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Overview

The goal of these lectures is to present a few mathematical results which
illustrate the role of vortices in the dynamics of two-dimensional incompressible
viscous flows. They will be organized as follows :

1) The Cauchy problem for the 2D vorticity equation :
General properties of the vorticity equation; nonsmooth initial data;
local existence in critical spaces, obstructions to uniqueness.

2) Self-similar variables, Lyapunov functions, and long-time behavior :
Oseen vortices, similarity variables, compactness, Liouville’s theorem.

3) Asymptotic stability of Oseen vortices :
Structure of the linearized operator at Oseen’s vortex;
spectral gap, pseudospectral estimates, spectral asymptotics.

4) Interaction of vortices in weakly viscous flows :
Phenomenology of vortex interactions; the inviscid limit in presence of point
vortices, the viscous N -vortex solution.
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Headlines of Lecture 1
The Cauchy problem for the 2D vorticity equation

• The two-dimensional Navier-Stokes and vorticity equations

• Classical estimates for the Biot-Savart Kernel

• General properties of the 2D vorticity equation : conservation laws,
Lyapunov functions, scaling invariance

• The Cauchy problem in L1(R2)

• Finite measures, canonical decompositions

• The Cauchy problem in M(R2) (small atomic part)

• Heat kernel estimates, control of the nonlinearity

• The Cauchy problem in M(R2) (general case)
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The Two-Dimensional Navier-Stokes Equations

We consider the incompressible Navier-Stokes equations :






∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t) = ν∆u(x, t)− 1

ρ
∇p(x, t) ,

div u(x, t) = 0 ,

(NS)

where x ∈ R2 is the space variable, t ≥ 0 is the time, and

• u(x, t) = (u1(x, t), u2(x, t)) ∈ R2 is the velocity field;

• p(x, t) ∈ R is the pressure field;

• ν > 0 is the kinematic viscosity;

• ρ > 0 is the fluid density.

Eq. (NS) is an idealized model for real 3D flows, which is appropriate in some
limiting situations (flows in thin domains, geophysical flows, stratified flows).
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The Two-Dimensional Vorticity Equation

In our simple setting, the Navier-Stokes equation is most conveniently written
in terms of the vorticity field :

ω(x, t) = ∂1u2(x, t)− ∂2u1(x, t) ∈ R ,

which satisfies the following advection-diffusion equation :

∂ω

∂t
(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) . (V)

The velocity field can be reconstructed from the vorticity by solving the elliptic
system ∂1u1 + ∂2u2 = 0 , ∂1u2 − ∂2u1 = ω . Under mild assumptions† , the
unique solution is given by the Biot-Savart formula

u(x, t) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t) dy . (BS)

† For instance, if ω/(1 + |x|) ∈ L1(R2) or ω ∈ Lp(R2) for some p < 2 .
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Classical Estimates for the Biot-Savart Kernel

Lemma 1 Assume that ω ∈ Lp(R2) for some p ∈ (1, 2) . Then the velocity
field u given by (BS) satisfies :

i) (Hardy-Littlewood-Sobolev bound)

‖u‖Lq(R2) ≤ C‖ω‖Lp(R2) , where
1

q
=

1

p
− 1

2
.

ii) (Calderón-Zygmund bound)

‖∇u‖Lp(R2) ≤ C‖ω‖Lp(R2) .

Estimate i) follows from the HLS (or weak Young) inequality, since

K(x) =
1

2π

x⊥

|x|2 satisfies K ∈ L2,∞(R2) .

Estimate ii) follows from CZ theory since ∇K is homogeneous of degree −2 .
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General Properties of the 2D Vorticity Equation

I. Conservation laws

Let ω(x, t) be a solution of the vorticity equation (V) with initial data ω0 .

• Total circulation : If ω0 ∈ L1(R2) , then
∫

R2

ω(x, t) dx =

∫

R2

ω0 dx , for all t ≥ 0 .

• First order moments : If (1 + |x|)ω0 ∈ L1(R2) , then
∫

R2

xi ω(x, t) dx =

∫

R2

xi ω0 dx , for all t ≥ 0 , i = 1, 2 .

• Symmetric second order moment : If (1 + |x|2)ω0 ∈ L1(R2) , then
∫

R2

|x|2ω(x, t) dx =

∫

R2

|x|2ω0 dx + 4νt

∫

R2

ω0 dx , for all t ≥ 0 .
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II. Lyapunov functions

• Lp norms : If ω0 ∈ Lp(R2) for some p ∈ [1,∞] , then

‖ω(t)‖Lp ≤ ‖ω0‖Lp , for all t ≥ 0 .

• Pseudo-energy : Let

Ed(t) =
1

4π

∫

R2×R2

log
d

|x− y| ω(x, t)ω(y, t) dxdy ,

where d > 0 is an arbitrary length scale. Then

a) E ′d(t) = −ν

∫

R2

ω(x, t)2 dx ≤ 0

b) Ed(t) =
1

2

∫

R2

|u(x, t)|2 dx = E(t) if u(·, t) ∈ L2(R2) .

Remark : If u ∈ L2(R2) and ω ∈ L1(R2) , then necessarily
∫

R2

ω dx = 0 .
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III. Scaling invariance

Solutions of the Navier-Stokes equations are invariant under the rescaling

u(x, t) 7→ λu(λx, λ2t) , or ω(x, t) 7→ λ2ω(λx, λ2t) ,

for any λ > 0 . Possible scale invariant or critical function spaces are :

a) u ∈ C0
b (R+, L2(R2)) , with ‖u‖ = sup

t≥0
‖u(t)‖L2 (energy space);

b) ω ∈ C0
b (R+, L1(R2)) , with ‖ω‖ = sup

t≥0
‖ω(t)‖L1 .

General principle : ‘‘For a scale invariant nonlinear PDE, critical spaces are the
largest spaces, in terms of local regularity of the solutions, in which we can
hope that the Cauchy problem is locally well-posed’’.

In the rest of this first lecture, we discuss the Cauchy problem for the 2D
vorticity equation in two different critical spaces : L1(R2) and M(R2) .
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The Cauchy Problem for the Vorticity Equation (1)

Theorem 1 (Giga, Miyakawa & Osada 1988, Ben-Artzi 1994)
For all initial data ω0 ∈ L1(R2) , the vorticity equation (V) has a unique global
solution

ω ∈ C0([0,∞), L1(R2)) ∩ C0((0,∞), L∞(R2)) .

Moreover ‖ω(t)|L1 ≤ ‖ω0‖L1 for all t ≥ 0 , and

•
∫

R2

ω(x, t) dx =

∫

R2

ω0(x) dx for all t ≥ 0 ;

• ‖ω(t)‖Lp ≤ Cp

t1−1/p
‖ω0‖L1 , for all t > 0 and all p ∈ [1,∞] .

The proof uses classical ideas which go back to Fujita & Kato (1964). The mild
solution ω(x, t) is smooth for t > 0 and depends continuously on the initial
data ω0 , uniformly in time on compact intervals.
Theorem 1 is in fact subsumed by Theorem 3 below.
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The Space of Finite Measures

Let M(R2) be the space of all real-valued Radon measures on R2 , equipped
with the total variation norm

‖µ‖tv = sup

{
∫

R2

ϕ dµ
∣

∣

∣
ϕ ∈ C0(R

2) , ‖ϕ‖L∞ ≤ 1

}

.

• M(R2) is a Banach space, containing L1(R2) as a closed subspace;
if ω ∈ L1(R2) , then ‖ω‖tv = ‖ω‖L1 .

• The total variation norm is scale invariant.

• M(R2) = C0(R
2)′ is the tolopogical dual of the space of all continuous

functions vanishing at infinity.

