Stablility and Interaction of Vortices
In two-dimensional viscous flows

Th. Gallay (Université Joseph Fourier, Grenoble)

(Merging of a pair of co-rotating vortices: pictures by P. Meunier, IRPHE, Marsellle)



Overview

The goal of these lectures is to present a few mathematical results which
illustrate the role of vortices in the dynamics of two-dimensional incompressible
viscous flows. They will be organized as follows :

1)

2)

3)

4)

The Cauchy problem for the 2D vorticity equation:
General properties of the vorticity equation; nonsmooth initial data;
local existence in critical spaces, obstructions to uniqueness.

Self-similar variables, Lyapunov functions, and long-time behavior:
Oseen vortices, similarity variables, compactness, Liouville’s theorem.

Asymptotic stability of Oseen vortices:
Structure of the linearized operator at Oseen’s vortex;
spectral gap, pseudospectral estimates, spectral asymptotics.

Interaction of vortices in weakly viscous flows :
Phenomenology of vortex interactions; the inviscid limit in presence of point
vortices, the viscous N -vortex solution.



Headlines of Lecture 1
The Cauchy problem for the 2D vorticity equation

The two-dimensional Navier-Stokes and vorticity equations
Classical estimates for the Biot-Savart Kernel

General properties of the 2D vorticity equation : conservation laws,
Lyapunov functions, scaling invariance

The Cauchy problem in L!(R?)

Finite measures, canonical decompositions

The Cauchy problem in M(R?) (small atomic part)
Heat kernel estimates, control of the nonlinearity
The Cauchy problem in M(R?) (general case)



The Two-Dimensional Navier-Stokes Equations

We consider the incompressible Navier-Stokes equations :

ot p (NS)

{ O 2, + (u(a. 1) - Vyu(e, 1) = vidu(a,t) - ~Vp(a, )
divu(xz,t) = 0,

where x € R? is the space variable, t > 0 is the time, and

o u(x,t) = (ui(z,t),uz(z,t)) € R? is the velocity field;
e p(x,t) € R is the pressure field;

e v > 0 is the kinematic viscosity;

e p > 0 is the fluid density.

Eqg. (NS) is an idealized model for real 3D flows, which is appropriate in some
limiting situations (flows in thin domains, geophysical flows, stratified flows).



The Two-Dimensional Vorticity Equation

In our simple setting, the Navier-Stokes equation is most conveniently written
In terms of the vorticity field :

w(x,t) = Orus(x,t) — Oour(x,t) € R,
which satisfies the following advection-diffusion equation:

%—i(x, t) +u(z,t) - Vw(x,t) = vAw(x,t) . (V)
The velocity field can be reconstructed from the vorticity by solving the elliptic
system 0,u; + Osus = 0, Ojus — Ooup = w. Under mild assumptionsT, the
unique solution is given by the Biot-Savart formula

w(zt) = — / (@ =9 0 dy (BS)

27 R2 |x—y\2

t For instance, if w/(1+ |z|) € L*(R?) or w € L?(R?) for some p < 2.
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Classical Estimates for the Biot-Savart Kernel

Lemma 1 Assume that w € LP(R?) for some p € (1,2). Then the velocity
field v given by (BS) satisfies:

1) (Hardy-Littlewood-Sobolev bound)

)
| =
DO | —

1
|ul|par2y < Cllw||rrmwey, wWhere -

ii) (Calderon-Zygmund bound)

|Vul|prrey < Cllwllpeme) -

Estimate 1) follows from the HLS (or weak Young) inequality, since
K(z) = — ——  satisfies K ¢ L**°(R?) .
Estimate ii) follows from CZ theory since VK is homogeneous of degree —2.
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General Properties of the 2D Vorticity Equation

|. Conservation laws
Let w(x,t) be a solution of the vorticity equation (V) with initial data wy .

e Total circulation: If wg € L'(IR?), then
/ w(z,t)dr = / wodz , forall t>0.
R2 R2
e First order moments: If (1 + |z|)wo € L*(R?), then

/xiw(a:,t)dx:/ riwgde, forall t>0, i=1,2.
R2 R2

e Symmetric second order moment: If (1 + |z|*)wg € L*(R?), then

z)?w(z, t)dz = |z|*wo dzz + 4Vt/ wodx, forall t>0.
R2 R2 R2



lI. Lyapunov functions

e P norms: If wy € LP(R?) for some p € [1, 0], then

||Cd(t)HLp < ||Cd()HLp , forall ¢ > 0.

e Pseudo-energy: Let

1 d
fut) = o= [, tos vl e(y. 0 dady.
ZX 2

where d > 0 is an arbitrary length scale. Then

a) &E,(t) = _V/R? w(z,t)*de < 0

b) E£4(t) = % [ (.0 ds = B() i u(1) € L2(R?),

Remark: If v € L?(R?) and w € L*(R?), then necessarily | wdz = 0.
R2



lIl. Scaling invariance
Solutions of the Navier-Stokes equations are invariant under the rescaling

u(x,t) — du(Az, \*t) | or  w(x,t) — Nw(z, \*t) ,
forany A > 0. Possible scale invariant or critical function spaces are:

a) u e CP(Ry, L*(R?)), with [Ju|| = sup ||u(t)| > (energy space);
t>0

b) w € CY(Ry, L'(R?)), with [lw]| = Sup lw(®) I -

General principle : “For a scale invariant nonlinear PDE, critical spaces are the
largest spaces, in terms of local regularity of the solutions, in which we can
hope that the Cauchy problem is locally well-posed”.

In the rest of this first lecture, we discuss the Cauchy problem for the 2D
vorticity equation in two different critical spaces: L'(R?) and M(RR?).



The Cauchy Problem for the Vorticity Equation (1)

Theorem 1 (Giga, Miyakawa & Osada 1988, Ben-Artzi 1994)

For all initial data wy € L'(IR?), the vorticity equation (V) has a unique global
solution

w € C°([0,00), L' (R?)) N C°((0, 00), L>(R?)) .
Moreover ||w(t)|r: < |lwol|lr: forall t >0, and
o / w(x,t)de = / wo(x)dx forall ¢t > 0;
R2 R2

Cp

tl—l/p

o [|w(t)|rr < |lwollz1, forall t >0 and all p € [1, 00].
The proof uses classical ideas which go back to Fujita & Kato (1964). The mild

solution w(x,t) is smooth for t > 0 and depends continuously on the initial
data wg, uniformly in time on compact intervals.

