SOBOLEV HOMEOMORPHISM WITH ZERO JACOBIAN ALMOST
EVERYWHERE

STANISLAV HENCL

ABSTRACT. Let 1 < p < N. We construct a homeomorphism f in the Sobolev
space WP((0,1)V,(0,1)") such that J; = 0 almost everywhere.

1. INTRODUCTION

In this paper we address the following issue. Suppose that © C RY is an open
set and f : Q — RY is a homeomorphism of the Sobolev class WP(Q,RY), p > 1.
Here W1P(Q, RY) consists of all p-integrable mappings of 2 into RY whose coordinate
functions have p-integrable distributional derivatives. How big can be the zero set
of the jacobian J; (the determinant of the matrix of derivatives)? Is it possible that
Jy = 0 almost everywhere?

Let us mention some strange consequences of the existence of a mapping such that
Jr =0 a.e. The area formula for Sobolev mappings (see e.g. [2]) holds up to a set of

measure zero Z, i.e.
o= [ nw=[ 1-r.r@)\2),
o\Zz f(\2)

but £,(Q\ Z) = L,(Q). It also follows that
Lo(Z)=0 but L.(f(2) = L.(F(Q)).

It means that such a mapping would simultaneously send a null set to a set of full
measure and a set of full measure to a null set.

Let us recall that it is possible to construct a Lipschitz homeomorphism which
maps a set of positive measure to a null set (see e.g. [7], [5]) and thus J; = 0 on a
set of positive measure. However the simple iteration of this construction does not
work because the Sobolev norm of such a mapping would grow too fast. Indeed, the
standard counterexamples ([10], [5]) are mappings of finite distortion (see [1] or [4] for
basic properties and applications), i.e. Jy > 0 and Jy(z) =0 = |Df(z)| =0 a.e. Itis
easy to see that if a homeomorphism is a mapping of finite distortion, then it cannot
satisfy Jy = 0 a.e. Otherwise |Df| = 0 a.e. and the absolute continuity on almost
all lines easily give us a contradiction. It means that for such a homeomorphism we
would need to invent the novel construction.

For each 1 < p < N it is also possible to construct a homeomorphism f €
Whr((0,1)N,RY) such that f maps a null set to a set of positive measure (see [10] and
[6]). On the other hand each homeomorphism in the Sobolev space W ((0, 1)V, RY)
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satisfies the Lusin (V) condition [8] and therefore the image of each null set is a null
set, in particular there is no homeomorphism in W such that J; = 0 a.e. We show
that surprisingly such a strange mapping exists for any 1 < p < N.

Theorem 1.1. Let 1 < p < N. There is a homeomorphism f € WH?((0, 1)V, (0, 1))
such that J¢(x) = 0 almost everywhere.

Our research is motivated by our interest in geometric function theory, where the
nonnegativity (or positivity) of the jacobian is a standing assumption. Our result
implies that far from the natural space W'V we can have serious difficulties with
the development of the reasonable theory. For an overview of the field, discussion of
interdisciplinary links and further references see [4].

It was shown by Miiller [9] that there is a mapping f € WHP((0, 1)V RY), 1 <p <
N, such that the distributional jacobian is a singular measure supported on some set
of prescribed Hausdorff dimension o € (0, V). If we take any N — 1 < p < N, then
the distributional jacobian (see e.g. [4] or [9] for the definition and basic properties) is
well-defined for continuous mappings. It follows from our result and its construction
that there is even a homeomorphism such that the distributional jacobian is a singular
measure (see Remark 7.1).

Our research was also partially motivated by the following recent result [3]: Let
Q) C R?® and let f € WH(Q,R?) be a sense-preserving homeomorphism. Then J; > 0
almost everywhere. It follows from Theorem 1.1 that the converse implication is not
valid, because now we can construct a sense-reversing Sobolev homeomorphism such
that J; = 0 almost everywhere.

It will be essential for us to construct a mapping which is not a mapping of finite
distortion. We will construct a sequence of homeomorphisms F; which will eventually
converge to f and disjoint Cantor type sets C; of positive measure such that Jp, =
0 a.e. on C;. For N = 2 the mapping Fj for j odd will squeeze the sets C; in
the horizontal direction and the derivative in the vertical direction will be non-zero.
Analogously F} for j even will squeeze the sets C; in the vertical direction and the
derivative in the horizontal direction will be non-zero.

