“A role still more important than
generalizations in dealing with mathematical
problems is played, | believe, by specialization.
Perhaps in most cases we seek in vain for the
answer to a question the failure lies in our
having not yet completely solved the problems
simpler and easier than the one on hand.
Everything depends then on finding the easier
problems and solving them by the use of tools
as perfect as possible and of concepts
susceptible to generalization. This role is one
of the most important levers for overcoming

mathematical difficulties . . .”

D. Hilbert.



e Natural Configuration
— Can think of it as a stress-free configuration

— It is really an equivalence class of configurations.

e Eg: Classical Plasticity

Cannot go from one
equivalence class to another
isentropically.
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Figure 2: Traditional Plasticity




e Classical metal plasticity involves an infinity of natural
configurations, and to determine the stress we require
kinematical information from more than one natural

configuration.

e The response is elastic from each of these natural
configurations and the inelasticity is purely due to the

change in the natural configurations.

e Plasticity concerns a “class” of simple materials.
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e Eg. 2 Twinning

e |n twinning there are a finite number. As many as the

number of variants.
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Figure 3. Modulo variants, we have two natural configurations, that
corresponding to O and F, and these two natural configurations have

different material symmetries.
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MULTI-NETWORK POLYMERS




Other Examples:

e Viscoelasticity
e Superplasticity
e Solid to solid phase transitions
e Crystallization of polymers
e Viscoplasticity
Classical theories are trivial examples:

In classical elasticity the natural configuration does not

evolve.

In classical fluids the current configuration is the natural

configuration.
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Figure 4: Configuration as a local notion
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Figure 5: Spider spinning a web

New material is laid in a stressed state. It can have a
different natural configuration than the material laid down

previously.
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e Restrict ourselves to homogeneous deformation.

e Think in terms of Global configurations.

Figure 6: Non-uniqueness of stress-free state (Modulo rigid motion)

e More than one Natural Configuration can be associated

with the current deformed configuration .

e Example: Consider a Viscoelastic body capable of

instantaneous elastic response K.

— Natural Configuration reached by instantaneous

unloading—An adiabatic process.

— Natural Configuration reached in an isothermal

stress-relaxation process.

e Thus, we need to know the process class under

consideration.
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The Eshelby Energy-Momentum tensor is one of the various
driving forces that arise as a natural consequence of a

body’s ability to exist in more than one natural configuration.

There is no need to postulate additional balance laws and
introduce quantities that appear in such laws that have never

been measured.

“Configurational forces” are related to the energy supply that

changes the “natural configurations”.

Natural Config. 2
/J,//////> Stress Free
Natural Config. 1
!
|

Stress Free

-

Energy

These forces provide only partial information concerning the
process a body is subject to. They provide no information

concerning the entropy production.
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Q : Can the viscosity of a fluid depend on the

pressure?

A : Yes.

Q : Is it reasonable to assume that a liquid is
Incompressible and its viscosity depends on

the pressure (normal stress)?

A : Yes.
Density changes in liquids in certain
applications(wherein the pressure (normal
stresses) changes by several orders of
magnitude) are of the order of a few percent,
while the viscosity changes by factor of
107-10% 1!
- Elastohydrodynamic Lubrication
Szeri (1998)



Digression: Consider the sliding of a rough block on a

frictional plane surface.

Ffrictional

Ffrictional . ﬂ'N (11)

Frictional force definitely depends on the normal force for
solids. Why should it be any different for fluids?



Coulomb’s erroneous conclusions on the basis of

his experiments:

Surface of the

\/_\/“(f Pacific Ccean

——___Adiacent layers
near the lop

~—___ ‘Adjacent layers
near the bottom
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All fluids are compressible:
e J.Canton (1762),(1764)
e J. Perkins (1819-20),(1826) ~ 100kg/cm?

e J. Jamin (1857-58). How optical properties

change with pressure.

e E. Wartman (1859): How electrical resistance

changes with pressure
e L. Cailletet (1870-1880) ~ 1000kg/cm?
e E. H. Amagat (1869-1893) ~ 3000kg/cm?
e G. Tammann (1893-1928)
e P.W. Bridgman (1909-1930)

e E.C. Andrade (1925-1931).

However many liquids can be approximated as
iIncompressible, even when subject to a large
range of pressures.

~——
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e W.G. Cutler et al., (1958).

e E.M. Griest et al., (1958).

e D. Dowson (1966)

e K.L. Johnson and R. Cameron, (1967).

e J.B. Irving (1971)

e K.L. Johnson and J.A. Greenwood, (1980).
e K.L. Johnson and J.L. Tevaarwerk, (1977).
e T.\W. Bates et al., (1980).

e J.H. Hutton et al., (1983).

e A.Z. Szeri, (1998)

e J.A. Greenwood (2000)

e S. Bair and F. Qureshi (2002).

e S. Bair and F. Qureshi (2003).

e S. Bair (2004)




Barus (1891)

1 = Aexp(ap), o — constant, o > 0. (12)

Andrade (1930)

u=Apteap |(p+p’r) 7| (13)

p - density, p - pressure, 6 - temperature.
A, r, s - constants.

There has been a considerable amount of experimental work

on the variation of the viscosity with pressure for liquids.
Bridgman (1931): The Physics of High Pressure.

Bridgman (1926): The effect of the pressure on the

viscosity of forty three pure liquids.