Theorem 1 is in fact subsumed by Theorem 3 below.
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The Space of Finite Measures

Let M(IR?) be the space of all real-valued Radon measures on R?, equipped
with the total variation norm

ellew = sup{ / o] o€ Co®)., i~ < 1} |

e M(R?) is a Banach space, containing L'(R?) as a closed subspace;
if we LY(R?), then ||wlew = ||w||L:.

e The total variation norm is scale invariant.

o M(R?) = Cy(R?)" is the tolopogical dual of the space of all continuous
functions vanishing at infinity.

e The unit ball in M(RR?) is compact for the weak convergence defined by :

[y —— o if / odu, — odp forall ¢ € Cy(R?).
R2

n—oo n—aoo RQ
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Decomposition of a Finite Measure

Any finite measure p € M(R?) can be decomposed as follows:

1) Lebesgue decomposition: p = pi4e + s, Where
e /i, IS absolutely continuous with respect to Lebesgue’s measure;
e 11, IS singular with respect to Lebesgue’s measure.

Furthermore, f1,.(E) = [, wdx for some w € L'(R?) (Radon-Nikodym).

2) Atomic decomposition: ps = fse + ppp, Where

pop = nls = S aide,, and % = {z e R |u({a}) £0}
1=1

Finally 1 = piae + ttse + tipp, With pige L pise L iy, . In particular,

llle = Miacller +llsellev + lapp o = Nwller +lipseller + 2 leal

1=
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Typical Examples of Nonsmooth Flows

Vortex patch Vortex sheet Point vortices
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The Cauchy Problem for the Vorticity Equation (2)

We start with a preliminary result that is relatively easy to prove.

Theorem 2 (Giga, Miyakawa & Osada 1988, Kato 1994)

There exists a universal constant Cy > 0 such that, if the initial vorticity
€ M(R?) satisfies |||ty < Cov, then the vorticity equation (V) has a
unique global solution

w € CY((0,00), L' (R?) N L (R?))
such that ||w(-,t)||r1 < ||p||tv forall ¢t >0, and w(-,t) =~ past— 0.
The smallness condition |||t < Co v inevitably arises if one tries to prove
uniqueness of the solution by a standard application of Gronwall’'s lemma. This
restriction is technical, however, and can be completely relaxed (see below). It

IS automatically fulfilled if the initial measure is non-atomic, so that Theorem 2
implies Theorem 1.
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Sketch of the proof of Theorem 2

We assume that v = 1 without loss of generality. Given p € M(RR?), we
consider the integral equation associated to (V) :

t
w(t) = e pu — / div (e(t_S)A u(s)w(s)) ds, t>0, (IE)
0
where ¢t2 denotes the heat semigroup defined by

(e p)(z) = —

= — [ elemulP/an) g t>0 R? HS
47Tt R2 € /’I/y Y > Y X E ° ( )

Our goal is to solve the integral equation (IE) by a fixed point argument in
an appropriate function space. This is a classical idea which goes back, in
the Navier-Stokes context, to Fujita & Kato (1964). Once such a mild solution
IS obtained, standard regularity arguments imply that the solution w(z,t?) is
smooth for ¢ > 0 and satisfies (V) in a classical sense. Similarly, the velocity
field u(x,t) given by (BS) satisfies (NS).
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Heat kernel estimates

Lemma2 Let u € M(R?).
a) For 1 <p<oocandt >0, we have

| C
le®pllr < ) el ,  IVePpullr < 71 e
T p p

b) For 1 < p < oo, we have

. _1
Ly() = Timsup (47)'F e s < lappllor

Estimates a) follow easily from (HS) and Young’s inequality. Estimate b) is due
to Giga, Miyakawa & Osada, and was strengthened by Kato in this way :

: 1 _ >
lim (47t)" "7 [ pll 2o = p VP }2 ller < 3 oy,
i=1

t—0

where p,,, = Z;’il a; 0, . The assumption p > 1 is of course crucial.
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Digression 1 : Proof of Lemma 2.b

e In view of Lemma 2.a, SiNCe 1 = e + se + tpp , It 1S SUfficient to show that
L,(nw)=01if p>1and u,, =0.

o AS Ly(1t) < La(10)/? Loo (1)~ /7 < ||al|17 Lo (12)*~1/7, we only need to
consider the case where p = .

e Assume that u € M(R?) satisfies u,, = 0, and fix € > 0. Then there exists
6 > 0 such that

sup |p|(B(x,0)) < e, where B(z,8) = {y e R*||ly — x| <} .
rER?

e Forany ¢ > 0, take z(t) € R? such that |(e!®pu)(z(t))| = ||e*® ||z~ . Then

lz(t)—yl? <t> y|? lz(t)—yl? <t> y|?
wtleplpe < [ e HEE g, [ g,
B(z(t),9) B(z(t),0)°

The first term is bounded by ¢ for all ¢ > 0; the second one vanishesas t — 0.
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Sketch of the proof of Theorem 2 (continued)

The easiest existence result is obtained using the function space
Xp = {w e C°((0,T), L*(R)) | |wllx, < o0} .
where T > 0 will be fixed later and

lwllx, = sup t"*|w(t)]las -
0<t<T

A. Estimates for the linear term in (IE):

By Lemma 2, there exist positive constants C;, Cy such that, for any measure
1 € M(RR?), the linear solution wy(t) = €2y satisfies::

o [[wollx, < Cyllplley forany T > 0;
o [|wollx; < Collpppllty + € if T'> 0 is small enough, depending on .

Here ¢ > 0 Is an arbitrary positive number.
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B. Estimate for the integral term in (IE) :
Given w € X, we define Fw € X by

(Fw)(t) = /O t div(e(t_s)A u(s)w(s)) ds, 0<t<T.