At the end we will need to estimate the derivatives of our functions F; and since
they will be composition of finitely many functions on some properly chosen sets,
we will use the chain rule to compute the derivative as a product of finitely many
matrices. Another key ingredient of our construction will be a fact that all the
matrices in the construction will be almost diagonal. That means that the stretching
in the horizontal and vertical direction do not multiply and thus the derivative is not
big and the norm is finite.

For simplicity we will give the details of the whole construction only for N = 2 and
in the last section we will briefly outline how to proceed with general N > 2. From
some technical reasons we construct a mapping from some rhomboid onto the same
rhomboid and not from the unit cube onto the unit cube. This difference is of course
immaterial.

We will use the usual convention that ¢ denotes a generic constant whose value may
change at each occurrence but for fixed N and 1 < p < N it is an absolute constant.
We write ¢(j) if the value may also depend on some additional parameter j.
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2. BASIC BUILDING BLOCK

We begin by defining “building blocks”. For 0 < w and s € (0, 1), we denote the
diamond of width w by

Q(w) = {(z,y) e R? : [z] < w(1—[y])}.
We will often work with the inner smaller diamond and the outer annular diamond
defined as
1w, s) = Q(ws) and O(w, s) = Q(w) \ Qws).
Given parameters s, s’ € (0, 1), we will repeatedly employ the mapping ¢, s« Q(w) —
Q(w) defined by

ouev(ey) = 4 (=) e Fsgn(@)(1 = lyhw (1= 5=5) ) (@.9) € Ofw,s),
B ((S)x,y) (x,y) € I(w,s).
If s < s, then this linear homeomorphism horizontally compresses I(w,s) onto

I(w, s"), while stretching O(w, s) onto O(w, s’). Note that ¢, s« is the identity on
the boundary of Q(w).

wN\w P ws' \w

Fig. 1. The mapping ¢, s s

If (o, yo) is an interior point of I(w,s), then

£0
2.) Dpwestenm) = 5 )
and if (zg, yo) is an interior point of O(w, s) and yy # 0, then
—s' . 1 — 1-¢
(22) D@w,s,s/(%,yo) - ( ( Sgn iCoyo 1 ( 1_5) ) .

Note that by choosing w sufficiently small we can make the matrix arbitrarily close
to diagonal matrix.

Suppose that @ is a scaled and translated version of Q(w). We define 908,5,3' to
be the corresponding scaled and translated version of ¢, . By I3 and Og we will
denote the corresponding inner diamond and outer annular diamond.

Suppose that P is a scaled and translated copy of a rotated diamond

P(w) = {(z,y) € R*: [y| <w(l — |a])}.

We define ¢, , to be the corresponding rotated, scaled and translated version of
Pu,s,s- That is ¢l , maps P onto P and is the identity on the boundary. We will
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also use a notation I} and O for the corresponding inner diamond and outer annular
diamond.

3. CHOICE OF PARAMETERS

Let 1 < p < 2. We can clearly fix t > 1 such that

m 1
1 10772 < —
(3.1) 0 62t <3
For k € N, we set
k41 1 , k
(32) Wy = tk2——1’ Sk — 1— @ and S = Skk——i—l

In this case,

1—s, th*+k

3.3 =
( ) 1—Sk kE+1

1—s, th? — 1
and ( id: — 1>wk = T Wp = 1.

It is also easy to check that 0 < s, < 1 and

00
H s; > 0.
=1

4. CONSTRUCTION OF F}

Let us denote @y := Q(w;). We will construct a sequence of bi-Lipschitz mappings
fe1: Qo — Qo and our mapping Fy € WP(Q, R?) will be later defined as Fi(z) =
im0 fr1(z). We will also construct a Cantor-type set Cy of positive measure such
that Jr, = 0 almost everywhere on C}.

We define a sequence of families { Qy 1 } of building blocks, and a sequence of home-
omorphisms fi1: Qo — Qo. Let Q11 = {Q(w1)} = {Qo}, and define f11: Qo — Qo
by

f1,1($7 y) = 9011)1,51,8’1 (IE, y)

Clearly f; is a bi-Lipschitz homeomorphism. Now each fj; will equal to f;; on the
set G11 := O(wy, s1) and it remains to define it on Ry ; := I(wy, s1). Clearly

Lo(G11) = (1 = 51)L2(Qo) and Lo(R11) = 51L2(Qo).

