SOBOLEV HOMEOMORPHISM WITH ZERO JACOBIAN ALMOST EVERYWHERE

STANISLAV HENCL

Abstract

Let $1 \leq p<N$. We construct a homeomorphism f in the Sobolev space $W^{1, p}\left((0,1)^{N},(0,1)^{N}\right)$ such that $J_{f}=0$ almost everywhere.

1. Introduction

In this paper we address the following issue. Suppose that $\Omega \subset \mathbb{R}^{N}$ is an open set and $f: \Omega \rightarrow \mathbb{R}^{N}$ is a homeomorphism of the Sobolev class $W^{1, p}\left(\Omega, \mathbb{R}^{N}\right), p \geq 1$. Here $W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ consists of all p-integrable mappings of Ω into \mathbb{R}^{N} whose coordinate functions have p-integrable distributional derivatives. How big can be the zero set of the jacobian J_{f} (the determinant of the matrix of derivatives)? Is it possible that $J_{f}=0$ almost everywhere?

Let us mention some strange consequences of the existence of a mapping such that $J_{f}=0$ a.e. The area formula for Sobolev mappings (see e.g. [2]) holds up to a set of measure zero Z, i.e.

$$
0=\int_{\Omega \backslash Z} J_{f}(x)=\int_{f(\Omega \backslash Z)} 1=\mathcal{L}_{n}(f(\Omega \backslash Z)),
$$

but $\mathcal{L}_{n}(\Omega \backslash Z)=\mathcal{L}_{n}(\Omega)$. It also follows that

$$
\mathcal{L}_{n}(Z)=0 \quad \text { but } \quad \mathcal{L}_{n}(f(Z))=\mathcal{L}_{n}(f(\Omega))
$$

It means that such a mapping would simultaneously send a null set to a set of full measure and a set of full measure to a null set.

Let us recall that it is possible to construct a Lipschitz homeomorphism which maps a set of positive measure to a null set (see e.g. [7], [5]) and thus $J_{f}=0$ on a set of positive measure. However the simple iteration of this construction does not work because the Sobolev norm of such a mapping would grow too fast. Indeed, the standard counterexamples ([10], [5]) are mappings of finite distortion (see [1] or [4] for basic properties and applications), i.e. $J_{f} \geq 0$ and $J_{f}(x)=0 \Rightarrow|D f(x)|=0$ a.e. It is easy to see that if a homeomorphism is a mapping of finite distortion, then it cannot satisfy $J_{f}=0$ a.e. Otherwise $|D f|=0$ a.e. and the absolute continuity on almost all lines easily give us a contradiction. It means that for such a homeomorphism we would need to invent the novel construction.

For each $1 \leq p<N$ it is also possible to construct a homeomorphism $f \in$ $W^{1, p}\left((0,1)^{N}, \mathbb{R}^{N}\right)$ such that f maps a null set to a set of positive measure (see [10] and [6]). On the other hand each homeomorphism in the Sobolev space $W^{1, N}\left((0,1)^{N}, \mathbb{R}^{N}\right)$

2000 Mathematics Subject Classification. 46E35.
Key words and phrases. Sobolev mapping, Jacobian, Luzin condition.
The author was supported by the RSJ grant.
satisfies the Lusin (N) condition [8] and therefore the image of each null set is a null set, in particular there is no homeomorphism in $W^{1, N}$ such that $J_{f}=0$ a.e. We show that surprisingly such a strange mapping exists for any $1 \leq p<N$.

Theorem 1.1. Let $1 \leq p<N$. There is a homeomorphism $f \in W^{1, p}\left((0,1)^{N},(0,1)^{N}\right)$ such that $J_{f}(x)=0$ almost everywhere.

Our research is motivated by our interest in geometric function theory, where the nonnegativity (or positivity) of the jacobian is a standing assumption. Our result implies that far from the natural space $W^{1, N}$ we can have serious difficulties with the development of the reasonable theory. For an overview of the field, discussion of interdisciplinary links and further references see [4].

It was shown by Müller [9] that there is a mapping $f \in W^{1, p}\left((0,1)^{N}, \mathbb{R}^{N}\right), 1 \leq p<$ N, such that the distributional jacobian is a singular measure supported on some set of prescribed Hausdorff dimension $\alpha \in(0, N)$. If we take any $N-1<p<N$, then the distributional jacobian (see e.g. [4] or [9] for the definition and basic properties) is well-defined for continuous mappings. It follows from our result and its construction that there is even a homeomorphism such that the distributional jacobian is a singular measure (see Remark 7.1).

Our research was also partially motivated by the following recent result [3]: Let $\Omega \subset \mathbb{R}^{3}$ and let $f \in W^{1,1}\left(\Omega, \mathbb{R}^{3}\right)$ be a sense-preserving homeomorphism. Then $J_{f} \geq 0$ almost everywhere. It follows from Theorem 1.1 that the converse implication is not valid, because now we can construct a sense-reversing Sobolev homeomorphism such that $J_{f}=0$ almost everywhere.