Then
4 (Fw) ()] Lass

t C

< t1/4/ ] Hu(s)w(S)HL1 ds (Heat kernel estimate with derivative)
o (t—s)2T1
LoC

< 1/4/ 3 HU(S)HLZLHW(S)HIA/?, ds (Holder’s inequality)
0 (t—s)a
Lo

< 1/4/ = [|w(s)||74/5 ds (HLS bound for the BS law)
0 (t—s)
2 1/4 ' C 2

< Cllolfk, 4| 5 rds < Cllolf, -

0o (t—s)isz

19



Summarizing, there exists a positive constant ('3 such that

|Fwllx, < Csllwllx,

. . . (NL)
|Fw = Follx, < Cs(llwlxs + [[@llxs)[lw = @l x7 -

C. The fixed point argument :
Fix R > 0 such that 2C5R < 1, and consider the closed ball

B = {we Xr||wlxs <R}

If ||wollx, < R/2, the map w — wy — Fw is a strict contraction in B, hence
has a unique fixed point there. Three situations can occur :

1) If 2C ||u|l+v < R, then T > 0 can be chosen arbitrarily large :
global well-posedness for small data.

2) If 2C5 || pipp|ltv < R, then T > 0 must be small enough, depending on p :
local well-posedness for large data with small atomic part.

3) If ||upplltv IS large, the argument breaks down.
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D. Concluding remarks :
e A more appropriate space for continuing the solutions is

Y, = {w e C0((0,T], LY(R?) N L>®(R?)) ‘ lwlly, < oo} |

equipped with the norm ||w||y, = sup |w(t)||zr + sup t|w(t)| re-.
0<t<T 0<t<T
e As before, one has local existence and uniqueness in Yz if ||z, |/« < Co.
The local solution satisfies

lim (Jlw(t) = " pll g1 + tle(t) = e pl=) = 0.

In particular ||w(t)||.1 < ||p|ltv forall t >0, and w(t) — p as t — 0.

o If |u||Lr < R for some p > 1, the local existence time T'= T'(;1) is bounded
from below by a positive constant depending only on p and R.

e Since the LP norm of any solution is nonincreasing with time, we conclude
that any local solution can be extended to a global solution.
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Digression 2 : Short Time Behavior of Mild Solutions

Given p € M(R?) with ||y |ltv < Co, let wo(t) = et~ and let w € X7 be the
unique local solution of the integral equation w = wyg — Fw. We define

¢ = limsup t/4|w(t) — wo(t)| pass = limsup ||lw — wol x, -
t—0

T—0
Since w — wy = (Fwyg — Fw) — Fwy and F satisfies (NL), we easily obtain

¢ < (2C3R)l + £y, where /¢y = limsup || Fwol x, -
T—0

To prove that ¢ = 0, it is therefore sufficient to show that ¢, = 0. This is done
In two steps:

e As in the proof of Lemma 2.b, one proves that ¢/, = 0 If 1 IS hon-atomic.

e If 1 Is a finite sum of Dirac masses, an explicit calculation (taking into
account the fact that self-interaction terms vanish) shows that /; = 0 too.

Finally, £ = 0 implies that ||w(t) — wo(t)||pr — 0 as t — 0.
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The Cauchy Problem for the Vorticity Equation (3)

The restriction ||u,,|ltv < Co v in Theorem 2 is technical and can be removed:

Theorem 3 Given any finite measure u € M(R?), the vorticity equation (V)
has a unique global solution

w € C°((0,00), L*(R?) N L*®(R?))
such that ||w(-,t)||r1 < ||p||tv forall t >0, and w(-,t) =~ past— 0.

Global existence for any u € M(RR?) can be proved by approximation :

— G.-H. Cottet (1986)
— Y. Giga, T. Miyakawa & H. Osada (1988)
— T. Kato (1994)

Uniqueness without smallness assumption was obtained in two steps:

— ThG & C.E. Wayne (2005) : the case of a single Dirac mass
— |. Gallagher & ThG (2005) : the general case
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Headlines of Lecture 2
Self-similar variables, Lyapunov functions, and long-time behavior

Radially symmetric solutions of the vorticity equation
The Lamb-Oseen vortices, elementary properties

A gobal convergence result

The vorticity equation in self-similar variables
Compactness properties

Liouville’s theorem

Sketch of the proof of Theorems 3 and 4

Open gquestions
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Radially Symmetric Solutions of the Vorticity Equation

We consider again the two-dimensional vorticity equation

Ow(x,t) +u(zx,t) - Vw(x,t) = vAw(x,t) , (V)
where the velocity field u(x,t) is given by the Biot-Savart formula
L [ (z—y)~
t) = — t)dy . B
wat) = 5o [ U dy (BS)

If the vorticity w(x, t) is radially symmetric , it follows from (BS) that the velocity
field u(x,t) is azimuthal:

- Vuo=0 = z-u=0.

In that case « - Vw = 0, hence the vorticity equation (V) reduces to the linear
heat equation d;w = vAw. In particular, radial symmetry is preserved under
the evolution defined by (V).
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The Lamb-Oseen Vortices

If 1 = adg, the unique solution of (V) is the Lamb-Oseen vortex:

w(x,t) = %G(%) : u(x,t) = %UG(\/%) :

where the vorticity and velocity profiles are given by

G(§) = %6_“5'2/4, v9(E) = % é%(l —e_|5|2/4> .

The parameter o € R is called the total circulation of the vortex.
Streamlines of an Oseen vortex
with positive circulation number «
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Elementary Properties of Oseen Vortices

Oseen vortices are self-similar solutions of the vorticity equation (V).

The vorticity profile G (&) is radially symmetric, positive, and has Gaussian
decay at infinity.

Oseen’s vortex with o = 1 is the fundamental solution of the heat equation.
The velocity profile v&(¢) is azimuthal and satisfies

1

v“(0) =0, 09 (&)] ~ orle|

as ¢ — o0

In particular v“ ¢ L2(R?), hence Oseen vortices have infinite energy for all
a # 0.

By Theorem 3, Oseen vortices are the only self-similar solutions of the
Navier-Stokes equation in R? whose vorticity profile is integrable.

Remark: Following Cannone and Planchon (1996), one can construct
many (small) self-similar solutions for which v € L*>, but w ¢ L*(R?).
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A Global Convergence Result

Theorem 4 (ThG & C.E. Wayne, 2005)
For all initial data . € M(RR?), the solution w(x,t) of (V) satisfies

lim H (x,t) ——G(

t— o0

— = 0, where a:/ du .
i)l 8

Some important consequences:

e Oseen vortices are the only self-similar solutions of the Navier-Stokes
equation in R? for which the vorticity profile is integrable.

e Oseen vortices are (globally) stable for all values of the circulation Reynolds
number a/v. No hydrodynamic instabilities appear for large «.