Let Qs be any collection of disjoint, scaled and translated copies of Q(ws) which
covers f11(R11) = I(wy, s}) up to a set of measure zero. That is any two elements of
Q, 1 have disjoint interiors, and there is a set Eo; C I(wy, s}) of measure 0 such that

I(wy, s1) \ Ean C U Q C I(w, s)).
QEQ2 1
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Fig. 2. Sketch of family Qs

Clearly such a collection exists. Note that if () € Qs , then the inverse image of @
under f;; is a scaled and translated copy of Q(%wg) = Q(2w,) and

I(wy, 51) \ (fra) " (Ban) € U (f1.0)7H(Q) C I(wy, s1).

QEQ21

Note that J;, , # 0 a.e. and hence the inverse image of a null set E5; has measure
Z€ero.

We define fo1: Qo — Qo by

_ ng 52,8/, f11($ y) f1,1($’y) € Q € QQ,la
fon(w,y) = 252

fia(z, y) otherwise.

It is not difficult to check that f5; is a bi-Lipschitz homeomorphism. From now on
cach fi1 will equal to fy; on

G1,1 UGy, where Gy := f1—11< U OZ;)

QeQ2
and it remains to define it on
R271 = f£11< U ]52>
Q€21

Since each fi- 1(Q) is a scaled and translated copy of our basic building block and the
ratio s, is fixed, we obtain

Lo(G21) = Z Ez fll 052 Z £2 O;il(Q

QeQ21 QEQ2
= Z (1 - 52)52 (ffll(Q)) = (1 - 52)['2(1“21,1)-
QEQ21

It is also easy to see that
52(R2,1) = 8252(31,1)-

We continue inductively. Assume that O 1, fi1, Gr1 and Ry have already been
defined. We find a family of disjoint scaled and translated copies of Q(wg,1) that
cover fi1(Ry1) up to a set of measure zero Fy 1. Define ppi11: Qo — Qo by
Ort1,1(2,y) = {wgkﬂ’%ﬂ’%ﬂ(x’y) (z.y) € Q € Qi1

(z,y) otherwise.
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The mapping fry11: Qo — Qo is now defined by ¢p41,1 © fi1. Clearly each mapping
fr+1,1 1s a bi-Lipschitz homeomorphism. We further define the sets

Gry1 i= fﬁ( U OZ;“) and Rgy1,1 := fk_11< U [-3“)'
QEQk+1,1 QE€Qk+1,1
Again it is not difficult to check that
Lo(Gri11) = (1 — sp41)L2(Re1) and Lo(Ris11) = Sk+1La(Ryr)-
Using £2(G1,1) = (1 — 51)L2(Qo) and Lo(Ry 1) = 51L2(Q) we easily obtain
(41) EQ(Rk,l) = 5189 Skﬁg(Qo) and LQ(Gk’l) = S1S89 " Sk_l(l — Sk)CQ(QO).
It follows that the resulting Cantor type set

Cl = m Rk,l
k=1
satisfies
ﬁg(cl) = £2(Q0) HSZ‘ > 0.
=1

It is clear from the construction that f;; converge uniformly and hence the limiting
map Fi(x) := limy_ fr1(x) exists and is continuous. It is not difficult to check that
F7i is a one-to-one mapping of )y onto ()y. Since )y is compact and Fj is continuous
we obtain that F} is a homeomorphism. It remains to verify that fj; form a Cauchy
sequence in W17 and thus Fy € WhP(Q,, R?).

Let us estimate the derivative of our functions f,, 1. Let us fix m, k € N such that

m>k. If Q€ Q1 and (z,y) € int(fk,l)*l(]g“), then we have squeezed our diamond
k-times. Using (2.1), (3.2) and the chain rule we obtain

0 L0
(4.2 Dt =TI( 5 V)= (5 V).

Moreover, if (z,y) € int( fm71)*1(OSQ;°), then we have squeezed our diamond k—1 times
and then we have stretched it once. It follows from (2.1), (3.2), (2.2), (3.3) and the
chain rule that

th2+k j: (tk2—1> Wi k—1 'i O
— k+1 k+1 | | i+1
Dfm,l (1:7 y) < 0 1 0 1

i=1
tk>+k
— k(kil) +1 )
0 1

Now let us fix m,n € N, m > n. Since f,1 = f,,1 outside of R,,; we obtain

D(frs — frn) P = / DUt — )

