if one does

not prescribe any boundary condition for the velocity at the outlet

suggesting the name “do nothing” or “free” boundary condition.



However, this approach has to be used with care. For example, in 2d if the

flow region contains more than one outlet, undesirable effects may occur,

since the “do nothing” condition contains an additional hidden condition

on the pressure. In fact, integrating (11) over any component S of the

outflow boundary and using the incompressibility constraint ∇ · v = 0 and

v|Γrigid
= 0 yields

∫

S

pndo = ν

∫

S

∂nv do = −ν
∫

S

∂τv do = 0 (12)

i.e., the mean pressure over S must be zero. To illustrate this, let us

consider low Reynolds number flow through a junction in a system of

pipes, again prescribing a Poiseuille inflow upstream.



Obviously, making one leg of the pipe longer significantly changes the flow

pattern. By the property (12) the pressure gradient is greater in the

shorter of the two outflow sections, which explains why there is a greater

flow through.

In the momentum equation (8) the Dirichlet form (∇v,∇ϕ) may be

replaced by the deformation form (D[v], D[ϕ]) , with D[v] = 1
2 (∇v+∇vT ) .

This change has no effect in the case of pure Dirichlet boundary conditions

as then the two forms coincide. But in using the “do nothing” approach

this modification leads to the outflow boundary condition

n ·D[v] − pn = 0 on Γout (13)

which results in a non-physical behavior of the flow with outward bending

streamlines for simple Poiseuille flow.



Problem: Despite its remarkable success of the “do nothing” outflow

boundary condition in modeling (almost) parallel flow, there is a

theoretical problem with existence and uniqueness.

a) Existence of solutions (in 2d as well as in 3d) can be shown even in the

stationary case only for very small Reynolds numbers. The problem is the

lacking a priori bound for the Galerkin approximations in the Dirchlet

norm due to the indefiniteness of the nonlinear term:

(v · ∇v, v) = 1
2 (v,∇v2) = − 1

2 (v · n, v2)Γout
≥ 0 ?

b) This dilemma can also be described in terms of uniqueness: Is v ≡ 0

the only solution to the homogeneous problem

− ν∆v + v · ∇v + ∇p = 0, ∇ · v = 0, in Ω,

v|Γrigid∪Γin
= 0, (ν∂nv + pn)|Γout

= 0.

Extensive numerical tests did not lead to an affirmative answer to this

question. Therefore, the use of the “do nothing” outflow boundary

condition in practice may inherit some risk of ill-posedness.



1.4 Discretization in space
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Figure 1: Admissible mesh with local refinement at corner points.

In setting up a finite element model, one starts from the variational

formulation of the problem: Find v ∈ vin + H and p ∈ L, such that

a(v, ϕ) + n(v, v, ϕ) + b(p, ϕ) = (f, ϕ) ∀ ϕ ∈ H (14)

b(χ, v) = 0 ∀ χ ∈ L (15)



The choice of the function spaces H ⊂ H
1(Ω)) and L ⊂ L2(Ω) depends

on the specific boundary conditions imposed in the problem to be solved.

On a finite element mesh Th on Ω , one defines spaces of “discrete” trial

and test functions, Hh ⊂′
H and Lh ⊂ L. The discrete analogues of (14),

(15) then read as follows: Find vh ∈ vin
h + Hh and ph ∈ Lh, such that

ah(vh, ϕh) + nh(vh, vh, ϕh) + bh(ph, ϕh) = (f, ϕh) ∀ ϕh ∈ Hh (16)

bh(χh, vh) = 0 ∀ χh ∈ Lh (17)