• The unit ball in M(R2) is compact for the weak convergence defined by :

µn −−⇀
n→∞

µ if
∫

R2

ϕ dµn −−−→
n→∞

∫

R2

ϕ dµ for all ϕ ∈ C0(R
2) .
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Decomposition of a Finite Measure

Any finite measure µ ∈M(R2) can be decomposed as follows :

1) Lebesgue decomposition : µ = µac + µs , where

• µac is absolutely continuous with respect to Lebesgue’s measure;

• µs is singular with respect to Lebesgue’s measure.

Furthermore, µac(E) =
∫

E
ω dx for some ω ∈ L1(R2) (Radon-Nikodym).

2) Atomic decomposition : µs = µsc + µpp , where

µpp = µ|Σ =
∞
∑

i=1

αi δxi
, and Σ =

{

x ∈ R
2
∣

∣

∣
µ({x}) 6= 0

}

.

Finally µ = µac + µsc + µpp , with µac ⊥ µsc ⊥ µpp . In particular,

‖µ‖tv = ‖µac‖tv + ‖µsc‖tv + ‖µpp‖tv = ‖ω‖L1 + ‖µsc‖tv +
∞
∑

i=1

|αi| .
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Typical Examples of Nonsmooth Flows
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The Cauchy Problem for the Vorticity Equation (2)

We start with a preliminary result that is relatively easy to prove.

Theorem 2 (Giga, Miyakawa & Osada 1988, Kato 1994)
There exists a universal constant C0 > 0 such that, if the initial vorticity
µ ∈ M(R2) satisfies ‖µpp‖tv ≤ C0 ν , then the vorticity equation (V) has a
unique global solution

ω ∈ C0((0,∞), L1(R2) ∩ L∞(R2))

such that ‖ω(·, t)‖L1 ≤ ‖µ‖tv for all t > 0 , and ω(·, t) ⇀ µ as t→ 0 .

The smallness condition ‖µpp‖tv ≤ C0 ν inevitably arises if one tries to prove
uniqueness of the solution by a standard application of Gronwall’s lemma. This
restriction is technical, however, and can be completely relaxed (see below). It
is automatically fulfilled if the initial measure is non-atomic, so that Theorem 2
implies Theorem 1.
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Sketch of the proof of Theorem 2

We assume that ν = 1 without loss of generality. Given µ ∈ M(R2) , we
consider the integral equation associated to (V) :

ω(t) = et∆µ−
∫ t

0

div
(

e(t−s)∆ u(s)ω(s)
)

ds , t > 0 , (IE)

where et∆ denotes the heat semigroup defined by

(et∆µ)(x) =
1

4πt

∫

R2

e−|x−y|2/(4t) dµy , t > 0 , x ∈ R
2 . (HS)

Our goal is to solve the integral equation (IE) by a fixed point argument in
an appropriate function space. This is a classical idea which goes back, in
the Navier-Stokes context, to Fujita & Kato (1964). Once such a mild solution
is obtained, standard regularity arguments imply that the solution ω(x, t) is
smooth for t > 0 and satisfies (V) in a classical sense. Similarly, the velocity
field u(x, t) given by (BS) satisfies (NS).
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Heat kernel estimates

Lemma 2 Let µ ∈M(R2) .

a) For 1 ≤ p ≤ ∞ and t > 0 , we have

‖et∆µ‖Lp ≤ 1

(4πt)1−
1
p

‖µ‖tv , ‖∇et∆µ‖Lp ≤ C

t
3
2−

1
p

‖µ‖tv .

b) For 1 < p ≤ ∞ , we have

Lp(µ) := lim sup
t→0

(4πt)1−
1
p ‖et∆µ‖Lp ≤ ‖µpp‖tv .

Estimates a) follow easily from (HS) and Young’s inequality. Estimate b) is due
to Giga, Miyakawa & Osada, and was strengthened by Kato in this way :

lim
t→0

(4πt)1−
1
p ‖et∆µ‖Lp = p−1/p‖{αi}∞i=1‖ℓp ≤

∞
∑

i=1

|αi| ,

where µpp =
∑∞

i=1 αi δxi . The assumption p > 1 is of course crucial.
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Digression 1 : Proof of Lemma 2.b

• In view of Lemma 2.a, since µ = µac + µsc + µpp , it is sufficient to show that
Lp(µ) = 0 if p > 1 and µpp = 0 .

• As Lp(µ) ≤ L1(µ)1/pL∞(µ)1−1/p ≤ ‖µ‖1/p
tv L∞(µ)1−1/p , we only need to

consider the case where p =∞ .

• Assume that µ ∈M(R2) satisfies µpp = 0 , and fix ε > 0 . Then there exists
δ > 0 such that

sup
x∈R2

|µ|(B(x, δ)) ≤ ε , where B(x, δ) = {y ∈ R
2 | |y − x| ≤ δ} .

• For any t > 0 , take x̄(t) ∈ R
2 such that |(et∆µ)(x̄(t))| = ‖et∆µ‖L∞ . Then

4πt ‖et∆µ‖L∞ ≤
∫

B(x̄(t),δ)

e−
|x̄(t)−y|2

4t d|µ|y +

∫

B(x̄(t),δ)c

e−
|x̄(t)−y|2

4t d|µ|y .

The first term is bounded by ε for all t > 0 ; the second one vanishes as t→ 0 .
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Sketch of the proof of Theorem 2 (continued)

The easiest existence result is obtained using the function space

XT =
{

ω ∈ C0((0, T ], L4/3(R2))
∣

∣

∣
‖ω‖XT <∞

}

,

where T > 0 will be fixed later and

‖ω‖XT = sup
0<t≤T

t1/4‖ω(t)‖L4/3 .

A. Estimates for the linear term in (IE) :

By Lemma 2, there exist positive constants C1, C2 such that, for any measure
µ ∈M(R2) , the linear solution ω0(t) = et∆µ satisfies :

• ‖ω0‖XT ≤ C1‖µ‖tv for any T > 0 ;

• ‖ω0‖XT ≤ C2‖µpp‖tv + ε if T > 0 is small enough, depending on µ .

Here ε > 0 is an arbitrary positive number.
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B. Estimate for the integral term in (IE) :

Given ω ∈ X , we define Fω ∈ X by

(Fω)(t) =

∫ t

0

div
(

e(t−s)∆ u(s)ω(s)
)

ds , 0 < t ≤ T .

Then

t1/4‖(Fω)(t)‖L4/3

≤ t1/4

∫ t

0

C

(t− s)
1
2+ 1

4

‖u(s)ω(s)‖L1 ds (Heat kernel estimate with derivative)

≤ t1/4

∫ t

0

C

(t− s)
3
4

‖u(s)‖L4‖ω(s)‖L4/3 ds (Hölder’s inequality)

≤ t1/4

∫ t

0

C

(t− s)
3
4

‖ω(s)‖2L4/3 ds (HLS bound for the BS law)

≤ C‖ω‖2XT
t1/4

∫ t

0

C

(t− s)
3
4 s

1
2

ds ≤ C‖ω‖2XT
.
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Summarizing, there exists a positive constant C3 such that

‖Fω‖XT ≤ C3‖ω‖2XT
,

‖Fω − Fω̃‖XT ≤ C3(‖ω‖XT + ‖ω̃‖XT )‖ω − ω̃‖XT .
(NL)

C. The fixed point argument :

Fix R > 0 such that 2C3R < 1 , and consider the closed ball

B = {ω ∈ XT | ‖ω‖XT
≤ R} .