Further developments:
e EXplicit convergence estimates: ThG & L.M. Rodrigues (2007)
e Intermediate asymptotics : Caglioti, Pulvirenti & Rousset (2009)
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The Self-Similar Variables

Given zy € R?, to > 0, we introduce the self-similar variables

T — X t
= : T = lo <1+ —) .
< Vv(t+to) ¥ to

The vorticity and velocity fields are transformed as follows::
1 T — T t
w(x,t) = w , 1o <1+—) :
(@) t+to <\/V(t+to) g to >

u(z,t) = ‘/H”t0 v (Vi(tfoto) | log(1+ %)) .

The rescaled vorticity w(&,7) and velocity v(&,7) are now dimensionless
guantities, as are the space variable ¢ and the time variable 7. Moreover, the
velocity v(&, 7) is still obtained from the vorticity w(&, 7) by the Biot-Savart law
(BS). If w(&) = aG (), then w(x,t) is Oseen’s vortex with circulation a = av.

(SSV)
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The Vorticity Equation in Self-Similar Variables

If w(x,t) is a solution of (V), the rescaled vorticity w(&, ) defined by (SSV)
satisfies the rescaled vorticity equation:

ow
or

The initial data of both systems are related through

w(£,0) = tgw(zo + EVrtg,0), € cR?.

+v-Vew = Agw+ - f Vew+w . (RV)

Given any wg € L'(R?), Theorem 1 shows that (RV) has a unique global
solution w € CY([0, 00), L(IR?)) with initial data wq. The L norm ||Jw(7)||1: is
nonincreasing with time, and the circulation number is conserved:

a = /RQw(f,T)dfziflR{Qw(a:,t)dx, t,T1>0.

For any a € R, Oseen’s vortex w = aG' IS a stationary solution of (RV).

30



Compactness Properties

Positive trajectories of (RV) in L!(IR?) are not only bounded, but also compact:

Lemma 3 For any wy € L'(R?), the solution {w(7)},>¢ of (RV) with initial
data wy is relatively compact in L'(RR?).

As is clear from Theorem 4, this is not true for the original equation (V). The
essential difference is that, in the rescaled system (RV), the Laplacian in the
right-hand side has been replaced by the Fokker-Planck operator

1
L=A+6 V1.

The explicit formula for the associated semigroup

_ —7/212
(L) (€) = 47;(7) / exp(-E e Dwo(mdn. R, 7> 0.

where a(7) = 1 — e~ 7, shows that e~ is asymptotically confining. Compact-
ness results from confinement and parabolic regularity.
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Liouville’s Theorem

In contrast, negative trajectories of (RV) in L!(R?) are usually not compact,
but those which are compact have a simple characterization:

Proposition 1 If {w(7)},cr IS a complete trajectory of (RV) which is relatively
compactin L' (R?), then there exists a € R such that w(r) = aG forall 7 € R.

Proposition 1 can be proved using two Lyapunov functions:

e The L' norm &(w) = ||w|| 1, which is strictly decreasing except along
constant-sign solutions;

w(§) log (%) d¢

which is defined for positive solutions, and stationary along Oseen vortices:

%H(w) — —/ng‘wog(%)fdg.

o The relative entropy H(w) = /
R2
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By assumption, the solution w(7) in Proposition 1 satisfies

Lt Lt
A —— w(r) — Q,
T——00 T— 00

where A C L'(R?) is the a-limit set and Q c L'(R?) the w-limit set of w.

1. Using the first Lyapunov function

By LaSalle’s principle, A and €2 consist of constant-sign functions. Since the
total circulation & is conserved, we infer that ® = |a| on both 4 and Q. As ®
IS a Lyapunov function, we must have ®(7) = |a| for all 7 € R, which in turn
implies that w(7) has constant sign for 7 € R.

2. Intermediate step
If & = 0, we are done. Otherwise, replacing w(&1,&2,7) by —w(&s,&1,7) if
needed, we can assume that a > 0, hence the solution w is strictly positive.

3. Using the second Lyapunov function

From LaSalle’s principle and the conservation of the total circulation, we infer
that A = Q = {aG}. It follows that H(7) = alog(a) for all 7 € R, which
implies that w(7) = aG forall 7 € R.
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Sketch of the Proof of Theorems 3 and 4

Applying Proposition 1 to the w-limit set of any trajectory of (RV), we find

Corollary 1 For any initial data w, € L!(IR?), the solution of (RV) satisfies
lw(r) — GGl —— 0, where & = / wo de
T—00 R2

Returning to the original variables, we obtain Theorem 4. On the other hand,
using Proposition 1 and classical estimates on the fundamental solution of
advection-diffusion equations, due to H. Osada, we arrive at

Corollary 2 Assume that w € CY((0,00), L'(R?*) N L>°(R?)) is a solution of
(V) satisfying ||w(t)||,r < C forall t >0 and w(t) — adg as t — 0. Then

w(x,t) = %G(\/%_t), reR?, t>0.

This proves unigueness in Theorem 3 in the important case where p = adg.
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Open questions (Lectures 1 and 2)

1. Assume that w € C°((0,7),L'(R?) is a weak solution of (V) which is
uniformly bounded in L!(R?). In the L' framework, the nonlinear term can be
interpreted as follows :

/RQ plu-Vew)d /R/R \x_y|2 (Vo(y) — V() w(z)w(y) de dy .

Then w(-,t) converges weakly to some measure i € M(R?) as t — 0. Is the
solution w(x,t) uniquely determined by its trace y att =07

2. Can one prove the analog of Theorem 3 in bounded domains, with nonslip
boundary conditions ?

3. Can one prove the analog of Theorem 4 in exterior domains, with nonslip
boundary conditions ?
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Headlines of Lecture 3
Asymptotic Stability of Oseen vortices

The linearized operator at Oseen’s vortex

Spectral stability of Oseen vortices

Local stability of Oseen vortices

Characterization of the kernel

Spectral asymptotics for large circulation numbers, numerical results

A semiclassical model problem, spectral and pseudospectral estimates
The stabilizing effect of fast rotation

Formal asymptotic expansions

Open gquestions
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Linearization at Oseen’s Vortex

Setting w = aG + w0, v = av® + v in (RV), we obtain the perturbation equation
- +0-Vi = (L —al)w, (PE)
where
L = Aw+%g-vw+w, A = 0% -V +9-VG .