where vin
h is a suitable approximation of the inflow data vin, defined on

all of Ω. The notation Hh ⊂′
H indicates that in this discretization the

spaces Hh may be “nonconforming”, i.e., the discrete velocities vh are

continuous across the interelement boundaries and zero along the rigid

boundaries only in an approximate sense; in this case the discrete forms

ah(·, ·) , bh(·, ·), nh(·, ·, ·) and the discrete “energy norm” ‖∇ · ‖h are

defined in the piecewise sense,



ah(ϕ, ψ) :=
∑

K∈Th

ν(∇ϕ,∇ψ)K , bh(χ, ϕ) := −
∑

K∈Th

(χ,∇·ϕ)K

nh(ϕ, ψ, ξ) :=
∑

K∈Th

(ϕ·∇ψ, ξ)K ‖∇ϕ‖h :=
(

∑

K∈Th

‖∇ϕ‖2
K

)1/2

In order that (16), (17) is a stable approximation to (14), (15), as h→ 0,

it is crucial that the spaces Hh×Lh satisfy a compatibility condition, the

so-called “inf–sup” or “Babuska-Brezzi” condition, which is the discrete

analogue of the continuous inf-sup stability estimate (7):

inf
qh∈Lh

sup
ϕh∈Hh

bh(qh, ϕh)

‖qh‖ ‖∇ϕh‖h
≥ γ > 0 (18)

Here, the constant γ is required to be independent of h . This ensures

that the problems (16), (17) possess solutions which are uniquely

determined in Hh×Lh , stable and of optimal order convergent.



1.4.1 Examples of Stokes elements

(0) The Q1/P0 Stokes element

For completeness, we mention the simplest (quadrilateral) Stokes element,

the so-called Q1/P0 element, which uses continuous bilinear velocity and

piecewise constant pressure approximation; the triangular counterpart of

this element is not consistent. This element pair is formally second-order

accurate but lacks stability since the uniform inf-sup condition (18) is not

satisfied on general meshes. Yet, this approximation has successfully been

used in nonstationary flow computations. The explanation for the good

performance of this “unstable” spatial discretization within a nonstationary

computation is that the time-stepping, a pressure correction scheme,

introduces sufficient stabilization as long as the time step is not too small.



(1) The nonconforming “rotated” d-linear Q̃1/P0 Stokes element

This is the natural quadrilateral analogue of the well-known triangular

nonconforming finite element of Crouzeix/Raviart. Its two- as well as

three-dimensional versions have been implemented in state-of-the-art

Navier-Stokes codes. In two space dimensions, this nonconforming element

uses piecewise “rotated” bi-linear reference shape functions for the

velocities, spanned by {1, x, y, x2 − y2} , and piecewise constant pressures.
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Figure 2: Nonconforming ‘rotated d-linear’ Stokes element.



(2) The d-linear Q1/Q1 Stokes element with pressure stabilization

This Stokes element uses continuous isoparametric d-linear shape functions

for both the velocity and the pressure approximations. The nodal values

are just the function values of the velocity and the pressure at the vertices

of the cells, making this approximation particularly attractive in three

dimensions.
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Figure 3: Conforming d-linear Stokes element, with nodal values

vh(a), ph(a) .



This combination of spaces, however, would be unstable, i.e., it would

violate the condition (18), if used together with the variational formulation

(16), (17). We add certain least squares terms in the continuity equation

(17) (so-called “pressure stabilization method”),

b(χh, vh) + ch(χh, ph) = gh(vh;χh) (19)

where

ch(χh, ph) =
α

ν

∑

K∈Th

h2
K(∇χh,∇ph)K

gh(vh;χh) =
α

ν

∑

K∈Th

h2
K(∇χh, f + ν∆vh − vh·∇vh)K

The correction terms on the right hand side have the effect that this

modification is fully consistent, since the additional terms cancel out if the

exact solution {v, p} of problem (14), (15) is inserted. On regular meshes,

one obtains a stable and consistent approximation of the Navier-Stokes

problem (14), (15) with optimal-order accuracy.