If ‖ω0‖XT
≤ R/2 , the map ω 7→ ω0 − Fω is a strict contraction in B , hence

has a unique fixed point there. Three situations can occur :

1) If 2C1‖µ‖tv ≤ R , then T > 0 can be chosen arbitrarily large :
global well-posedness for small data.

2) If 2C2‖µpp‖tv < R , then T > 0 must be small enough, depending on µ :
local well-posedness for large data with small atomic part.

3) If ‖µpp‖tv is large, the argument breaks down.
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D. Concluding remarks :

• A more appropriate space for continuing the solutions is

YT =
{

ω ∈ C0((0, T ], L1(R2) ∩ L∞(R2))
∣

∣

∣
‖ω‖YT <∞

}

,

equipped with the norm ‖ω‖YT
= sup

0<t≤T
‖ω(t)‖L1 + sup

0<t≤T
t‖ω(t)‖L∞ .

• As before, one has local existence and uniqueness in YT if ‖µpp‖tv ≤ C0 .
The local solution satisfies

lim
t→0

(

‖ω(t)− et∆µ‖L1 + t‖ω(t)− et∆µ‖L∞

)

= 0 .

In particular ‖ω(t)‖L1 ≤ ‖µ‖tv for all t > 0 , and ω(t) ⇀ µ as t→ 0 .

• If ‖µ‖Lp ≤ R for some p > 1 , the local existence time T = T (µ) is bounded
from below by a positive constant depending only on p and R .

• Since the Lp norm of any solution is nonincreasing with time, we conclude
that any local solution can be extended to a global solution.
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Digression 2 : Short Time Behavior of Mild Solutions

Given µ ∈M(R2) with ‖µpp‖tv ≤ C0 , let ω0(t) = et∆µ and let ω ∈ XT be the
unique local solution of the integral equation ω = ω0 − Fω . We define

ℓ = lim sup
t→0

t1/4‖ω(t)− ω0(t)‖L4/3 = lim sup
T→0

‖ω − ω0‖XT .

Since ω − ω0 = (Fω0 − Fω)− Fω0 and F satisfies (NL), we easily obtain

ℓ ≤ (2C3R)ℓ + ℓ0 , where ℓ0 = lim sup
T→0

‖Fω0‖XT .

To prove that ℓ = 0 , it is therefore sufficient to show that ℓ0 = 0 . This is done
in two steps :

• As in the proof of Lemma 2.b, one proves that ℓ0 = 0 if µ is non-atomic.

• If µ is a finite sum of Dirac masses, an explicit calculation (taking into
account the fact that self-interaction terms vanish) shows that ℓ0 = 0 too.

Finally, ℓ = 0 implies that ‖ω(t)− ω0(t)‖L1 → 0 as t→ 0 .

22



The Cauchy Problem for the Vorticity Equation (3)

The restriction ‖µpp‖tv ≤ C0 ν in Theorem 2 is technical and can be removed :

Theorem 3 Given any finite measure µ ∈ M(R2) , the vorticity equation (V)
has a unique global solution

ω ∈ C0((0,∞), L1(R2) ∩ L∞(R2))

such that ‖ω(·, t)‖L1 ≤ ‖µ‖tv for all t > 0 , and ω(·, t) ⇀ µ as t→ 0 .

Global existence for any µ ∈M(R2) can be proved by approximation :

− G.-H. Cottet (1986)
− Y. Giga, T. Miyakawa & H. Osada (1988)
− T. Kato (1994)

Uniqueness without smallness assumption was obtained in two steps :

− ThG & C.E. Wayne (2005) : the case of a single Dirac mass
− I. Gallagher & ThG (2005) : the general case
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Headlines of Lecture 2
Self-similar variables, Lyapunov functions, and long-time behavior

• Radially symmetric solutions of the vorticity equation

• The Lamb-Oseen vortices, elementary properties

• A gobal convergence result

• The vorticity equation in self-similar variables

• Compactness properties

• Liouville’s theorem

• Sketch of the proof of Theorems 3 and 4

• Open questions

24



Radially Symmetric Solutions of the Vorticity Equation

We consider again the two-dimensional vorticity equation

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) , (V)

where the velocity field u(x, t) is given by the Biot-Savart formula

u(x, t) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t) dy . (BS)

If the vorticity ω(x, t) is radially symmetric , it follows from (BS) that the velocity
field u(x, t) is azimuthal :

x⊥ · ∇ω = 0 ⇒ x · u = 0 .

In that case u · ∇ω = 0 , hence the vorticity equation (V) reduces to the linear
heat equation ∂tω = ν∆ω . In particular, radial symmetry is preserved under
the evolution defined by (V).
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The Lamb-Oseen Vortices

If µ = αδ0 , the unique solution of (V) is the Lamb-Oseen vortex :

ω(x, t) =
α

νt
G
( x√

νt

)

, u(x, t) =
α√
νt

vG
( x√

νt

)

,

where the vorticity and velocity profiles are given by

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1− e−|ξ|2/4
)

.

The parameter α ∈ R is called the total circulation of the vortex.

Streamlines of an Oseen vortex

with positive circulation number α
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Elementary Properties of Oseen Vortices

• Oseen vortices are self-similar solutions of the vorticity equation (V).

• The vorticity profile G(ξ) is radially symmetric, positive, and has Gaussian
decay at infinity.

• Oseen’s vortex with α = 1 is the fundamental solution of the heat equation.

• The velocity profile vG(ξ) is azimuthal and satisfies

vG(0) = 0 , |vG(ξ)| ∼ 1

2π|ξ| as |ξ| → ∞ .

In particular vG /∈ L2(R2) , hence Oseen vortices have infinite energy for all
α 6= 0 .

• By Theorem 3, Oseen vortices are the only self-similar solutions of the
Navier-Stokes equation in R2 whose vorticity profile is integrable.

Remark : Following Cannone and Planchon (1996), one can construct
many (small) self-similar solutions for which u ∈ L2,∞ , but ω /∈ L1(R2) .
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A Global Convergence Result

Theorem 4 (ThG & C.E. Wayne, 2005)
For all initial data µ ∈M(R2) , the solution ω(x, t) of (V) satisfies

lim
t→∞

∥

∥

∥
ω(x, t)− α

νt
G
( x√

νt

)
∥

∥

∥

L1
= 0 , where α =

∫

R2

dµ .

Some important consequences :

• Oseen vortices are the only self-similar solutions of the Navier-Stokes
equation in R

2 for which the vorticity profile is integrable.

• Oseen vortices are (globally) stable for all values of the circulation Reynolds
number α/ν . No hydrodynamic instabilities appear for large α .

Further developments :

• Explicit convergence estimates : ThG & L.M. Rodrigues (2007)

• Intermediate asymptotics : Caglioti, Pulvirenti & Rousset (2009)
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The Self-Similar Variables

Given x0 ∈ R2 , t0 > 0 , we introduce the self-similar variables

ξ =
x− x0

√

ν(t + t0)
, τ = log

(

1 +
t

t0

)

.

The vorticity and velocity fields are transformed as follows :

ω(x, t) =
1

t + t0
w

(

x− x0
√

ν(t + t0)
, log

(

1 +
t

t0

)

)

,

u(x, t) =

√

ν

t + t0
v

(

x− x0
√

ν(t + t0)
, log

(

1 +
t

t0

)

)

.