Rn,l

(4.3)

Qo

<[ bt [ g DRl Y [ DSl
Rn,l\Rm,l Rm,l Gk,l

k=n+1
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From (4.2) and (4.1) we obtain
[ Dl < sl \ ) "0
Rn,l\Rm,l

and

1 1 p c oo
Dt~ Dl < e - L) e € _wg
/Rm,1| Jm1 Jal _Cn—l—l m+1/ ~ (n+ 1) -

From (4.3) and (4.1) we obtain

= » = th* + & \r
Z /Gk,l |Dfralf <c Z £2<Gk,l)(m>

k=n+1 k=n+1
“ th* + k \p
o3 o (Eh)
k=n+1 k(k + 1)
<c i i P390,
- tk2
k=n-+1

It follows that the sequence D f; is Cauchy in LP and thus we can easily obtain that
fr1 is Cauchy in WP, Since f;; converge to F} uniformly we obtain that Fy € W?.

From (4.2) we obtain that the derivative of f;; on Ry, and especially on C; equals
to

Dfyi(z,y) = < T (1) ) -

Since D fy1 converge to DF} in LP we obtain that for almost every (z,y) € C; we

have
0 0

and therefore Jr, (z,y) = 0. From now on each Fj, will equal to F; on C; and we need
to define it only on Qg \ C;. Moreover it is easy to see from the construction that
Jr, # 0 a.e. on Qg \ Cy. It follows that the preimage of each null set in F1(Qg \ C)
has zero measure.

5. CONSTRUCTION OF Fjy

We will construct a sequence of homeomorphisms f; 2 : Qo — Qo and our mapping
Fy € Wh(Qo,R?) will be later defined as Fy(z) = limj_o fro(z). We will also
construct a Cantor-type set Cy C Qo \ Cy of positive measure such that Jg, = 0
almost everywhere on Cj.

The set C) is closed and thus we can find Q; 2, a collection of disjoint, scaled and
translated copies of P(w;) which cover F(Qo \ C1) up to a set of measure zero E ».
We will moreover require two additional properties. We know that Qg \ Cy is equal
up to a set of measure zero to | J;2, G, 1. Hence we will also require that

(5.1) for each P € Q) 5 there is [ € N such that F '(P) C G.

Secondly, we know that Jp, is constant in each diamond from G;; (see (2.2)) and
thus we may assume that F, '(P) is a subset of one diamond and thus

(5.2) Jr (x1,91) = Jp, (%2, y0) for every (z1,y1), (w2,92) € Fy ' (P).
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This fact, Lo(I7) = 51L2(P) and L2(Op) = (1 — s1)L2(P) imply that
[Q(Fl—l(flsgl)) = Slﬁg(Fl_l(P)) and EQ(F{I(O?)) = (]. - Sl)EQ(Fl_I(P))
We define f12: Qo — Qo by

P . o Fi(z,y) Fi(z,y) € P € Qy2,

gpwl 51,8
x’ — 9L, .
fl,Z( y) { F (x, y) otherwise.

It is not difficult to check that f;2 is a homeomorphism. Moreover it is a witp
mapping since it is a composition of a Sobolev and bi-Lipschitz mapping. From now
on each f; o will equal to fi2 on

C1 UGy 2, where G5 1= F1_1< U Of})
PeQ 2
and it remains to define it on
Riy = F1‘1< U 1;_.,1).
PcQi1p2
Let us note that Jp # 0 on () \ C; and thus the preimage of the null set E; o under
Fi is a null set. Clearly
Lo(F1(Ri2)) = 51L5 (Fl(Qo \ 01)) and Lo(F1(Gr2)) = (1 — s1)Ls (Fl(Qo \ 01))-

We continue inductively. Assume that O o, fr2, G2 and Ry o have already been
defined. We find a family of disjoint scaled and translated copies of P(wgy1) that
cover fra(Ry2) up to a set of measure zero Fg 1. Define pgi19: Qo — Qo by

QOP (I,y) (x7y> cPc Qk+1,27
90k+1,2(967 Z/) =

wk+175k+178;+1
The mapping fry12: Qo — Qo is now defined by ¢p412 0 fi 2. Clearly each mapping
fr+12 is a homeomorphism. Moreover it is a W!* mapping since it is a composition
of a Sobolev and bi-Lipschitz mapping. We further define the sets

Gri12 i= fk_zl( U O?“) and Ryy19 1= fk_zl( U [}i’m)-

PeQki1,2 PeQki1,2

(z,y) otherwise.