However, from a practical point of view, this stabilization has several

short-comings. First, being used together with the “free” outflow condition

described above it induces a non-physical numerical boundary layer along

the outflow boundary. Second, the evaluation of the various terms in the

stabilization forms ch(χh, ph) and gh(vh;χh) is very expensive,

particularly in 3d. These problems can be resolved by using instead

so-called “stabilization by pressure projection”. Here, the stabilization

forms are gh = 0 and

ch(χh, ph) := (∇(χh − π2hχh),∇(ph − π2hph)) (20)

where π2h denotes the projection into a space L2h defined on a coarser

mesh T2h. The resulting scheme is of second-order accurate, the evaluation

of the system matrices is cheap and the consistency defect at the outflow

boundary is avoided. Further, the resulting discretization has conceptional

advantages in solving flow control problems by the indirect approach

(based on the KKT system).



(3) Higher-order Stokes elements

One of the main advantages of the Galerkin finite element method is that

it provides systematic ways of dealing with complex geometries and of

constructing higher-order approximation. Popular examples are:

• The triangular P#
2 /P1 element with continuous quadratic velocity

(augmented by a cubic bulb) and discontinuous linear pressures.

• The quadrilateral Q2/Q2 element with continuous biquadratic velocity

and pressure approximation and pressure stabilization.

• The triangular P2/P1 or the quadrilateral Q2/Q1 Taylor-Hood element

with continuous quadratic or biquadratic velocity and linear or bilinear

pressure approximation.

All these Stokes elements are inf-sup stable and third-order accurate for

the velocity and second-order for the pressure, the errors measured in the

repective L2 norms. Practical experience shows that they yield much

better approximations than the lower-order elements.



1.4.2 Treating dominant transport

In the case of higher Reynolds number (e.g., Re > 500 for the 2d driven

cavity, and Re > 50 for pipe-flow around a cylinder) the finite element

models (16), (17) and (16), (19) may become unstable since they

essentially use central-differences-like discretization of the advection term.

This instability most frequently occurs in form of a drastic slow-down or

even break-down of the iteration processes for solving the algebraic

problems; in the extreme case the possibly existing “mathematical”

solution contains nonphysical oscillatory components. In order to avoid

these effects some additional numerical damping is required. The use of

simple first-order artificial viscosity or upwinding is not advisable since it

introduces too much numerical diffusion.

The Galerkin structure of the FEM is fully respected by the so-called

“streamline diffusion method”. The idea of streamline diffusion is to

introduce artificial diffusion acting only in the transport direction while

maintaining the second-order consistency of the scheme.



This can be achieved either by augmenting the test space by

direction-oriented terms resulting in a “Petrov-Galerkin method” with

streamline-oriented upwinding (“SUPG method”), or by adding certain

least-squares terms to the discretization including streamline-oriented

diffusion (“LSSD method”).

In the following, we describe the full LSSD method for the Navier-Stokes

system. To this end, we introduce the product Hilbert-spaces V := H×L
of pairs u := {v, p} and ϕ = {ψ, χ} as well as their discrete analogues

Vh := Hh×Lh of pairs uh := {vh, ph} and ϕh = {ψh, χh}. On these

spaces, we define the semi-linear form

A(u;ϕ) := ah(v, ψ) + nh(v, v, ψ) + bh(p, ψ) − b(χ, v)

and the linear functional F (ϕ) := (f, ψ). Then, the variational formulation

(8) of the Navier-Stokes equations is written in the following compact

form: Find u ∈ V + (vin
h , 0)

T , such that

A(u;ϕ) = F (ϕ) ∀ϕ ∈ V (21)



For defining the stabilization, we introduce the matrix differential operator

A(u) , depending on u = {v, p} , and the forcing vector F by

A(u) :=





−ν∆ + v · ∇ grad

div 0



 , F :=





f

0





Then, with the weighted L2-bilinear form

(v, w)h :=
∑

K∈Th

δK(v, w)K

the LSSD stabilized finite element approximation reads: Find

uh ∈ Vh + (vin, 0)T such that

A(uh;ϕh) + (A(uh)uh, A(uh)ϕh)h = (F, ϕh) + (F,A(uh)ϕh)h ∀ϕh ∈ Vh



This discretization contains several features. The stabilization form

contains the terms
∑

K∈Th

δK(∇ph,∇χh)K ,
∑

K∈Th

δK(vh·∇vh, vh·∇ψh)K ,
∑

K∈Th

δK(∇·vh,∇·ψh)K

where the first one stabilizes the pressure-velocity coupling for the

conforming Q1/Q1 Stokes element, the second one stabilizes the transport

operator, and the third one enhances mass conservation. The other terms

introduced in the stabilization are correction terms which guarantee

second-order consistency for the stabilized scheme. Practical experience

and analysis suggest the following choice of the stabilization parameters:

δK = α
( µ

h2
K

+
β|vh|K;∞

hK

)−1

(22)

with values α ≈ 1
12 and β ≈ 1

6 . In practice, the terms −ν∆vh as well as

−ν∆ψh in the stabilization are usually dropped, since they vanish or

almost vanish on the low-order elements considered.



1.4.3 The algebraic problems

The discrete Navier-Stokes problem including simultaneously pressure and

streamline diffusion stabilization has to be converted into an algebraic

system. To this end, we choose local “nodal bases” {ψi
h, i = 1, ..., Nv} of

the “velocity space” Hh, and {χi
h, i = 1, ..., Np} of the “pressure space”

Lh, and expand the unknown solution {vh, ph} in the form

vh − vin
h =

∑Nv

j=1 xjψ
j
h and ph =

∑Np

j=1 yjχ
j
h. Accordingly, we introduce

A =
(

ah(ψj
h, ψ

i
h)

)Nv

i,j=1
, B =

(

bh(χj
h, ψ

i
h)

)Nv,Np

i,j=1

N(x) =
(

nh(vh, ψ
j
h, ψ

i
h) + nh(ψj

h, v
in
h , ψ

i
h)

)Nv

i,j=1

S(x) =
(

(−ν∆ψj
h + vh·∇ψj

h,−ν∆ψi
h + vh·∇ψi

h)h + (∇·ψj
h,∇·ψi

h)h

)Nv

i,j=1

T (x) =
(

(∇χj
h,−ν∆ψi

h + vh·∇ψi
h)h

)Nv,Np

i,j=1
, C =

(

(∇χj
h,∇χi

h)h

)Np

i,j=1

b =
(

(f, ψi
h) − a(vin

h , ψ
i
h) − nh(vin

h , v
in
h , ψ

i
h) + (f, vh·∇ψi

h)h

)Nv

i=1
,

c =
(

(f,∇χi
h)h

)Np

i=1



Notice that the nonhomogeneous inflow data vh|Γin
= vin

h is implicitly

incorporated into the system, and that the stabilization only acts on

velocity basis functions corresponding to interior nodes. Further, we

introduce the velocity and pressure ‘mass matrices’:

Mv =
(

(ψi
h, ψ

j
h)

)Nv

i,j=1
, Mp =

(

(χi
h, χ

j
h)

)Np

i,j=1

With this notation the variational problem (??), can equivalently be

written in form of an algebraic system for the vectors x ∈ R
Nv and

y ∈ R
Np of expansion coefficients:





A+N(x) + S(x) B + T (x)

−BT + T (x)T C









x

y



 =





b

c



 (23)

Notice that this system has essentially the features of a saddle-point

problem (since C small) and is generically nonsymmetric. This poses a

series of problems for its iterative solution.



1.5 Discretization in time

We now consider the nonstationary Navier-Stokes problem: Find

v ∈ vin + H and p ∈ L , such that v(0) = v0 and, for t > 0,

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, ϕ) = (f, ϕ) , ∀ ϕ ∈ H (24)

b(χ, v) = 0 , ∀ χ ∈ L (25)

where it is implicitly assumed that v as a function of time is continuous

on [0,∞) and continuously differentiable on (0,∞). The choice of the

function spaces H ⊂ H
1(Ω)d and L ⊂ L2(Ω) depends again on the

specific boundary conditions chosen for the problem to be solved. Due to

the incompressibility constraint the nonstationary Navier-Stokes system

has the character of a “differential-algebraic equation” (in short “DAE”) of

“index” two, in the language of ODE theory. This enforces an implicit

treatment of the pressure within the time-stepping process, while the other

flow quantities may, in principle, be treated explicitly.