Here v = K % w Is the velocity field obtained from w via the Biot-Savart law
(BS). From now on, we write w, v, « instead of w, v, @, and we consider the
semigroup generated by the linearized operator £ — aA.

Function space: We introduce the Hilbert space X = L*(R?* G~1d¢) with
scalar product

wr,ws) = [ GO wa(€ wale)de

Functionsin X have Gaussian decay at infinity, and X — LP(R?) for p € [1,2].
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Structure of the Linearized Operator (1)

Observation 1: The operator £ is selfadjoint in X = L*(R?* G~1d¢) with
compact resolvent and purely discrete spectrum

n

o (L) = {—5 n:o,1,2,...}.

Indeed, if we conjugate £ with the Gaussian weight G'/2, we obtain the
two-dimensional harmonic oscillator

L=grpayr = a - K0 41
16 2
In particular LG =0, and £9;,G = —19,G for i = 1,2.
Observation 2 : The operator A is skew-symmetric in the same space::
(Awq , wa) + (w1, Aws) = 0, forall wy,wy € D(A) C X .

(ThG & C.E. Wayne 2005, Y. Maekawa 2007).
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Digression 3: Proof of Observation 2

Let A = Ay + Ay, where Ajw = v° - Vw and Asw =v - VG = (K xw)-VG.If
wi,we € D(A) C X, then

(Mwr, wa) + (wr, Aywz) = / G (’w2 0% - Vawy 4wy v - ng) d¢

RQ

= / G_l ’UG V(wlwg)df = 0,
R2

because G~ 'v% is divergence-free. Moreover, since VG = —%gG, we have
1
<A2’w1,’w2> + <w1,A2w2> — —5/ ((f ' ’01)’w2 + (f ' ’02)w1) d§
R2

/Rg /RQ{ ‘5 77‘2 - (|Z:§7)|:}wl(n)w2(€) dnd¢ = 0.

Thus (Awq,ws) + (wq, Aws) = 0 for all wy,w, € D(A) C X.
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Structure of the Linearized Operator (2)

Observation 3: The operator A is relatively compact with respect to £, in the
space X. For any a € R, the spectrum of £ — aA is thus a sequence of
eigenvalues {\;(«) |k € N} with

Re (A\x(a)) — —oc0 as k — oo.

Observation 4: The following subspaces of X are left invariant by both
operators £ and A :

Yo = {w€X|/Rde£:O} = {G}*,

Y, = {w cYy| | guwde=0fori= 1,2} = {G;0,G;0,G}* |

RQ

Yo = {w cY; EPwdé = O} = {G;0:G; 0,G; AG} ™+ .

RQ
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Spectral Stablility of Oseen Vortices

Proposition 2 (ThG & C.E. Wayne 2005)
For any a € R, Oseen’s vortex w = a( Is spectrally stable in X :

o(L — ah) C {z€C|Re(z)§O}.

Moreover, .
o(L — ah) C {zECC Re () < —5} n Yy

o(L —al) C {zEC Re(z)g—1} n v, .

Proof: If (£ — aA)w = \w for some normalized vector w € D(L) C X, then
Re(A) = Re{((£L — aMN)w,w) = (Lw,w) < 0.

Moreover (Lw,w) < —1/2 if w € Yy, and (Lw,w) < —1 if w € Y7.

41



Local Stability of Oseen Vortices

Corollary 3 (Linear stability) For all o € R, we have

leT e Mz < e, T>0,
where p=0ifZ=X,pu=1/2ifZ=Yy,and p=11f Z =Y.
Returning to the perturbation equation (PE), we obtain:

Corollary 4 (Local stability) Forany p € (0,1/2), there exists £ > 0 such that,
if wy € X satisfies wy — aG € Yy and |lwy — aG|| < ¢ for some «a € R, then
the unique solution of (RV) with initial data w, satisfies

|w(T) — aG|| < ||lwg—aG|le ™, 7>0.
If moreover wy — aG € Y7, then ||w(r) — aG| < |jwy — aG| e~ t2)7 + > 0.

Remarkably, the size of the (immediate) basin of attraction of Oseen’s vortex
aG Is uniform in a € R.
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The Kernel of the Skew-Symmetric Operator

Observation 5: For any m € N we define the subspace X,, C X by
X,, = {w c X ‘ W(E) = ap () cos(mB) + by () sm(me)} |
where ¢ = (rcosf,rsinf). Then X,, is left invariant by both £ and A, so that

X= o X,, L=&L,, A= @A\,.
meN meN meN

Observation 6: (Y. Maekawa 2007)
ker(A) = Xo @ {B101G + 202G | B1, 82 € R} .

Numerical observation: (A. Prochazka & D. Pullin, 1995)
In the invariant subspace ker(A)=+, the real parts of all eigenvalues of £ — oA
behave like —C|a|'/? as |a| — co.
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Eigenvalues of —L 4+ aA in X; as a function of |«

(real parts only, log-log plot)
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The Stablilizing Effect of Fast Rotation

Let X, denote the orthogonal complement of ker(A) in X.

Proposition 3 (Y. Maekawa 2007) Let

o1 (a) = 0<(£—aA) ) . and 2(a) = sup{Re (z)|z c JL(a)} .

X
Then ¥(a) — —x as |a| — .

The proof is done by contradiction: assuming that >(«,,) stays bounded for
some sequence |a,,| — oo, and using compactness arguments, one constructs

a normalized vector w € X | such that Aw = iuw for some p € R. This is
Impossible, because it can be proved that

g(A) = iR, and o,(A) = {0} .

This approach cannot give any precise estimate of >(«) for large |«].
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A Semiclassical Model Problem

We consider the differential operator
H = -3+2>+~f(z), z€R, (+)
€

where f: R — R is a smooth Morse function satisfying, for some £ > 0,

1
f(x) ~ BE as |r| — o00o.