(SSV)

The rescaled vorticity w(ξ, τ) and velocity v(ξ, τ) are now dimensionless
quantities, as are the space variable ξ and the time variable τ . Moreover, the
velocity v(ξ, τ) is still obtained from the vorticity w(ξ, τ) by the Biot-Savart law
(BS). If w(ξ) = ᾱG(ξ) , then ω(x, t) is Oseen’s vortex with circulation α = ᾱν .
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The Vorticity Equation in Self-Similar Variables

If ω(x, t) is a solution of (V), the rescaled vorticity w(ξ, τ) defined by (SSV)
satisfies the rescaled vorticity equation :

∂w

∂τ
+ v · ∇ξ w = ∆ξ w +

1

2
ξ · ∇ξ w + w . (RV)

The initial data of both systems are related through

w(ξ, 0) = t0 ω(x0 + ξ
√

νt0, 0) , ξ ∈ R
2 .

Given any w0 ∈ L1(R2) , Theorem 1 shows that (RV) has a unique global
solution w ∈ C0([0,∞), L1(R2)) with initial data w0 . The L1 norm ‖w(τ)‖L1 is
nonincreasing with time, and the circulation number is conserved :

ᾱ =

∫

R2

w(ξ, τ) dξ =
1

ν

∫

R2

ω(x, t) dx , t, τ ≥ 0 .

For any ᾱ ∈ R , Oseen’s vortex w = ᾱG is a stationary solution of (RV).
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Compactness Properties

Positive trajectories of (RV) in L1(R2) are not only bounded, but also compact :

Lemma 3 For any w0 ∈ L1(R2) , the solution {w(τ)}τ≥0 of (RV) with initial
data w0 is relatively compact in L1(R2) .

As is clear from Theorem 4, this is not true for the original equation (V). The
essential difference is that, in the rescaled system (RV), the Laplacian in the
right-hand side has been replaced by the Fokker-Planck operator

L = ∆ +
1

2
ξ · ∇+ 1 .

The explicit formula for the associated semigroup

(eτLw0)(ξ) =
1

4πa(τ)

∫

R2

exp
(

−|ξ − η e−τ/2|2
4a(τ)

)

w0(η) dη , ξ ∈ R
2 , τ > 0 ,

where a(τ) = 1 − e−τ , shows that eτL is asymptotically confining. Compact-
ness results from confinement and parabolic regularity.
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Liouville’s Theorem

In contrast, negative trajectories of (RV) in L1(R2) are usually not compact,
but those which are compact have a simple characterization :

Proposition 1 If {w(τ)}τ∈R is a complete trajectory of (RV) which is relatively
compact in L1(R2) , then there exists ᾱ ∈ R such that w(τ) = ᾱG for all τ ∈ R .

Proposition 1 can be proved using two Lyapunov functions :

• The L1 norm Φ(w) = ‖w‖L1 , which is strictly decreasing except along
constant-sign solutions;

• The relative entropy H(w) =

∫

R2

w(ξ) log

(

w(ξ)

G(ξ)

)

dξ ,

which is defined for positive solutions, and stationary along Oseen vortices :

d

dτ
H(w) = −

∫

R2

w
∣

∣

∣
∇ log

(w

G

)
∣

∣

∣

2

dξ .
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By assumption, the solution w(τ) in Proposition 1 satisfies

A L1

←−−−−
τ→−∞

w(τ)
L1

−−−−→
τ→+∞

Ω ,

where A ⊂ L1(R2) is the α -limit set and Ω ⊂ L1(R2) the ω -limit set of w .

1. Using the first Lyapunov function
By LaSalle’s principle, A and Ω consist of constant-sign functions. Since the
total circulation ᾱ is conserved, we infer that Φ = |ᾱ| on both A and Ω . As Φ
is a Lyapunov function, we must have Φ(τ) = |ᾱ| for all τ ∈ R , which in turn
implies that w(τ) has constant sign for τ ∈ R .

2. Intermediate step
If ᾱ = 0 , we are done. Otherwise, replacing w(ξ1, ξ2, τ) by −w(ξ2, ξ1, τ) if
needed, we can assume that ᾱ > 0 , hence the solution w is strictly positive.

3. Using the second Lyapunov function
From LaSalle’s principle and the conservation of the total circulation, we infer
that A = Ω = {ᾱG} . It follows that H(τ) = ᾱ log(ᾱ) for all τ ∈ R , which
implies that w(τ) = ᾱG for all τ ∈ R .
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Sketch of the Proof of Theorems 3 and 4

Applying Proposition 1 to the ω -limit set of any trajectory of (RV), we find

Corollary 1 For any initial data w0 ∈ L1(R2) , the solution of (RV) satisfies

‖w(τ)− ᾱG‖L1 −−−→
τ→∞

0 , where ᾱ =

∫

R2

w0 dξ .

Returning to the original variables, we obtain Theorem 4. On the other hand,
using Proposition 1 and classical estimates on the fundamental solution of
advection-diffusion equations, due to H. Osada, we arrive at

Corollary 2 Assume that ω ∈ C0((0,∞), L1(R2) ∩ L∞(R2)) is a solution of
(V) satisfying ‖ω(t)‖L1 ≤ C for all t > 0 and ω(t) ⇀ αδ0 as t→ 0 . Then

ω(x, t) =
α

νt
G
( x√

νt

)

, x ∈ R
2 , t > 0 .

This proves uniqueness in Theorem 3 in the important case where µ = αδ0 .
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Open questions (Lectures 1 and 2)

1. Assume that ω ∈ C0((0, T ), L1(R2) is a weak solution of (V) which is
uniformly bounded in L1(R2) . In the L1 framework, the nonlinear term can be
interpreted as follows :
∫

R2

ϕ(u · ∇ω) dx =
1

2π

∫

R2

∫

R2

(x− y)⊥

|x− y|2 · (∇ϕ(y)−∇ϕ(x)) ω(x)ω(y) dxdy .

Then ω(·, t) converges weakly to some measure µ ∈M(R2) as t→ 0 . Is the
solution ω(x, t) uniquely determined by its trace µ at t = 0 ?

2. Can one prove the analog of Theorem 3 in bounded domains, with nonslip
boundary conditions ?

3. Can one prove the analog of Theorem 4 in exterior domains, with nonslip
boundary conditions ?
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Headlines of Lecture 3
Asymptotic Stability of Oseen vortices

• The linearized operator at Oseen’s vortex

• Spectral stability of Oseen vortices

• Local stability of Oseen vortices

• Characterization of the kernel

• Spectral asymptotics for large circulation numbers, numerical results

• A semiclassical model problem, spectral and pseudospectral estimates

• The stabilizing effect of fast rotation

• Formal asymptotic expansions

• Open questions
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Linearization at Oseen’s Vortex

Setting w = ᾱG+ w̃ , v = ᾱvG + ṽ in (RV), we obtain the perturbation equation

∂τ w̃ + ṽ · ∇w̃ = (L − ᾱΛ)w̃ , (PE)

where

Lw̃ = ∆w̃ +
1

2
ξ · ∇w̃ + w̃ , Λw̃ = vG · ∇w̃ + ṽ · ∇G .

Here ṽ = K ∗ w̃ is the velocity field obtained from w̃ via the Biot-Savart law
(BS). From now on, we write w, v, α instead of w̃, ṽ, ᾱ , and we consider the
semigroup generated by the linearized operator L − αΛ .

Function space : We introduce the Hilbert space X = L2(R2, G−1 dξ) with
scalar product

〈w1 , w2〉 =

∫

R2

G(ξ)−1 w1(ξ) w2(ξ) dξ .

Functions in X have Gaussian decay at infinity, and X →֒ Lp(R2) for p ∈ [1, 2] .
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Structure of the Linearized Operator (1)

Observation 1 : The operator L is selfadjoint in X = L2(R2, G−1 dξ) with
compact resolvent and purely discrete spectrum

σ(L) =
{

−n

2

∣

∣

∣
n = 0, 1, 2, . . .

}

.