1.5.1 The Rothe Method

In the “Rothe Method”, at first, the time variable is discrete by one of the

common time differencing schemes. For example, the backward Euler

scheme leads to a sequence of stationary Navier-Stokes-like problems

k−1
n (vn−vn−1, ϕ) + a(vn, ϕ) + n(vn, vn, ϕ) + b(pn, ϕ) = (fn, ϕ) (26)

b(χ, vn) = 0 (27)

for all {ϕ, χ} ∈ H × L , where kn = tn − tn−1 is the time step. Each of

these problems is then solved by some spatial discretization method as

described in the preceding section. This provides the flexibility to vary the

spatial discretization, i.e. the mesh or the type of trial functions in the

finite element method, during the time stepping process. In the classical

Rothe method the time discretization scheme is kept fixed and only the

size of the time step may change. The transfer between different spatial

meshes is accomplished by some interpolation or projection strategy.



1.5.2 The Method of Lines

The more traditional approach to solving time-dependent problems is the

“Method of Lines”. At first, the spatial variable is discrete, e.g. by a finite

element method as described above, leading to a DAE system of the form




M

0









ẋ(t)

ẏ(t)



 +





A+N(x(t)) B

−BT C









x(t)

y(t)



 =





b(t)

c(t)



 (28)

for t ≥ 0, with the initial value x(0) = x0. This DAE system is now

discretized with respect to time. Let k denote the time-step size.

Frequently used schemes are the simple “one-step-θ schemes”:

One-step θ-scheme: Step tn−1 → tn:




M+θkAn θkB

−BT C









xn

yn



 =





[M−(1−θ)kAn−1]xn−1+θkbn + (1−θ)kbn−1

cn





where xn ≈ x(tn) and An := A(xn).



Special cases are the “forward Euler scheme” for θ = 0 (first-order

explicit), the most popular “Crank-Nicolson scheme” for θ = 1/2

(second-order implicit, A-stable), and the the “backward Euler scheme” for

θ = 1 (first-order implicit, strongly A-stable). The most robust implicit

Euler scheme is very dissipative and therefore not suitable for the

time-accurate computation of nonstationary flow. In contrast to that, the

Crank-Nicolson scheme has only very little dissipation but occasionally

suffers from instabilities caused by the possible occurrence of rough

perturbations in the data which are not damped out due to the only weak

stability properties of this scheme (not strongly A-stable). This defect can

in principle be cured by an adaptive step size selection but this may

enforce the use of an unreasonably small time step.

Alternative schemes of higher order are based on the (diagonally) implicit

Runge-Kutta formulas or the backward differencing multi-step formulas,

both being well known from the ODE literature. These schemes, however,

have not yet found wide applications in practical flow computations.



Another alternative is the so-called “fractional-step-θ scheme”:

Fractional-step-θ-scheme (tn−1 → tn−1+θ → tn−θ → tn):




M+αθkAn−1+θ θkB

−BT C









xn−1+θ

yn−1+θ



=





[M−βθkAn−1]xn−1 + θkbn−1

cn−1+θ









M+βθ′kAn−θ θ′kByn−θ

−BT C









xn−θ

yn−θ



=





[M−αθ′kAn−1+θ]xn−1+θ + θ′kbn−θ

cn−θ









M+αθkAn θkB

−BT C









xn

yn



=





[M−βθkAn−θ]xn−θ + θkbn−θ
h

cn





Here θ = 1−
√

2/2 = 0.292893..., θ′=1−2θ, α ∈ (1/2, 1], and β = 1−α, in

order to ensure second-order accuracy, and strong A-stability. Being

strongly A-stable, for any choice of α ∈ (1/2, 1] , it possesses the full

smoothing property in the case of rough initial data, in contrast to the

Crank–Nicolson scheme (case α = 1/2).