The linear maps ¢;2, 1 < j < k, on inner diamonds do not change the ratio of

volumes of P and Ofp’““. Therefore we obtain that

Lo(Fi(Gry12)) = (1 = sp41)La(F1(Ri2)) and Lo(F1(Rey12)) = sk La(F1(Ry2)).

Analogously as before we obtain

Lo(Fi(Ry2)) = s152- - 5,.La(F1(Qo \ C1))
and
Lo(F1(Gra)) = 5182+ sp_1(1 — s) L2 (F1(Qo \ C1)).
Therefore using (5.2) we obtain that
(5.3) Lo(Ry2) = 152+ - spLa (Qo \ Cl)

and

L(Gra) = 5182+ sp1(1 = s£)L2(Qo \ C1).
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Since the sets P are uniformly placed among Fi(Gy1) (see (5.1)) we can moreover
obtain the similar estimate on each G, [ € N. Therefore

(54) £2(Gk72 N Gl,l) = S189 " Sk_l(l - Sk-)EQ(Gl,l).
It follows from (5.3) that the resulting Cantor type set
CQ = ﬂ Rk72
k=1
satisfies

EQ(CQ) = EQ(QO \ Cl) H s; > 0.
i=1

It is clear from the construction that f; o converge uniformly and hence it is not
difficult to check that the limiting map Fy(x) := limg_o fr2(x) exists and is a home-
omorphism. It remains to verify that fj o form a Cauchy sequence in WP and thus
Fy € WP (Qo, R?).

Let us estimate the derivative of our functions f,, 2. Let us fix m, k € N such that
m >k If R € Qyand (z,y) € int(fro) *(I;¥), then after applying F; we have
squeezed our diamond k-times. Analogously to (4.2) we can use (2.1), (3.2) and the
chain rule to obtain

55 Dhate) = (o ) DR,

Moreover, if (x,y) € int( fm72)’1(0f_%), then after applying F; we have squeezed our
diamond k — 1 times and then we have stretched it once. Analogously to (4.3) we can
use (2.1), (3.2), (2.2), (3.3) and the chain rule to obtain that

1 0 10
Dfma(z,y) = + (tii;l) w tl]i:—lk ( 0o L ) DFy(x,y)

( 1 0 )DF( )
= k2+k 1\Z,Y)-
+1 ;i(kin

e

(5.6)

Now let us fix m,n € N, m > n. Since f, 2 = fi2 outside of R, » we obtain

Dz — foo)l? = / Dz — fus)l?

QO Rn,Q

S/ ’Dfn,2|p+/ ’Dfm,Q_Dfn,2|p+ Z / |Dfm,2|p-
Ry 2\Rm,2 R 2 G2

k=n-+1
By (5.5) we get

/ Dfalf < c/ IDEP "5 0
Rn,Q\Rm,Q Rn,Q\Rm,Q

since DFy € L? and L9(R,,2 \ Rim2) — 0. From (5.5) we obtain

C n—oo
Df,o—Df,sof < —u— DF,P "= 0.
[¥2|f,2 f2|_<n+np[;2| |
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Clearly

t2+1 2+l
(5.7) ( :I:ll tk20+k ) ( oy Tl ) _ z(g-zazl i1k2+k ‘
k(k+1) 0 1 j:l(z+1) +1+ E(k+1)

Thus we may use (4.3), (5.6), (4.1) and (5.4) to obtain

Z/ Diwal< 3 Z/ D fl?

k=n+1 k=n+1 1=1 Y Gk,2NG11
m oo ltll2+l +1 p
1
é Z Z £2(Gk’2 a Gl 1) :l:(t-l'—z-zl +1+ tk*+k
(5.8) k=n+1 I=1 I(1+1) k(k+1)
' mo 24k HE A1\
< (1 — 1) (1 — )07 (max{ , })
kzmzl k(k+1) (1 +1)

“MS

| St e 3

k= n+1

It follows that the sequence D fj, o is Cauchy in L? and thus we can easily obtain that
fr2 is Cauchy in WP, Since fi o converge to Fy uniformly we obtain that Fy € W2,

From (5.5) we obtain that the derivative of f; 2 on Ry o and especially on Cy equals
to

D fro(z,y) = < é % )DFl(a:,y).