Indeed, if we conjugate L with the Gaussian weight G1/2 , we obtain the
two-dimensional harmonic oscillator

L = G−1/2 L G1/2 = ∆ − |ξ|
2

16
+

1

2
.

In particular LG = 0 , and L∂iG = − 1
2∂iG for i = 1, 2 .

Observation 2 : The operator Λ is skew-symmetric in the same space :

〈Λw1 , w2〉+ 〈w1 , Λw2〉 = 0 , for all w1, w2 ∈ D(Λ) ⊂ X .

(ThG & C.E. Wayne 2005, Y. Maekawa 2007).
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Digression 3 : Proof of Observation 2

Let Λ = Λ1 + Λ2 , where Λ1w = vG · ∇w and Λ2w = v · ∇G = (K ∗w) · ∇G . If
w1, w2 ∈ D(Λ) ⊂ X , then

〈Λ1w1, w2〉+ 〈w1, Λ1w2〉 =

∫

R2

G−1
(

w2 vG · ∇w1 + w1 vG · ∇w2

)

dξ

=

∫

R2

G−1 vG · ∇(w1w2) dξ = 0 ,

because G−1vG is divergence-free. Moreover, since ∇G = − 1
2ξG , we have

〈Λ2w1, w2〉+ 〈w1, Λ2w2〉 = −1

2

∫

R2

(

(ξ · v1)w2 + (ξ · v2)w1

)

dξ

= − 1

4π

∫

R2

∫

R2

{

ξ · (ξ − η)⊥

|ξ − η|2 + η · (η − ξ)⊥

|ξ − η|2
}

w1(η)w2(ξ) dη dξ = 0 .

Thus 〈Λw1, w2〉+ 〈w1, Λw2〉 = 0 for all w1, w2 ∈ D(Λ) ⊂ X .
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Structure of the Linearized Operator (2)

Observation 3 : The operator Λ is relatively compact with respect to L , in the
space X . For any α ∈ R , the spectrum of L − αΛ is thus a sequence of
eigenvalues {λk(α) | k ∈ N} with

Re (λk(α)) → −∞ as k →∞ .

Observation 4 : The following subspaces of X are left invariant by both
operators L and Λ :

Y0 =
{

w ∈ X
∣

∣

∣

∫

R2

w dξ = 0
}

= {G}⊥ ,

Y1 =
{

w ∈ Y0

∣

∣

∣

∫

R2

ξiw dξ = 0 for i = 1, 2
}

= {G; ∂1G; ∂2G}⊥ ,

Y2 =
{

w ∈ Y1

∣

∣

∣

∫

R2

|ξ|2w dξ = 0
}

= {G; ∂1G; ∂2G; ∆G}⊥ .
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Spectral Stability of Oseen Vortices

Proposition 2 (ThG & C.E. Wayne 2005)
For any α ∈ R , Oseen’s vortex w = αG is spectrally stable in X :

σ(L − αΛ) ⊂
{

z ∈ C

∣

∣

∣
Re (z) ≤ 0

}

.

Moreover,

σ(L − αΛ) ⊂
{

z ∈ C

∣

∣

∣
Re (z) ≤ −1

2

}

in Y0 ,

σ(L − αΛ) ⊂
{

z ∈ C

∣

∣

∣
Re (z) ≤ −1

}

in Y1 .

Proof : If (L − αΛ)w = λw for some normalized vector w ∈ D(L) ⊂ X , then

Re (λ) = Re 〈(L− αΛ)w, w〉 = 〈Lw, w〉 ≤ 0 .

Moreover 〈Lw, w〉 ≤ −1/2 if w ∈ Y0 , and 〈Lw, w〉 ≤ −1 if w ∈ Y1 .
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Local Stability of Oseen Vortices

Corollary 3 (Linear stability) For all α ∈ R , we have

‖eτ(L−αΛ)‖Z→Z ≤ e−µτ , τ ≥ 0 ,

where µ = 0 if Z = X , µ = 1/2 if Z = Y0 , and µ = 1 if Z = Y1 .

Returning to the perturbation equation (PE), we obtain :

Corollary 4 (Local stability) For any µ ∈ (0, 1/2) , there exists ε > 0 such that,
if w0 ∈ X satisfies w0 − αG ∈ Y0 and ‖w0 − αG‖ ≤ ε for some α ∈ R , then
the unique solution of (RV) with initial data w0 satisfies

‖w(τ)− αG‖ ≤ ‖w0 − αG‖ e−µτ , τ ≥ 0 .

If moreover w0 − αG ∈ Y1 , then ‖w(τ)− αG‖ ≤ ‖w0 − αG‖ e−(µ+ 1
2 )τ , τ ≥ 0 .

Remarkably, the size of the (immediate) basin of attraction of Oseen’s vortex
αG is uniform in α ∈ R .
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The Kernel of the Skew-Symmetric Operator

Observation 5 : For any m ∈ N we define the subspace Xm ⊂ X by

Xm =
{

w ∈ X
∣

∣

∣
w(ξ) = am(r) cos(mθ) + bm(r) sin(mθ)

}

,

where ξ = (r cos θ, r sin θ) . Then Xm is left invariant by both L and Λ , so that

X = ⊕
m∈N

Xm , L = ⊕
m∈N

Lm , Λ = ⊕
m∈N

Λm .

Observation 6 : (Y. Maekawa 2007)

ker(Λ) = X0 ⊕ {β1∂1G + β2∂2G |β1, β2 ∈ R} .

Numerical observation : (A. Prochazka & D. Pullin, 1995)
In the invariant subspace ker(Λ)⊥ , the real parts of all eigenvalues of L − αΛ
behave like −C|α|1/2 as |α| → ∞ .
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The Stabilizing Effect of Fast Rotation

Let X⊥ denote the orthogonal complement of ker(Λ) in X .

Proposition 3 (Y. Maekawa 2007) Let

σ⊥(α) = σ
(

(L − αΛ)
∣

∣

∣

X⊥

)

, and Σ(α) = sup
{

Re (z)
∣

∣

∣
z ∈ σ⊥(α)

}

.

Then Σ(α)→ −∞ as |α| → ∞ .

The proof is done by contradiction : assuming that Σ(αn) stays bounded for
some sequence |αn| → ∞ , and using compactness arguments, one constructs
a normalized vector w ∈ X⊥ such that Λw = iµw for some µ ∈ R . This is
impossible, because it can be proved that

σ(Λ) = iR , and σp(Λ) = {0} .

This approach cannot give any precise estimate of Σ(α) for large |α| .

46



A Semiclassical Model Problem

We consider the differential operator

Hε = −∂2
x + x2 +

i

ε
f(x) , x ∈ R , (∗)

where f : R→ R is a smooth Morse function satisfying, for some k > 0 ,

f(x) ∼ 1

|x|k as |x| → ∞ .

Relation to the Navier-Stokes problem : if Λ̃ = vG · ∇ denotes the local part
of the skew-symmetric operator Λ , the restriction of L − αΛ̃ to the subspace
Xm ⊂ X is

Lm − imαϕ(r) , where ϕ(r) =
1

2πr2
(1− e−r2/4) , r > 0 .

This is of the form (∗) with ε = α−1 and f = ϕ (hence k = 2).
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Spectral and Pseudospectral Estimates

For the operator Hε = −∂2
x + x2 + iε−1f(x) in L2(R) we define

• The spectral lower bound : Σ(ε) = inf Re (σ(Hε)) ,

• The pseudospectral lower bound : Ψ(ε) =
(

sup
λ∈R

‖(Hε − iλ)−1‖
)−1

.

It is easy to verify that Σ(ε) ≥ Ψ(ε) ≥ 1 .