It will be essential for us to construct a mapping which is not a mapping of finite distortion. We will construct a sequence of homeomorphisms F_{j} which will eventually converge to f and disjoint Cantor type sets C_{j} of positive measure such that $J_{F_{j}}=$ 0 a.e. on C_{j}. For $N=2$ the mapping F_{j} for j odd will squeeze the sets C_{j} in the horizontal direction and the derivative in the vertical direction will be non-zero. Analogously F_{j} for j even will squeeze the sets C_{j} in the vertical direction and the derivative in the horizontal direction will be non-zero.

At the end we will need to estimate the derivatives of our functions F_{j} and since they will be composition of finitely many functions on some properly chosen sets, we will use the chain rule to compute the derivative as a product of finitely many matrices. Another key ingredient of our construction will be a fact that all the matrices in the construction will be almost diagonal. That means that the stretching in the horizontal and vertical direction do not multiply and thus the derivative is not big and the norm is finite.

For simplicity we will give the details of the whole construction only for $N=2$ and in the last section we will briefly outline how to proceed with general $N>2$. From some technical reasons we construct a mapping from some rhomboid onto the same rhomboid and not from the unit cube onto the unit cube. This difference is of course immaterial.

We will use the usual convention that c denotes a generic constant whose value may change at each occurrence but for fixed N and $1 \leq p<N$ it is an absolute constant. We write $c(j)$ if the value may also depend on some additional parameter j.

2. Basic building block

We begin by defining "building blocks". For $0<w$ and $s \in(0,1)$, we denote the diamond of width w by

$$
Q(w)=\left\{(x, y) \in \mathbb{R}^{2}:|x|<w(1-|y|)\right\} .
$$

We will often work with the inner smaller diamond and the outer annular diamond defined as

$$
I(w, s)=Q(w s) \text { and } O(w, s)=Q(w) \backslash Q(w s)
$$

Given parameters $s, s^{\prime} \in(0,1)$, we will repeatedly employ the mapping $\varphi_{w, s, s^{\prime}}: Q(w) \rightarrow$ $Q(w)$ defined by

$$
\varphi_{w, s, s^{\prime}}(x, y)= \begin{cases}\left(\left(\frac{1-s^{\prime}}{1-s}\right) x+\operatorname{sgn}(x)(1-|y|) w\left(1-\frac{1-s^{\prime}}{1-s}\right), y\right) & (x, y) \in O(w, s) \\ \left.\left(\frac{s^{\prime}}{s}\right) x, y\right) & (x, y) \in I(w, s)\end{cases}
$$

If $s^{\prime}<s$, then this linear homeomorphism horizontally compresses $I(w, s)$ onto $I\left(w, s^{\prime}\right)$, while stretching $O(w, s)$ onto $O\left(w, s^{\prime}\right)$. Note that $\varphi_{w, s, s^{\prime}}$ is the identity on the boundary of $Q(w)$.

Fig. 1. The mapping $\varphi_{w, s, s^{\prime}}$
If $\left(x_{0}, y_{0}\right)$ is an interior point of $I(w, s)$, then

$$
D \varphi_{w, s, s^{\prime}}\left(x_{0}, y_{0}\right)=\left(\begin{array}{cc}
\frac{s^{\prime}}{s} & 0 \tag{2.1}\\
0 & 1
\end{array}\right)
$$

and if $\left(x_{0}, y_{0}\right)$ is an interior point of $O(w, s)$ and $y_{0} \neq 0$, then

$$
D \varphi_{w, s, s^{\prime}}\left(x_{0}, y_{0}\right)=\left(\begin{array}{cc}
\left(\frac{1-s^{\prime}}{1-s}\right) & -\operatorname{sgn}\left(x_{0} y_{0}\right) w\left(1-\frac{1-s^{\prime}}{1-s}\right) \tag{2.2}\\
0 & 1
\end{array}\right)
$$

Note that by choosing w sufficiently small we can make the matrix arbitrarily close to diagonal matrix.
Suppose that Q is a scaled and translated version of $Q(w)$. We define $\varphi_{w, s, s^{\prime}}^{Q}$ to be the corresponding scaled and translated version of $\varphi_{w, s, s^{\prime}}$. By I_{Q}^{s} and O_{Q}^{s} we will denote the corresponding inner diamond and outer annular diamond.

Suppose that P is a scaled and translated copy of a rotated diamond

$$
P(w)=\left\{(x, y) \in \mathbb{R}^{2}:|y|<w(1-|x|)\right\} .
$$

We define $\varphi_{w, s, s^{\prime}}^{P}$ to be the corresponding rotated, scaled and translated version of $\varphi_{w, s, s^{\prime}}$. That is $\varphi_{w, s, s^{\prime}}^{P}$ maps P onto P and is the identity on the boundary. We will
also use a notation I_{P}^{s} and O_{P}^{s} for the corresponding inner diamond and outer annular diamond.