Since D fy o converge to DF, in LP we obtain that for almost every (z,y) € Cy we
have

(1 0
Jr,(2,y) = det(klggo < 0 L )DFl(x,y)> —0.

From now on each Fj, will equal to F» on C; U Cy and we need to define it only on
Qo \ (C1 U Cy). Analogously as before Jp, # 0 a.e. on Qg \ (C; U Cy) and thus the
preimages of the exceptional null sets will be null sets.

6. CONSTRUCTION OF GENERAL F;

Assume that the mapping F;_; and the Cantor type set C;_; have already been
defined. We will construct a sequence of homeomorphisms f;; : Qo — (o and our
mapping F; € WP(Qo, R?) will be later defined as Fj;(z) = limy_.o, fi;(z). We will
also construct a Cantor-type set C; C Qp \ (U2} C;) of positive measure such that
Jr, = 0 almost everywhere on Cj.

The set C' := U/_{C; is closed and thus we can find Q, ;, a collection of disjoint,
scaled and translated copies of P(w;) for j even (or copies of Q(w;) for j odd) which
cover Fi(Qo \ C) up to a set of measure zero. From now on we will assume that j is
even but it will be clear that the proof works with obvious minor modifications also
for j odd. We will moreover require that

(6.1)  for each P € Qy; there are ki, ..., k;_1 € N such that F, | (P) C ﬂ G, i
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and that Fj’_ll(P) is a subset of a single diamond from the previous construction and
thus

(6.2) Jr, o (w1,91) = Jry_, (22, 12) for every (w1,41), (22,12) € Ff_ll(P).
We define f;;: Qo — Qo by

frj(zy) = {

It is not difficult to check that f ; is a Sobolev homeomorphism since it is a composi-
tion of a Sobolev and bi-Lipschitz mapping. From now on each f; ; will equal to fi ;
on

905;1,31,3’1 © Fj—l(x7y) F}—l(xvy) €Pe QlJ?
Fi_1(z,y) otherwise.

C UG, where Gy := F111( U 01831)

J

and it remains to define it on
Rl,j = F]zll( U I;;l>
PcQy ;
Clearly
Ly(Fj1(Ru;)) = s1L2(Fj-1(Qo \ 0)) and
La(Fj-1(Gry)) = (1 = s1)La(Fj-1(Qo \ O)).
We continue inductively. Assume that Qy ;, fi;, Gr; and Ry ; have already been

defined. We find a family of disjoint scaled and translated copies of P(wgy1) that
cover fi i(Ry ;) up to a set of measure zero Ej1 ;. Define py11,;: Qo — Qo by

@5“1,3“1,5;“(%(@) (x,y) ePe Qk+1,j>

(z,y) otherwise.

Pr+1,5 (% y) = {

The mapping fry1,;: Qo — Qo is now defined by @11 o fi ;. Clearly each mapping
fr+1,; 15 a Sobolev homeomorphism since it is a composition of a Sobolev and bi-
Lipschitz mapping. We further define the sets

. -1 S . -1 s
Gk-{—l,j = ka ( U 0Pk+1> and Rk—‘rl,j = fk,2 ( U ka+l).
PeQy1,4 PeQyq1,5

The linear maps ¢; j, 1 < ¢ < k, on inner diamonds do not change the ratio of volumes
of P and Op*'. Therefore we obtain that

Lo(Fj1(Griry)) = (I=sp1) Lo(Fia(Br;)) and Lo(Fj1(Rer)) = ser1La(Fjoa(Ri,y))-
Analogously as before we obtain using (6.2) that

Lo(Rij) = s155 - 5,L2(Qo \ O)
and
Lo(Gry) = s182- - sp—1(1 — s5)L2(Qo \ O).
Since the sets P are uniformly placed among F;_1(G,;) (see (6.1)) we moreover obtain

that
j—1

J
(6.3) Lo([)Gri) = s182 -+ si-1(1 = s1,)L2([") Ca) -
=1

i=1
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It follows that the resulting Cantor type set

Cj = ﬂ Rk’j
k=1
satisfies
(6.4) L2(C) = L2(Qo \ C) [ [ 5: > 0.
i=1

It is clear from the construction that f; ; converge uniformly and hence it is not
difficult to check that the limiting map F}(x) := limy_.» fi ;(x) exists and is a home-
omorphism. It remains to verify that f;; form a Cauchy sequence in W'? and thus
Fj S Wl’p(Qo,RZ).