Relation to the Navier-Stokes problem: if A = v¢ -V denotes the local part
of the skew-symmetric operator A, the restriction of £ — aA to the subspace
X, C XIS

1
272

Ly, —imap(r), where ¢(r) = (1— e_r2/4) , 7>0.
This is of the form (%) with e = o~ and f = ¢ (hence k = 2).
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Spectral and Pseudospectral Estimates

For the operator H, = —02 + 2% + ie~ ' f(x) in L*(R) we define
e The spectral lower bound: >(¢) = infRe(o(H.)),

—1
e The pseudospectral lower bound: ¥(e) = (Sup |(H: — z‘)\)_lu) .
AER

It is easy to verify that () > W(e) > 1.

Theorem 5 (. Gallagher, ThG & F. Nier 2009)
If f(z)~ |z|~" as |z| — oo, the following estimate holds as ¢ — 0 :

2
\I](E) = 0(5_7), where Y = k——|—4 .
If moreover f(z) = (1 +22)~%/2, then
1 2
> O(e™" = mind =, —— .
YX(e) > O(™"), where x mln{z,k+2}>7

The proof is based on semiclassical subelliptic estimates.
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Constructive Estimates for the Vortex Problem ?

For the linearized operator £ — aA, we define as before

e The spectral bound in X, : Y(a) = Sup{Re (2) ‘ z € OL(a)},

—1
e The pseudospectral boundin X, : ¥(«a) = (Sup (L. —aA) —iA)‘1||) .
AER

“Proposition” (work in progress with |. Gallagher)
There exist constants x > ~ > 0 such that

U(a) = O(@”) and |[X(a)| = O("), as |af — 0.

We conjecture that v = 1/3, x = 1/2 as in the model problem with £ = 2.

The pseudospectral exponent ~ determines the size of the local basin of
attraction of Oseen’s vortex. The spectral exponent x gives the asymptotic
decay rate of the perturbations as 7 — oc.
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Formal Asymptotic Expansions

Using a saddle-point analysis in the complex plane and formal semiclassical
arguments, one is led to the following conjecture :

The eigenvalue of £ — oA In X | with largest real part satisfies

al\V2,
M) & —(35-) " (1+i). as o] = +oo,

and the corresponding eigenfunction has the following expression:

1 - 8ila|\1/4
wo(r,0) =~ e~ 1(r=za)’ e . where 2z, ~ ( Z|a‘) .
7T

Observe that ¢y € X7, and that ¢y is concentrated in an annulus located at
distance O(|«|'/*) from the origin.

Similar asymptotic expansions can be derived for the principal eigenvalues in
X,,, foreach m > 2.
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Open questions (Lecture 3)

1. Can one prove the optimal spectral and pseudospectral estimates for the
linearized operator at Oseen’s vortex (see the “Proposition” on page 49) ?

2. For the rescaled vorticity equation, can one show that the size of the
(immediate) basin of attraction of Oseen’s vortex aG' grows unboundedly as
la| — o0 ?

3. Can one justify the formal asymptotic expansion for the leading eigenvalue
on page 50 ?

4. Can one extend the results above to larger function spaces, allowing
algebraic decay of the perturbations at infinity ?
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Headlines of Lecture 4
Interaction of vortices in weakly viscous flows

Phenomenology of vortex interactions

The viscous N-vortex solution

The inviscid limit for rough solutions

The Helmholtz-Kirchhoff system

The weak convergence result

Decomposition of the N-vortex solution, self-similar variables
The strong convergence result

Self-interaction effects and higher-order expansions

Skectch of the proof of the main result

Open gquestions
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Interaction of two co-rotating vortices

Circulation: T'= [w;dz >0

Separation distance : d > 0

Rotation period : T = 2”§d2

Vortex size : a(t)? = a(0)? + 4vt w1 W2

Reynolds number: Re =%

14

Remark : Re - 20 = 272
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Phenomenology of Vortex Interactions

e When two vortices start interacting, each vortex adapts its shape to the
strain field generated by the other vortex. Depending on the initial con-
ditions, oscillations of the vortex ellipticity may be observed during the
adaptation stage.

e After oscillations have disappeared, the system reaches a metastable state
which evolves slowly on a viscous time scale. This regime is characterized
by a single parameter: the ratio a/d of the vortex size to the separation
distance. When this parameter reaches the critical value ~ 0.44, the
vortices start merging.

Basic idea: The metastable regime describing the early stage of interaction
of a pair of identical vortices can be computed by solving the two-dimensional
vorticity equation with point vortices as initial data.
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The Viscous N-Vortex Solution

Fix N € N, N > 1, and choose

T1,...,oy € R, with x; #x; fori#j,
at,...,ay R, with «a; #0 forall 7 .

Given any v > 0, let w”(x,t) denote the unique solution of the vorticity
equation (V) with initial data

N
= Zozzﬁ(- — x;) -
i=1

In other words, p Is a superposition of N point vortices of circulations
aq,...,ay located at the points z;,...,zx in R?. Note that ; does not
depend on the viscosity v.

Question: What is the behavior of w”(x,t) as v — 0 ?
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Remarks on the Inviscid Limit

Convergence of solutions of the Navier-Stokes equation to solutions of Euler’s
equation in the vanishing viscosity limit can be established at least for smooth
solutions in domains without boundaries::

e D. Ebin & J. Marsden (1970)

e H. Swann (1971)

e T. Kato (1972)

e Th. Beale & A. Majda (1981) ...

Some convergence results were also obtained for nonsmooth flows:

e \ortex patches: P. Constantin & J. Wu (1995, 1996), J.-Y. Chemin (1996),
R. Danchin (1997, 1999), H. Abidi & R. Danchin (2004), T. Hmidi (2005,
2006), N. Masmoudi (2007), F. Sueur (2008)

e \Vortex sheets: R. Caflisch & M. Sammartino (2006)
e Point vortices: L. Ting & C. Tung (1965), C. Marchioro (1990, 1998)
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N =1 : The Lamb-Oseen Vortex

When p = ady, we have an explicit self-similar solution of the vorticity
equation :

w(x,t) = %G(\/%_]) : u(x,t) = \;LV_tUG(\/iV_J :

Here o € R is a free parameter (the total circulation of the vortex), and

G(&) = %e—lﬁﬁ/ﬁl7 vC(€) = 1 i(l _€—|€|2/4> .