1.5.3 Splitting schemes

The fractional-step-θ scheme was originally introduced as an operator

splitting in order to separate the two main difficulties in solving problem

(24) namely the nonlinearity causing nonsymmetry and the

incompressibility constraint causing indefiniteness. Using the notation

from above, but suppressing here the terms stemming from pressure

stabilization, the operator splitting scheme reads as follows:

Splitting-fractional-step-θ scheme (tn−1 → tn−1+θ → tn−θ → tn):




M+αθkA θkB

BT 0









xn−1+θ

yn−1+θ



 =





[M − βθkA]xn−1 + θkbn−1 − θkNn−1xn−1

0





[M+βθ′kAn−θ]xn−θ = [M − αθ′kAn−1+θ]xn−1+θ − θ′kByn−θ + θ′kbn−θ





M + αθkA θkB

BT 0









xn

yn



 =





[M − βθkA]xn−θ − θkNn−θxn−θ + θkbn−θ

0







The first and last step solve linear Stokes problems treating the

nonlinearity explicitly, while in the middle step a nonlinear Burgers-type

problem (without incompressibility constraint) is solved. The symmetric

form of this splitting scheme guarantees second-order accuracy of the

approximation.

Nowadays, the efficient solution of the nonlinear incompressible

Navier-Stokes equations is standard by the use of new multigrid

techniques. Hence, the splitting of nonlinearity and incompressibility is no

longer an important issue.



1.5.4 Projection schemes

The Chorin projection scheme has originally been designed in order to

overcome the problem with the incompressibility constraint ∇ · v = 0 . The

continuity equation is decoupled from the momentum equation through an

iterative process (again “operator splitting”). There are various schemes of

this kind in the literature referred to as “projection method”,

“quasi-compressibility method”, “SIMPLE method”, etc. All these

methods are based on the same principle idea. The continuity equation

∇ · v = 0 is supplemented by certain stabilizing terms involving the

pressure, e.g.,

∇·v + ǫp = 0, (29)

∇·v − ǫ∆p = 0, ∂np|∂Ω = 0 (30)

∇·v + ǫ∂tp = 0, p|t=0 = 0 (31)

∇·v − ǫ∂t∆p = 0, ∂np|∂Ω = 0, p|t=0 = 0 (32)

where the small parameter ǫ is usually taken as ǫ ≈ hα , or ǫ ≈ kβ .



These approaches are closely related to the classical “Chorin projection

method”. Since this method used to be particularly attractive for

computing nonstationary incompressible flow, we will discuss it in some

more detail. For simplicity consider the case of pure homogeneous Dirichlet

boundary conditions, v|∂Ω = 0. Then, the projection method reads as

follows:

For an admissible initial value v0, solve for n ≥ 1:

(i) Implicit ‘Burgers step’ for ṽn ∈ H:

k−1(ṽn − vn−1) − ν∆ṽn + ṽn·∇ṽn = fn (33)

(ii) “Projection step” for vn := ṽn + k∇p̃n, where p̃n ∈ H1(Ω) is

determined by

∆p̃n = k−1∇·ṽn, ∂np̃
n
|∂Ω = 0 (34)

This time stepping scheme can be combined with any spatial discretization

method, e.g., the finite element methods described above.



Equation (34) amounts to a Poisson equation for p̃n with homogeneous

Neumann boundary conditions. It is this non-physical boundary condition,

∂np̃
n
|∂Ω = 0, which has caused a lot of controversial discussion about the

value of the projection method. Nevertheless, the method has proven to

work well for representing the velocity field in many flow problems of

physical interest. It is very economical as it requires in each time step only

the solution of a (nonlinear) advection-diffusion system for vn (of Burgers

equation type) and a scalar Neumann problem for p̃n.