Theorem 5 (I. Gallagher, ThG & F. Nier 2009)
If f(x) ∼ |x|−k as |x| → ∞ , the following estimate holds as ε→ 0 :

Ψ(ε) = O(ε−γ) , where γ =
2

k + 4
.

If moreover f(x) = (1 + x2)−k/2 , then

Σ(ε) ≥ O(ε−κ) , where κ = min
{1

2
,

2

k + 2

}

> γ .

The proof is based on semiclassical subelliptic estimates.
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Constructive Estimates for the Vortex Problem ?

For the linearized operator L − αΛ , we define as before

• The spectral bound in X⊥ : Σ(α) = sup
{

Re (z)
∣

∣

∣
z ∈ σ⊥(α)

}

,

• The pseudospectral bound in X⊥ : Ψ(α) =
(

sup
λ∈R

‖(L⊥−αΛ⊥− iλ)−1‖
)−1

.

‘‘Proposition’’ (work in progress with I. Gallagher)
There exist constants κ > γ > 0 such that

Ψ(α) = O(αγ) and |Σ(α)| = O(ακ) , as |α| → ∞ .

We conjecture that γ = 1/3 , κ = 1/2 as in the model problem with k = 2 .

The pseudospectral exponent γ determines the size of the local basin of
attraction of Oseen’s vortex. The spectral exponent κ gives the asymptotic
decay rate of the perturbations as τ →∞ .
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Formal Asymptotic Expansions

Using a saddle-point analysis in the complex plane and formal semiclassical
arguments, one is led to the following conjecture :

The eigenvalue of L − αΛ in X⊥ with largest real part satisfies

λ0(α) ≈ −
( |α|

16π

)1/2

(1 + i) , as |α| → +∞ ,

and the corresponding eigenfunction has the following expression :

ϕ0(r, θ) ≈ e−
1
4 (r−zα)2 eiθ , where zα ≈

(8i|α|
π

)1/4

.

Observe that ϕ0 ∈ X1 , and that ϕ0 is concentrated in an annulus located at
distance O(|α|1/4) from the origin.

Similar asymptotic expansions can be derived for the principal eigenvalues in
Xm , for each m ≥ 2 .
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Open questions (Lecture 3)

1. Can one prove the optimal spectral and pseudospectral estimates for the
linearized operator at Oseen’s vortex (see the ‘‘Proposition’’ on page 49) ?

2. For the rescaled vorticity equation, can one show that the size of the
(immediate) basin of attraction of Oseen’s vortex αG grows unboundedly as
|α| → ∞ ?

3. Can one justify the formal asymptotic expansion for the leading eigenvalue
on page 50 ?

4. Can one extend the results above to larger function spaces, allowing
algebraic decay of the perturbations at infinity ?
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Headlines of Lecture 4
Interaction of vortices in weakly viscous flows

• Phenomenology of vortex interactions

• The viscous N-vortex solution

• The inviscid limit for rough solutions

• The Helmholtz-Kirchhoff system

• The weak convergence result

• Decomposition of the N-vortex solution, self-similar variables

• The strong convergence result

• Self-interaction effects and higher-order expansions

• Skectch of the proof of the main result

• Open questions
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Interaction of two co-rotating vortices

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

Circulation : Γ =
∫

ωi dx > 0

Separation distance : d > 0

Rotation period : T0 = 2π2d2

Γ

Vortex size : a(t)2 = a(0)2 + 4νt

Reynolds number : Re = Γ
ν

Remark : Re · νT0

d2 = 2π2

ω1 ω2
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Phenomenology of Vortex Interactions

• When two vortices start interacting, each vortex adapts its shape to the
strain field generated by the other vortex. Depending on the initial con-
ditions, oscillations of the vortex ellipticity may be observed during the
adaptation stage.

• After oscillations have disappeared, the system reaches a metastable state
which evolves slowly on a viscous time scale. This regime is characterized
by a single parameter : the ratio a/d of the vortex size to the separation
distance. When this parameter reaches the critical value ≈ 0.44 , the
vortices start merging.

Basic idea : The metastable regime describing the early stage of interaction
of a pair of identical vortices can be computed by solving the two-dimensional
vorticity equation with point vortices as initial data.
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The Viscous N-Vortex Solution

Fix N ∈ N , N ≥ 1 , and choose

x1, . . . , xN ∈ R
2 ,

α1, . . . , αN ∈ R ,

with

with

xi 6= xj

αi 6= 0

for i 6= j ,

for all i .

Given any ν > 0 , let ων(x, t) denote the unique solution of the vorticity
equation (V) with initial data

µ =

N
∑

i=1

αi δ(· − xi) .

In other words, µ is a superposition of N point vortices of circulations
α1, . . . , αN located at the points x1, . . . , xN in R2 . Note that µ does not
depend on the viscosity ν .

Question : What is the behavior of ων(x, t) as ν → 0 ?
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Remarks on the Inviscid Limit

Convergence of solutions of the Navier-Stokes equation to solutions of Euler’s
equation in the vanishing viscosity limit can be established at least for smooth
solutions in domains without boundaries :

• D. Ebin & J. Marsden (1970)
• H. Swann (1971)
• T. Kato (1972)
• Th. Beale & A. Majda (1981) . . .

Some convergence results were also obtained for nonsmooth flows :

• Vortex patches : P. Constantin & J. Wu (1995, 1996), J.-Y. Chemin (1996),
R. Danchin (1997, 1999), H. Abidi & R. Danchin (2004), T. Hmidi (2005,
2006), N. Masmoudi (2007), F. Sueur (2008)

• Vortex sheets : R. Caflisch & M. Sammartino (2006)

• Point vortices : L. Ting & C. Tung (1965), C. Marchioro (1990, 1998)
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N = 1 : The Lamb-Oseen Vortex

When µ = αδ0 , we have an explicit self-similar solution of the vorticity
equation :

ω(x, t) =
α

νt
G
( x√

νt

)

, u(x, t) =
α√
νt

vG
( x√

νt

)

.

Here α ∈ R is a free parameter (the total circulation of the vortex), and

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1− e−|ξ|2/4
)

.

Streamlines of an Oseen vortex

with positive circulation number α
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N > 1 : The Helmholtz-Kirchhoff System

Let z1(t), . . . , zN (t) be the solution of the point vortex system

z′i(t) =
1

2π

∑

j 6=i

αj
(zi(t)− zj(t))

⊥

|zi(t)− zj(t)|2
, zi(0) = xi . (PV)

We fix T > 0 such that (PV) is well-posed on [0, T ] , and we define

− the minimal distance d = min
t∈[0,T ]

min
i 6=j
|zi(t)− zj(t)| > 0 ,

− the turnover time T0 =
d2

|α| , where |α| = |α1|+ . . . + |αN | .

Remarks :

• The system (PV) can be rigorously derived from Euler’s equation, through
an approximation procedure (C. Marchioro & M. Pulvirenti).

• The system (PV) is not always globally well-posed : vortex collisions can
occur in finite time for exceptional initial configurations.
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The Weak Convergence Result

Theorem 6 Suppose that system (PV) is well-posed on the time interval
[0, T ] . Then the solution of (V) with initial data µ =

∑N
i=1 αi δ(· − xi) satisfies

ων(·, t) −−⇀
ν→0

N
∑

i=1

αi δ(· − zi(t)) , for all t ∈ [0, T ] .

A similar result was proved by Marchioro (1990, 1998), who considered initial
data of the form µ =

∑N
i=1 ωε

i (x) , where ωε
i is a smooth vortex patch with

definite sign, of size O(ε) , centered at xi , and such that
∫

R2

ωε
i (x) dx = αε

i −−−→
ε→0

αi .