Streamlines of an Oseen vortex
@ with positive circulation number o
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N > 1 : The Helmholtz-Kirchhoff System

Let z1(¢),...,zn(t) be the solution of the point vortex system
/ 1 3y (zi(t) — 2 ()~ v
Zz(t> oIt a] |Zz(t) o Zj (t)|2 y < (O) L ( )

7
We fix T > 0 such that (PV) is well-posed on [0, 7], and we define

— the minimal distance d = min min |z (t) — z,;(t)| > 0,
t€[0,T] i#j
d2
— the turnover time T, = — , where |a| = |ai|+ ...+ |an] .

o

Remarks:

e The system (PV) can be rigorously derived from Euler’s equation, through
an approximation procedure (C. Marchioro & M. Pulvirenti).

e The system (PV) is not always globally well-posed : vortex collisions can
occur in finite time for exceptional initial configurations.
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The Weak Convergence Result

Theorem 6 Suppose that system (PV) is well- posed on the time interval
[0, T]. Then the solution of (V) with initial data ;1 = Z _, a; 0(- — x;) satisfies

;ZO"L (1)), forallte[0,T].

r—0

A similar result was proved by Marchioro (1990, 1998), who considered initial
data of the form u = Zf\; ,wi(x), where w; is a smooth vortex patch with
definite sign, of size O(¢), centered at z;, and such that

e—0

/ wi(x)dr = af —— a5 .
R2

Convergence is obtained as ¢, — 0 provided v < vy e? for some 5 > 0.

Theorem 6 is the limiting case ¢ = 0, v — 0, which is precisely excluded by
Marchioro’s condition.
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Decomposition of the N-Vortex Solution

For any t € |0, 7] we decompose the N-vortex solution as

N N
wY (x,t) = Zw;’(az,t) : u”(x,t) = Zuz’/(x,t) :
i=1 i=1

where w?(x,t) is the solution of the linear convection-diffusion equation

Ow! + (u” - Vw! = vAw; , with w!(-, 1) — a; 0(- —x;)
t—

and u”(x,t) is obtained from w?(x,t) via the Biot-Savart law.

Then w?(x,t) has a definite sign (the sign of «;), and satisfies Gaussian
upper and lower bounds for any fixed v (Osada 1988, Carlen & Loss 1996).
Moreover,

/wi”(az,t)dx:ozi, for ie{l,...,N} and te|0,7T].
R2
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Self-Similar Variables

Motivated by the exact solution for N = 1 (Oseen’s vortex), we define the
rescaled vorticity w? (&, t) and the rescaled velocity vY (£,t) by setting

( v . gy ZC—ZZ(t)
wi(a:,t) - Vth< \/V7t 7t) 9 -
X ie{l,...,N}.
ul (x,t) = o v-”(x — &) t)
\ 7 Y \/V_t 7 \/V_t Y Y
Givenany ¢ € {1,..., N} we denote by ¢ the self-similar variable
¢ = x — z;(t)
= T

Our goal is to compute an asymptotic expansion of w? (¢,t) as v — 0. The first
term in this expansion is the profile G(&) of Oseen’s vortex, but higher-order

corrections will be needed to control the remainder terms.
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The Strong Convergence Result

Theorem 7 Suppose that system (PV) is well-posed on the time interval
0, T]. Then the rescaled vortex patches of the N-vortex solution w"(z,t)
satisfy, for ¢« € {1,..., N},

vt

[wf (1) = Glx, = O( %) . as v—0.
uniformly for ¢ € (0,T].

Here Xj is the weighted L? space defined by the norm

1/2
ollx, = ([, @ e’/ a) ™

forsome small 5 > 0,and d = ' ‘ () —z;(t)] > 0.
3 tg[lolg]rp;;llﬂ) zj (1)

Note that X5 — L!'(R?), hence Theorem 7 implies Theorem 6.
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lllustration of Theorem 7

t = 0 : point vortices t > 0 : Oseen vortices of size O(\/vt)
A A z3(t)  22(1)
L3 L2 o —— O
d
z4(t z1(¢t
T4 T 4.( ) :( )
[ [
T T6 25 (1) z6(1)
| |

The expansion is valid as long as vt < d?, where d is the minimal distance.
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The Self-Interaction Effects

e An isolated Oseen vortex is radially symmetric and does not feel any
self-interaction, no matter how large the Reynolds number is.

e When an external strain field is applied, the vortex becomes elliptical and
IS therefore advected by its own velocity field.

e If the Reynolds number is large, this self-interaction effect can be very
strong even if the vortex is nearly symmetric.

General principle : A rapidly rotating Oseen vortex in an external field adapts
its shape in such a way that the self-interaction counterbalances the strain of
the external field (L. Ting & C. Tung, 1965).

This remarkable stability property explains why elliptical vortices can be ad-
vected like rigid bodies in an external field. It is an essential ingredient in the
study of the N-vortex solution.
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The Second-Order Approximation

For ¢ eR?,t€0,7T],and i € {1,..., N}, we define

vt € 25 (1))
wiPP (&, 1) = G(&) + F(¢ 4 _ Y 2 J —1)+...,
60 = 0@+ rO Y 0w e op )
where z;;(t) = 2;(t) — z;(t). Here F : R* — R, is a smooth radially symmetric
function satisfying

2 —
F(f) N {Cl|£‘ as |€‘ 0,

Colé|*eEF/4 as  |¢] — oo,

for some C1,C5 > 0. In polar coordinates £ = (rcosf, rsinf) we have

wiP (& t) = g(r) + f(r) )

J#1

Qv 1%

e 605(2(0 — Hij(t))) +...,

87 |Zij (t
where 6,;(t) is the argument of z;,(t) = z;(t) — 2z;(t).
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The Final Convergence Result

Theorem 8 Suppose that system (PV) is well-posed on the time interval
0, T]. Then the rescaled vortex patches of the N-vortex solution w"(z,t)
satisfy, for ¢« € {1,..., N},

vt

X 3/2
wf (,8) = wiP (1), = O((55) ). as v—0.
uniformly for ¢ € (0,T].

The error term in Theorem 8 is smaller than the non-radially symmetric
corrections to the Gaussian profile in the approximate solution w;"?(&,t).
These corrections depend on the instantaneous relative positions of the
vortices z;(t) — z;(t), without oscillations or inertia.