Let us estimate the derivative of our functions f,, ;. Let us fix m, k € N such that
m > k. If R e Qy; and (z,y) € int(fkvj)*l(lg“), then after applying F;_; we have
squeezed our diamond k-times. Analogously to (4.2) we can use (2.1), (3.2) and the
chain rule to obtain

(65) Dhsten = (g L) DE)

Moreover, if (z,y) € int(fmd)*l(O;z“), then after applying F;_; we have squeezed our
diamond k — 1 times and then we have stretched it once. Analogously to (4.3) we can
use (2.1), (3.2), (2.2), (3.3) and the chain rule to obtain that

1 0 1
Dfm,j(-ra y) = + <tii—11) wy t]]zj__l’ik ( 0

< 1 0 )DF (2.7)
= k2+k -1\, Y)-
+1 I:(kjr_l) !

) DF;_1(z,y)

I O

(6.6)

Now let us fix m,n € N, m > n. Since f, ; = f,,; outside of R, ; we obtain

Dlfns = )P = [ 1DUs = £u)P

Qo Rn

<[ Rt [ DDl 3 [ Dl
Ry i \Rm,; R Gh,j

m,j k=n-+1

By (6.5) we get

/ Dfu,lP < c / IDF,_, [P "5 0
Ry j\Rm,j Ry j\Rm,j

since DF;_y € L? and Lo(R,,; \ Rm ;) — 0. From (6.5) we obtain

& n—oo
Df,:,—Dfnilf < —-— DE;,_? 0.
/Rm,j| f 2] f,]| _(n+1)p/R | J 1| —

m,j

. In the estimate of the norm of the derivative we use the

Let us denote d; := it(iiﬁ")

chain rule and then we multiply couples of adjacent matrices as in (5.7). Later we
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estimate the norm of the product by the product of norms. Then we use (6.6), (6.3),

S 4 w = ﬁ and we proceed similarly to (5.8)
(6.7)

Z/ PINEDS Z L, 1P

k=n+1 kej=n+1ky,...k;j_1=1"Ni=1 Gkj.i

C Z Z £2 ﬂGk i 10p max{dkl,de}p <107 max{dkjfl,dkj}p
kj=n+1k1,. kj_1=1 =1

o0 m

tP tP
107 ) ( 1op—> - ( 10— )
( Z tk?tk? Z th2tk? 2. Z th? | tk?
k1,ko=1 k]—n—l-lk] 1=1
d Ea T i 1
c<1op§tp2) ~<1op€tf’*2 Z p) 2.
kj=n+1 J

As before this implies that F; € W? and similarly we also obtain that .J F; = 0 almost
everywhere on Cj and that Jr, # 0 almost everywhere on Qo \ C.

7. PROPERTIES OF f

Now we define f(z) = lim;_,o, Fj(x). Since F; converge uniformly it is easy to see
that f is a homeomorphism. It remains to show that DF} is Cauchy in L” and thus
FeWwhr. '

Since Fj = F;_; on | J/_] C; we obtain

|D(Fj — Fj1)[ S/ (IDE;IP + |DF; 1 F) +Z/G (IDE;P + |DE; 1 [7).
k=1 k.j

Qo C

We will proceed analogously to (6.7) but we will estimate the multiplicative constant
more carefully. Again we will suppose that j is even but everything works for j odd
analogously. Analogously to (6.7) we can use (3.1) to obtain

> / (IDEP -+ DF;P) <
k=1" Gk k

o0

> [ (bEP+IDELP)

Looy=17 izt Gy i

Z EQ ﬂGk i 10 max{dkl,db}p 10p max{dk] 19 }p
k1,..,kj=1 =1
4

1\ 3
<ec(10P— tp2) < (—)
c< 0 2 <3
From (6.5) we know that
0
L

k+1

Dhsen = (g L) DEen
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on C;. Since the limit as k — oo exists it is easy to see that |DF};| < C|DF;_,] there.
Hence

| (DEP+DEP) < / IDF AP
Cj C ﬁﬂ le

-----

i
i1

1
S C Z EQ ﬂ Gk 1 10;0 max{dkl,de}p 10pdz] § C<§>

K1,y jll

It follows that
> [ 1D = Fop < o
j=17@o

and thus DF; forms a Cauchy sequence in L? and f € Wh?.
From (6.4) we know that

£5(C5) = £2(Q \UC) ﬁs

for each j. Since [[;2, s; > 0 we easily obtain

£2<U0> L(Qo).