Convergence is obtained as ε, ν → 0 provided ν ≤ ν0 εβ for some β > 0 .

Theorem 6 is the limiting case ε = 0 , ν → 0 , which is precisely excluded by
Marchioro’s condition.

59



Decomposition of the N-Vortex Solution

For any t ∈ [0, T ] we decompose the N-vortex solution as

ων(x, t) =
N
∑

i=1

ων
i (x, t) , uν(x, t) =

N
∑

i=1

uν
i (x, t) ,

where ων
i (x, t) is the solution of the linear convection-diffusion equation

∂tω
ν
i + (uν · ∇)ων

i = ν∆ων
i , with ων

i (·, t) −−⇀
t→0

αi δ(· − xi) ,

and uν
i (x, t) is obtained from ων

i (x, t) via the Biot-Savart law.

Then ων
i (x, t) has a definite sign (the sign of αi ), and satisfies Gaussian

upper and lower bounds for any fixed ν (Osada 1988, Carlen & Loss 1996).
Moreover,

∫

R2

ων
i (x, t) dx = αi , for i ∈ {1, . . . , N} and t ∈ [0, T ] .
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Self-Similar Variables

Motivated by the exact solution for N = 1 (Oseen’s vortex), we define the
rescaled vorticity wν

i (ξ, t) and the rescaled velocity vν
i (ξ, t) by setting















ων
i (x, t) =

αi

νt
wν

i

(x− zi(t)√
νt

, t
)

,

uν
i (x, t) =

αi√
νt

vν
i

(x− zi(t)√
νt

, t
)

,

i ∈ {1, . . . , N} .

Given any i ∈ {1, . . . , N} we denote by ξ the self-similar variable

ξ =
x− zi(t)√

νt
.

Our goal is to compute an asymptotic expansion of wν
i (ξ, t) as ν → 0 . The first

term in this expansion is the profile G(ξ) of Oseen’s vortex, but higher-order
corrections will be needed to control the remainder terms.
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The Strong Convergence Result

Theorem 7 Suppose that system (PV) is well-posed on the time interval
[0, T ] . Then the rescaled vortex patches of the N-vortex solution ων(x, t)
satisfy, for i ∈ {1, . . . , N} ,

‖wν
i (·, t)−G‖Xβ

= O
(νt

d2

)

, as ν → 0 ,

uniformly for t ∈ (0, T ] .

Here Xβ is the weighted L2 space defined by the norm

‖w‖Xβ
=
(

∫

R2

|w(ξ)|2 eβ|ξ|/4 dξ
)1/2

,

for some small β > 0 , and d = min
t∈[0,T ]

min
i 6=j
|zi(t)− zj(t)| > 0 .

Note that Xβ →֒ L1(R2) , hence Theorem 7 implies Theorem 6.
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Illustration of Theorem 7

t = 0 : point vortices t > 0 : Oseen vortices of size O(
√

νt)

x1

x2x3

x4

x5 x6

z1(t)

z2(t)z3(t)

z4(t)

z5(t) z6(t)

←→
d

The expansion is valid as long as νt≪ d2 , where d is the minimal distance.
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The Self-Interaction Effects

• An isolated Oseen vortex is radially symmetric and does not feel any
self-interaction, no matter how large the Reynolds number is.

• When an external strain field is applied, the vortex becomes elliptical and
is therefore advected by its own velocity field.

• If the Reynolds number is large, this self-interaction effect can be very
strong even if the vortex is nearly symmetric.

General principle : A rapidly rotating Oseen vortex in an external field adapts
its shape in such a way that the self-interaction counterbalances the strain of
the external field (L. Ting & C. Tung, 1965).

This remarkable stability property explains why elliptical vortices can be ad-
vected like rigid bodies in an external field. It is an essential ingredient in the
study of the N-vortex solution.
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The Second-Order Approximation

For ξ ∈ R2 , t ∈ [0, T ] , and i ∈ {1, . . . , N} , we define

wapp
i (ξ, t) = G(ξ) + F (ξ)

∑

j 6=i

αj

αi

νt

|zij(t)|2
(

2
|ξ · zij(t)|2
|ξ|2|zij(t)|2

− 1
)

+ . . . ,

where zij(t) = zi(t)− zj(t) . Here F : R
2 → R+ is a smooth radially symmetric

function satisfying

F (ξ) ∼
{

C1|ξ|2 as |ξ| → 0 ,
C2|ξ|4 e−|ξ|2/4 as |ξ| → ∞ ,

for some C1, C2 > 0 . In polar coordinates ξ = (r cos θ, r sin θ) we have

wapp
i (ξ, t) = g(r) + f(r)

∑

j 6=i

αj

αi

νt

|zij(t)|2
cos
(

2(θ − θij(t))
)

+ . . . ,

where θij(t) is the argument of zij(t) = zi(t)− zj(t) .
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The Final Convergence Result

Theorem 8 Suppose that system (PV) is well-posed on the time interval
[0, T ] . Then the rescaled vortex patches of the N-vortex solution ων(x, t)
satisfy, for i ∈ {1, . . . , N} ,

‖wν
i (·, t)− wapp

i (·, t)‖Xβ
= O

((νt

d2

)3/2)

, as ν → 0 ,

uniformly for t ∈ (0, T ] .

The error term in Theorem 8 is smaller than the non-radially symmetric
corrections to the Gaussian profile in the approximate solution wapp

i (ξ, t) .
These corrections depend on the instantaneous relative positions of the
vortices zi(t)− zj(t) , without oscillations or inertia.

The approximate solution wapp
i (ξ, t) therefore describes, to leading order, the

metastable regime observed in the early stage of vortex interaction.
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Evolution Equation for the Vorticity Profiles (1)

Setting wi(ξ, t) = wν
i (ξ, t) and vi(ξ, t) = vν

i (ξ, t) , we have

t∂twi(ξ, t) +

{ N
∑

j=1

αj

ν
vj

(

ξ +
zij(t)√

νt
, t
)

−
√

t

ν
z′i(t)

}

· ∇wi(ξ, t)

= (Lwi)(ξ, t) ,

(1)

where Lw = ∆w + 1
2ξ · ∇w + w and zij(t) = zi(t)− zj(t) .

To kill the most singular terms as ν → 0 , we set

z′i(t) =

N
∑

j=1

αj√
νt

vG
(zij(t)√

νt

)

, i ∈ {1, . . . , N} . (2)

This is a viscous regularization of the point vortex system (PV) . In particular,
system (2) is globally well-posed for all initial configurations.
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Evolution Equation for the Vorticity Profiles (2)

Replacing (2) into (1) we obtain the evolution system

t∂twi(ξ, t) +
N
∑

j=1

αj

ν

{

vj

(

ξ +
zij(t)√

νt
, t
)

− vG
(zij(t)√

νt

)

}

· ∇wi(ξ, t)

= (Lwi)(ξ, t) ,

(3)

which is still singular in the limit ν → 0 .

The Cauchy problem for (3) is not well-posed at t = 0 , because of the singular
term t∂t . A possible way to avoid this difficulty is to introduce a logarithmic
time

τ = log
( t

T

)

∈ (−∞, 0] ,

so that ∂τ = t∂t . We then look for a solution of (3) satisfying wi(ξ, t) → G(ξ)
as t→ 0 (that is, as τ → −∞). This is possible because LG = 0 .
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Residuum of the First-Order Approximation

Replacing wi(ξ, t) = G(ξ) , vi(ξ, t) = vG(ξ) into (3) we obtain a residuum

R
(1)
i (ξ, t) =

∑

j 6=i

αj

ν

{

vG
(

ξ +
zij(t)√

νt

)

− vG
(zij(t)√

νt

)

}

· ∇G(ξ) .