The approximate solution w;"? (¢, t) therefore describes, to leading order, the
metastable regime observed in the early stage of vortex interaction.
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Evolution Equation for the Vorticity Profiles (1)

Setting w;(§,t) = wY (&, t) and v, (€,t) = vy (&, t), we have

Drws(e )+ 45 Yy (4 70 Y i L Gugen
: 1% \/V_t v (1)

2

71=1
— (sz)(fat) )
where Lw = Aw + & - Vw +w and z;(t) = z;(t) — z; (t).
To kill the most singular terms as v — 0, we set
2i (1) ,
Z (\/7) ic{l,...,N}. (2)

This is a viscous regularization of the point vortex system (PV). In particular,
system (2) is globally well-posed for all initial configurations.
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Evolution Equation for the Vorticity Profiles (2)

Replacing (2) into (1) we obtain the evolution system

tOywi (€, 1) + jf:l %{fuj (g n Zf—él? | t) _ ”G(Zf}%))} Vw; (€,1)

(3)

which is still singular in the limit v — 0.

The Cauchy problem for (3) is not well-posed at ¢ = 0, because of the singular
term t0,. A possible way to avoid this difficulty is to introduce a logarithmic

time
t

T = log<f) € (—o0,0],

so that 9, = t0;. We then look for a solution of (3) satisfying w; (&, 1) — G(€)
as t — 0 (thatis, as 7 — —o0). This is possible because LG = 0.
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Residuum of the First-Order Approximation

Replacing w;(&,t) = G(£), v (€,t) = v (€) into (3) we obtain a residuum

R (e, 1) = Z%{UG(§+ Z%)) —vG(Zj%)>}'VG(f)-

JFt

Since |z;;(t)| = |z:(t) — z;(t)| > d, we have the asymptotic expansion

w0 = % Lo+ () mien o)}

where

| _ ey (§z () (€ 25(0)0)
MO0 = i 235 (0)]* ).

Bie.t) = £ 3% €O (eprey e — age- 2y 0)7) ().

Zea; Tay(0)°
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Higher-Order Approximation of the Solution

We look for an approximate solution of (3) in the form

W t) = 6o + ()R + (%) i,

3/2
(g t) = 0@ + () e+ (G) vTED,

where the profiles F;(¢,t), H;(&,t) are determined so as to minimize the error
terms.

To first order we have

oyt

R(2)(f t) d2{ G(g)-VFi(f,t)Jr’UFi(f,t)-VG(€)+A (f t)—|—0(d2> }7

hence we would like to set AF;(&,t) + A;(€,t) = 0, where A is the integro-
differential operator

A = 0% - Vw+v-VG, with v=Ksxuw.
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Elliptic Equation for the First Correction Term

Since A;(-,t) lies in the subspace X, C ker(A)* = Im (A), one can show that
the equation AF;(&,t) + A;(&,t) = 0 has a unique solution in X5 :

P _ aj vt 1= OF Ly
(€,¢) (5)2 0% |Zij(t)‘2( NEEAGIE )
Here F'(&) = f(|£]) and the profile f is determined as follows.

Let h(r) = (r2/4)(e” /4 — 1)~! and let Q : (0, 00) — R be the unique solution
of the second-order ODE

J71

Loy + (- ne)ar = THD s,

r r? A
such that Q(r) =~ Cyr? as r — 0,and Q(r) =~ Cy,r~2 as r — oo. Then
1 , , 4 B r2
fr) = — (@) + 590) = h(r) (A + ) . r>0.

71



Residuum of the Higher-Order Approximations

First step: If F;(&,t) is chosen so that AF;(&,t) + A;(&,t) = 0, the error term
satisfies

I AZANE: 2
RO < L (V)P eres - cer? refo).

Second step: If H;(&,t) is chosen so that AH;(&,t) + B;(&,t) = 0, the error
term satisfies

ilt t o 2
BOEn) < O (B epl s cer?, tefo).

Third step : A similar, but more complicated procedure allows to obtain an error
term satisfying

ilt t\3/2 2
RO < 0L (U eps - cerr refo).
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Evolution Equation for the Remainder

Setting w; (&, t) = w;PP (&, 1) +w; (&, 1), vi(&,t) = vPP(Et) + 0; (€, 1), we obtain
for the remainder w;, v; the evolution system

tOywi(§,t) — (L )(&,1)
+ =L (PP, 1) - V(& 1) + Bil€s ) - VP&, )

R e ) () e

+ ; 2 (e + 2L ) ) - VPP (€ 1) "
oy J \/V_t 7

+Z%a( fit) ) V(g 1)+ RYE ) = 0,

which is now “nonsingular” in the limit v — 0.
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Control of the Remainder (1)

To bound the remainder w;(&,t) we introduce a weighted energy :

Z/Rsz 6 0)lin(e, ) d

If T" > 0 is small with respect to the turnover time

d2
Tozm, where |af = |ai| +... + |an],

we can take p;(&,t) = pa(€) for i =1,..., N, where a(t) = d/(3v/vt) and

{652/4 |f ‘gl ga/,

Pal(§) = e /4 if a<|{ < Ka,

e|£|2/(4K2) |f ‘gl Z KCL,

for some K > 1. We then have el¢I"/(4K%) < p.(¢. ) < elél*/4 for all z and ¢.
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Control of the Remainder (2)

With this choice, we obtain from (4) a differential inequality for the weighted
energy E(t), which can be integrated using Gronwall's lemma and yields the
bound:

[ S (6.0 ++lanenR) s < Bo) < c(f)

This concludes the proof of Theorem 8 if T' < Tj,.

In the general case, one has to introduce more complicated weights, which
can be constructed using the same procedure as the approximate solution

itself. These weights satisfy e?l€l/4 < p,(¢,t) < €léI*/4, for some small 8 > 0
depending only on T'/T,. We thus obtain the weaker estlmate

[ (e 0F + ..+ law(e 0P) s < By < o(%)

which implies the desired conclusion.
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Open questions (Lecture 4)

1. Can one control the inviscid limit in the case where, in addition to point
vortices, the initial measure contains a smooth component, or a vortex patch ?

2. Can one control the viscous N-vortex solution in a bounded domain (with
nonslip boundary conditions) or on a manifold ?

3. Is it possible to carry on to arbitrarily high orders the large-Reynolds-number
expansion used in the proof of Theorem 8 ?

4. Can one follow the interaction of a vortex pair closer to the point where
merging occurs ?

5. In the exceptional case where the point vortex system is not globally
well-posed, what is the vanishing viscosity limit of the N-vortex solution after
the first collision time ?
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