Together with Jp, = 0 on C; and Fy = Fj on Cj for each k& > j this implies that
Jy = 0 almost everywhere on Q.

Remark 7.1. It follows from our construction that the mappings F; are Lipschitz
with constant (Ct)? (see (6.7)). Therefore the distributional jacobian of F; can be
represented by the usual jacobian and we get

T () = - / () ()] (), (Fy)a(x)) da
- /Qo () Jp; (z) dov = / P(F(y)) dy

Qo

for every test function ¢ € C§°(Qo). Here (F}); denotes the i-th component of the
function F; and J(p, (F})2) denotes the jacobian of a mappings with first component
¢ and second (F;)y. Since F; converge to F uniformly and in W' we get that
the left hand side converges to the distributional jacobian of f. It also follows that
it 1s a nonnegative distribution and thus can be represented by some measure. Since
Jr =0 a. e. we get that this measure is singular with respect to the Lebesgue measure.
Stmilarly we obtain the same conclusion also in higher dimension if p > N — 1.

8. CONSTRUCTION FOR N > 2

The construction in higher dimension is similar and therefore we will only sketch it
and point out the differences. Let 0 < w and s,s" € (0,1). Our basic building block
is a diamond of width w in the first coordinate

Q(w) = {x e RY |z | < w(l — |ag| — |z3] — ... — |xN|)}
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and again we denote
I(w,s) = Q(ws) and O(w, s) = Q(w) \ Q(ws).
We define the mapping ¢ ¢: Q(w) — Q(w) by

((11__i) w1 +sgn(r)(1 — |z2] — ... — |oy|)w (1 - 11__58,) , Lo, ... ,xN) for z € I(w, s),
((SEI) T, Ta,. .., xy) for z € O(w, s).
If & < s, then this linear homeomorphism horizontally compresses I(w,s) onto

I(w, "), while stretching O(w, s) onto O(w, §').
If x is an interior point of I(w, s), then

£0 ...0
0 1 0
Dgpw,s,s/(x) = . _ ] .
0 0 ... 1
and if z is an interior point of O(w, s) and xs,...,zy # 0, then
s (1= L fw(l - =)
0 1 0
(8.1) Dy s.50(2) = : . . .
0 0 1

and again this matrix is close to diagonal matrix for w small enough.
Let 1 < p < N. We can clearly fix t > 1 such that

p 7T_2>N p—N l
(8.2) A (6 N < 2
where A is a fixed constant to be chosen later. We define the sequences wy, s, and
s, by the same formula as in (3.2).

The mapping fi; and Fj are defined by the use of our /N-dimensional building
blocks similarly as in dimension N = 2. Given j we find @ € Ny and b € {1,..., N}
such that j = alN 4+ 0. Then we define the mapping F; with the use of building
blocks that are thin in the direction of the x,-axis. That is in the key estimate of the
derivative we multiply N adjacent matrices and we obtain a matrix that is almost
diagonal and almost of the form

dkaN+1 0 0
Ma = 0 dka‘N+2 0
0 0 oo rgninoy

The actual matrix is non-diagonal because of the non-diagonal terms in (8.1). On the
other hand the non-diagonal terms in (8.1) equal to £1 and hence it is not difficult
to deduce that the norm of the actual matrix can be estimated by a constant A times
the norm of the matrix M, and thus by At.
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Similarly to N = 2 we may deduce that all the constructed sequences are Cauchy
in L? and thus F; € W? and f € W'?. The key for the last is (8.2) and the estimate

Jj/N 0 JIN

00 i 1
> cQ(HGki,i)af:[oAp||MaHpgc > maf[mw

kiykj=1  i=1 Ky kj=1 =0

2\ N %
<c (Ap<7r—> tp_N) )
6
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