Table 6. Influence of pressure on the stiffness of different asphalty at temperatures between 20°C and 60°C

Asphalt Pressure P, Wtﬂi“ '
Origin Type Pen/  Temp  PL  Asphaltenes, 0 100 200 300 400 500
25°C R&B, Yo wit
o StifTfoess at pressure P
Measuring temp, °C Stiffness at pressare P=0
Borneo Newton 47 47 -22 1.2 25.0 1 4.0 13 45 167 597
-ian 40.0 1 - - 20 59 170
type 49.0 1 22 58 15 31 %
Califonia  Sol type 54 48 ~18 5.1 20.0 1 25 66 17 44 15
40.0 1 2.1 4.5 9.2 19 40
49.4 1 1.3 37 7.1 14 27
Venczuela  Sol type 44 55 -03 15.5 209 1 22 49 11 24 s
30.0 1 2.0 42 8.5 I8 36
40.0 | 19 3.6 7.0 14 26
50.0 1 13 31 5.5 10 19
Venezuela Gel 35 B6.5 +4.4 89 60.0 1 L7 30 52 9.1 16
(blown) Type

From: R. N. J. Saal and J. W. A. Labout, Rheological Properties of Asphalts, in Rheology: Theory and Experiments, Vol |l
F. R. Eirich (ed.), Academic Press, New York, 363-400.




Stokes recognized that the viscosity can depend on the

pressure for incompressible liquids:

“If we suppose L to be independent of pressure also, and

substitute ...

“Let us now consider in what cases it is allowable to suppose
[ to be independent of the pressure. It has been concluded
by Du Buat from his experiments on the motion of water in
pipes and canals, that the total retardation of the velocity
due to friction is not increased by increasing the pressure... |
shall therefore suppose that for water, and by analogy for
other incompressible fluids, p is independent of the

pressure.’

Du Buat, Principes D’Hydraulique Et De Pyrodynamique,
Didot, 1786.




Some related questions:

Q: Can the material moduli depend on the Lagrange

multiplier?

A: Yes.

T = —pIl + ;D + d»,D?, (14)

P

&; =&; (p, IIp,IIIp). (15)

Q: Does the constraint response do no work? (D'Alembert,

Bernoulli, Lagrange).

A: It is not correct to make such an assumption. Moreover, it

depends on what one means by the constraint response.



Let us consider the constraint that a block moves on a planar

rough surface.
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-
— ; Friction
Rough Surface G
Ffriction . /JN* (16)

While the normal reaction /N does no work, the frictional
force ;1N does work. The force 11/V is also a consequence
of the constraint, and it reflects the word rough that appears
in the description of the constraint. In any event the work

done depends on V.




Boundary Conditions:

Daniel Bernoulli (Hydrodynamica): “| attribute
these enor.rho-us differences to the adhesion of
water to the walls of the tube, which, in cases of
this kind, can exert an incredible effect by

adhesion.” (Translation due to P. Villagio)

Du Buat (1786) ... no-slip.

Navier (1823) . .. slip (molecular arguments).
Girard

Poisson

Stokes

Fujita
Tani



Goldstein (1981):

We now restrict ourselves to systems for which the net
virtual work of forces of constraint is zero. We have seen that
this condition holds for rigid bodies and it is valid for a large
number of other constraints. Thus, if a particle is constrained
to move on a surface, the force of constraint is perpendicular
to the surface, while the virtual displacement must be
tangent to it, and hence the virtual work vanishes. This is no
longer true if sliding friction forces are present, and we must

exclude such systems from our formulation.




Gauss (1829 - Translated into english and published in the
Philosophical Magazine in 1841): “ The motion of a system
of material points connected together in any manner
whatsoever, whose motions are modified by any external
restraints whatsoever, proceeds in every instance in the
greatest possible accordance with free motion, or under the
least possible constraint; the measure of the constraint
which the whole system suffers in every particle of time
being considered equal to the sum of products of the square
of the deviation of every point from its free motion into its
mass. Let m, m’, m" & c. be the masses of the points a,
a’, a’ & c. their places at time ; b, b/, b” & c. the places
which they would occupy if entirely free in their motion after
the infinitely small particle of time dt, in consequence of the
forces acting upon them during this time, and of the
velocities and directions acquired by them at the time 7.
Their real places ¢, ¢, ¢’ & c. will then be those of which of
all places compatible with the conditions of the systems the
quantity m(bc)? +m’(b'c’)? +m” (b"c")?&c. is a

minimum.




The equilibrium is evidently a particular case only of the
general law, and the condition for this case is, that

m(bc)? +m/ (b'c)? +m” (b'c")*&ec. itself is a
minimum, or that the continuance of the system in a state of
rest more accords with the free motion of the single points

than any possible change the system could undergo.”

SIMPLY PUT: The constraint force ought to be the least

force to enforce the constraint.

Rajagopal & Srinivasa, Proc. Roy. Soc. London (2004):

Implications for Continua.

Rajagopal, Applications of Mathematics (2003): Constraints

and their consequences for implicit constitutive theories.




e Dettmann and Morriss (1990)
e Evans and Morriss (1990)

e O'Reilly and Srinivasa (2001)
e Udwadia and Kalaba (2002)

e Carlson, Fried and Tortorelli (2003) —

Holonomic Constraints

® Rajagopal and Srinivasa (2004) —

Non-Holonomic Constraints




There are several liquids that can shear thin or
shear thicken. For such liquids, when subject to a
high range of pressures, the viscosity would also
depend on the pressure. It would thus be

reasonable to consider models of the form:

T = —pl+ 2u(p,|ID*)D, (A)

with trD = 0. Thus p = —%trT and (A) takes the

form:

£(T,D) = 0.
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