Since |zij(t)| = |zi(t)− zj(t)| ≥ d , we have the asymptotic expansion

R
(1)
i (ξ, t) =

αit

d2

{

Ai(ξ, t) +
(νt

d2

)1/2

Bi(ξ, t) +O
(νt

d2

)

}

,

where

Ai(ξ, t) =
d2

2π

∑

j 6=i

αj

αi

(ξ · zij(t))(ξ · zij(t)
⊥)

|zij(t)|4
G(ξ) ,

Bi(ξ, t) =
d3

4π

∑

j 6=i

αj

αi

(ξ · zij(t)
⊥)

|zij(t)|6
(

|ξ|2|zij(t)|2 − 4(ξ · zij(t))
2
)

G(ξ) .
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Higher-Order Approximation of the Solution

We look for an approximate solution of (3) in the form

wapp
i (ξ, t) = G(ξ) +

(νt

d2

)

Fi(ξ, t) +
(νt

d2

)3/2

Hi(ξ, t) ,

vapp
i (ξ, t) = vG(ξ) +

(νt

d2

)

vFi(ξ, t) +
(νt

d2

)3/2

vHi(ξ, t) ,

where the profiles Fi(ξ, t) , Hi(ξ, t) are determined so as to minimize the error
terms.

To first order we have

R
(2)
i (ξ, t) =

αit

d2

{

vG(ξ) · ∇Fi(ξ, t) + vFi(ξ, t) · ∇G(ξ) + Ai(ξ, t) +O
(νt

d2

)
1
2
}

,

hence we would like to set ΛFi(ξ, t) + Ai(ξ, t) = 0 , where Λ is the integro-
differential operator

Λw = vG · ∇w + v · ∇G , with v = K ∗ w .
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Elliptic Equation for the First Correction Term

Since Ai(·, t) lies in the subspace X2 ⊂ ker(Λ)⊥ = Im (Λ) , one can show that
the equation ΛFi(ξ, t) + Ai(ξ, t) = 0 has a unique solution in X2 :

Fi(ξ, t) = F (ξ)
∑

j 6=i

αj

αi

νt

|zij(t)|2
(

2
|ξ · zij(t)|2
|ξ|2|zij(t)|2

− 1
)

.

Here F (ξ) = f(|ξ|) and the profile f is determined as follows.

Let h(r) = (r2/4)(er2/4 − 1)−1 and let Ω : (0,∞) → R be the unique solution
of the second-order ODE

−1

r
(rΩ′(r))′ +

( 4

r2
− h(r)

)

Ω(r) =
r2h(r)

4π
, r > 0 ,

such that Ω(r) ≈ C1 r2 as r → 0 , and Ω(r) ≈ C2 r−2 as r →∞ . Then

f(r) = −1

r
(rΩ′(r))′ +

4

r2
Ω(r) ≡ h(r)

(

Ω(r) +
r2

4π

)

, r > 0 .
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Residuum of the Higher-Order Approximations

First step : If Fi(ξ, t) is chosen so that ΛFi(ξ, t) + Ai(ξ, t) = 0 , the error term
satisfies

|R(2)
i (ξ, t)| ≤ C

|αi|t
d2

(νt

d2

)1/2

e−β|ξ|2/4 , ξ ∈ R
2 , t ∈ [0, T ] .

Second step : If Hi(ξ, t) is chosen so that ΛHi(ξ, t) + Bi(ξ, t) = 0 , the error
term satisfies

|R(3)
i (ξ, t)| ≤ C

|αi|t
d2

(νt

d2

)

e−β|ξ|2/4 , ξ ∈ R
2 , t ∈ [0, T ] .

Third step : A similar, but more complicated procedure allows to obtain an error
term satisfying

|R(4)
i (ξ, t)| ≤ C

|αi|t
d2

(νt

d2

)3/2

e−β|ξ|2/4 , ξ ∈ R
2 , t ∈ [0, T ] .
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Evolution Equation for the Remainder

Setting wi(ξ, t) = wapp
i (ξ, t) + w̃i(ξ, t) , vi(ξ, t) = vapp

i (ξ, t) + ṽi(ξ, t) , we obtain
for the remainder w̃i , ṽi the evolution system

t∂tw̃i(ξ, t)− (Lw̃i)(ξ, t)

+
αi

ν

(

vapp
i (ξ, t) · ∇w̃i(ξ, t) + ṽi(ξ, t) · ∇wapp

i (ξ, t)
)

+
∑

j 6=i

αj

ν

{

vapp
j

(

ξ +
zij(t)√

νt
, t
)

− vG
(zij(t)√

νt

)

}

· ∇w̃i(ξ, t)

+
∑

j 6=i

αj

ν
ṽj

(

ξ +
zij(t)√

νt
, t
)

· ∇wapp
i (ξ, t)

+

N
∑

j=1

αj

ν
ṽj

(

ξ +
zij(t)√

νt
, t
)

· ∇w̃i(ξ, t) + R
(4)
i (ξ, t) = 0 ,

(4)

which is now ‘‘nonsingular’’ in the limit ν → 0 .
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Control of the Remainder (1)

To bound the remainder w̃i(ξ, t) we introduce a weighted energy :

E(t) =
N
∑

i=1

∫

R2

pi(ξ, t)|w̃i(ξ, t)|2 dξ .

If T > 0 is small with respect to the turnover time

T0 =
d2

|α| , where |α| = |α1|+ . . . + |αN | ,

we can take pi(ξ, t) = pa(t)(ξ) for i = 1, . . . , N , where a(t) = d/(3
√

νt) and

pa(ξ) =







e|ξ|
2/4 if |ξ| ≤ a ,

ea2/4 if a ≤ |ξ| ≤ Ka ,
e|ξ|

2/(4K2) if |ξ| ≥ Ka ,

for some K ≫ 1 . We then have e|ξ|
2/(4K2) ≤ pi(ξ, t) ≤ e|ξ|

2/4 for all x and t .
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Control of the Remainder (2)

With this choice, we obtain from (4) a differential inequality for the weighted
energy E(t) , which can be integrated using Gronwall’s lemma and yields the
bound :

∫

R2

e
β|ξ|2

4K2

(

|w̃1(ξ, t)|2 + . . . + |w̃N (ξ, t)|2
)

dξ ≤ E(t) ≤ C
(νt

d2

)3

.

This concludes the proof of Theorem 8 if T ≪ T0 .

In the general case, one has to introduce more complicated weights, which
can be constructed using the same procedure as the approximate solution
itself. These weights satisfy eβ|ξ|/4 ≤ pi(ξ, t) ≤ e|ξ|

2/4 , for some small β > 0
depending only on T/T0 . We thus obtain the weaker estimate :

∫

R2

e
β|ξ|
4

(

|w̃1(ξ, t)|2 + . . . + |w̃N (ξ, t)|2
)

dξ ≤ E(t) ≤ C
(νt

d2

)3

,

which implies the desired conclusion.
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Open questions (Lecture 4)

1. Can one control the inviscid limit in the case where, in addition to point
vortices, the initial measure contains a smooth component, or a vortex patch ?

2. Can one control the viscous N-vortex solution in a bounded domain (with
nonslip boundary conditions) or on a manifold ?

3. Is it possible to carry on to arbitrarily high orders the large-Reynolds-number
expansion used in the proof of Theorem 8 ?

4. Can one follow the interaction of a vortex pair closer to the point where
merging occurs ?

5. In the exceptional case where the point vortex system is not globally
well-posed, what is the vanishing viscosity limit of the N-vortex solution after
the first collision time ?
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