A rigorous convergence analysis shows that the quantities p̃n are indeed

reasonable approximations to the pressure p(tn) . This may be seen by

re-interpreting the projection method in the context of “pressure

stabilization”. To this end the quantity vn−1 = ṽn−1−k∇p̃n−1 is inserted

into the momentum equation yielding

k−1(ṽn − ṽn−1) − ν∆ṽn + (ṽn·∇)ṽn + ∇p̃n−1 = fn, ṽn
|∂Ω = 0 (35)

∇·ṽn − k∆p̃n = 0, ∂np̃
n
|∂Ω = 0 (36)



This appears like an approximation of the Navier-Stokes equations

involving a first-order (in time) “pressure stabilization” term, i.e., the

projection method can be viewed as a pressure stabilization method with a

global stabilization parameter ǫ = k , and an explicit treatment of the

pressure term. This explains the success of the not inf-sup stable Q1/Q1

Stokes element in the context of nonstationary computations. The pressure

error is actually confined to a small boundary strip of width δ ≈
√
νk and

decays exponentially into the interior of Ω.

The projection approach can be extended to formally higher order. The

most popular example is the method of Van Kan:

For starting values v0 and p0 compute, for n ≥ 1 and some α ≥ 1
2 :

(i) Second order implicit “Burgers step” for ṽn ∈ H:

k−1(ṽn − vn−1) − 1
2ν∆(ṽn + vn−1) + ṽn·∇ṽn + ∇pn−1 = fn−1/2 (37)

(ii) Pressure Poisson problem for qn ∈ H1(Ω):

∆qn = α−1k−1∇·ṽn, qn
|∂Ω = 0 (38)



(iii) Pressure and velocity update:

vn = ṽn − αk∇qn, pn = pn−1 + qn (39)

This scheme can also be interpreted in the context of pressure stabilization

methods using a stabilization of the form

∇·v − αk2∂t∆p = 0, ∂np|∂Ω = 0 (40)

i.e., this method appears like a quasi-compressibility method of the form

(32) with ǫ ≈ k2.



1.7 Convergence analysis and error estimates

Problem: Regularity loss due to lacking initial compatibility

Best known (possible?) convergence behavior:

a) Spatial discretization

• without “smoothing”: ‖(u− uh)(t)‖ ≤ ch2 (or ch5/2?)

• with “smoothing”: ‖(u− uh)(t)‖ ≤ ct−1h5 (or ct−5/4h6?)

b) Time discretization

• without “smoothing”: ‖uh(tn) − Un
h ‖ ≤ ck (or ck3/2?)

• with “smoothing”: ‖uh(tn) − Un
h ‖ ≤ ct−1

n k2 (or ct
−5/4
n k9/4?)

It is known that for the nonlinear heat equation there is an order bound

for the smoothing property. But what is the best achievable order?



1.8 Application to turbulent flow

(i) Adaptive multiscale discretization (LES)

Claims (Braack/Burman):

• A Variational Multi Scale Method (VMS) à la Hughes et al., based on

two-scale stabilization is proposed for numerical subgrid modeling

within an LES.

• Following an idea of Guermond, the local stabilization, which is not

residual-based, only applies to the smallest (resolved) scale and does

not affect the macro-scale.

• An a priori error analysis is given for the smooth-solution case, with

constants independent of the local Peclet numers.

• Numerical results are not available yet.



(ii) Turbulence “modeling” by adaptive discretization

Claims (Johnson/Hoffman):

• DNS with DWR-controled SUPG (Streamline Upwinding Petrov

Galerkin) is a valid LES approach for computing average quantities

(such as drag and lift) in turbulent flow.

• Adaptive SUPG provides the right damping of energy production of

the unresolved fine scales, without spoiling the average accuracy on the

macro scale. The letter is controled by an error estimate involving the

computed “dual solution”.

Edisc ≈
√
h ‖h∇2

hzh‖, Emod ≈
√
h‖∇zh‖.

• Computational evidence for flow around a wall-mounted cube (but

conflicts with statements in Hughes et al.).