3. Choice of parameters

Let $1 \leq p<2$. We can clearly fix $t>1$ such that

$$
\begin{equation*}
10^{p} \frac{\pi^{4}}{6^{2}} t^{p-2}<\frac{1}{2} \tag{3.1}
\end{equation*}
$$

For $k \in \mathbb{N}$, we set

$$
\begin{equation*}
w_{k}=\frac{k+1}{t k^{2}-1}, s_{k}=1-\frac{1}{t k^{2}} \text { and } s_{k}^{\prime}=s_{k} \frac{k}{k+1} . \tag{3.2}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
\frac{1-s_{k}^{\prime}}{1-s_{k}}=\frac{t k^{2}+k}{k+1} \text { and }\left(\frac{1-s_{k}^{\prime}}{1-s_{k}}-1\right) w_{k}=\frac{t k^{2}-1}{k+1} w_{k}=1 . \tag{3.3}
\end{equation*}
$$

It is also easy to check that $0<s_{k}<1$ and

$$
\prod_{i=1}^{\infty} s_{i}>0
$$

4. Construction of F_{1}

Let us denote $Q_{0}:=Q\left(w_{1}\right)$. We will construct a sequence of bi-Lipschitz mappings $f_{k, 1}: Q_{0} \rightarrow Q_{0}$ and our mapping $F_{1} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$ will be later defined as $F_{1}(x)=$ $\lim _{k \rightarrow \infty} f_{k, 1}(x)$. We will also construct a Cantor-type set C_{1} of positive measure such that $J_{F_{1}}=0$ almost everywhere on C_{1}.

We define a sequence of families $\left\{\mathcal{Q}_{k, 1}\right\}$ of building blocks, and a sequence of homeomorphisms $f_{k, 1}: Q_{0} \rightarrow Q_{0}$. Let $\mathcal{Q}_{1,1}=\left\{Q\left(w_{1}\right)\right\}=\left\{Q_{0}\right\}$, and define $f_{1,1}: Q_{0} \rightarrow Q_{0}$ by

$$
f_{1,1}(x, y)=\varphi_{w_{1}, s_{1}, s_{1}^{\prime}}(x, y) .
$$

Clearly $f_{1,1}$ is a bi-Lipschitz homeomorphism. Now each $f_{k, 1}$ will equal to $f_{1,1}$ on the set $G_{1,1}:=O\left(w_{1}, s_{1}\right)$ and it remains to define it on $R_{1,1}:=I\left(w_{1}, s_{1}\right)$. Clearly

$$
\mathcal{L}_{2}\left(G_{1,1}\right)=\left(1-s_{1}\right) \mathcal{L}_{2}\left(Q_{0}\right) \text { and } \mathcal{L}_{2}\left(R_{1,1}\right)=s_{1} \mathcal{L}_{2}\left(Q_{0}\right) .
$$

Let $\mathcal{Q}_{2,1}$ be any collection of disjoint, scaled and translated copies of $Q\left(w_{2}\right)$ which covers $f_{1,1}\left(R_{1,1}\right)=I\left(w_{1}, s_{1}^{\prime}\right)$ up to a set of measure zero. That is any two elements of $\mathcal{Q}_{2,1}$ have disjoint interiors, and there is a set $E_{2,1} \subseteq I\left(w_{1}, s_{1}^{\prime}\right)$ of measure 0 such that

$$
I\left(w_{1}, s_{1}^{\prime}\right) \backslash E_{2,1} \subseteq \bigcup_{Q \in \mathcal{Q}_{2,1}} Q \subseteq I\left(w_{1}, s_{1}^{\prime}\right)
$$

Fig. 2. Sketch of family $\mathcal{Q}_{2,1}$
Clearly such a collection exists. Note that if $Q \in \mathcal{Q}_{2,1}$, then the inverse image of Q under $f_{1,1}$ is a scaled and translated copy of $Q\left(\frac{s_{1}}{s_{1}^{\prime}} w_{2}\right)=Q\left(2 w_{2}\right)$ and

$$
I\left(w_{1}, s_{1}\right) \backslash\left(f_{1,1}\right)^{-1}\left(E_{2,1}\right) \subseteq \bigcup_{Q \in \mathcal{Q}_{2,1}}\left(f_{1,1}\right)^{-1}(Q) \subseteq I\left(w_{1}, s_{1}\right)
$$

Note that $J_{f_{1,1}} \neq 0$ a.e. and hence the inverse image of a null set $E_{2,1}$ has measure zero.

We define $f_{2,1}: Q_{0} \rightarrow Q_{0}$ by

$$
f_{2,1}(x, y)= \begin{cases}\varphi_{w_{2}, s_{2}, s_{2}^{\prime}}^{Q} \circ f_{1,1}(x, y) & f_{1,1}(x, y) \in Q \in \mathcal{Q}_{2,1}, \\ f_{1,1}(x, y) & \text { otherwise }\end{cases}
$$

It is not difficult to check that $f_{2,1}$ is a bi-Lipschitz homeomorphism. From now on each $f_{k, 1}$ will equal to $f_{2,1}$ on

$$
G_{1,1} \cup G_{2,1}, \text { where } G_{2,1}:=f_{1,1}^{-1}\left(\bigcup_{Q \in \mathcal{Q}_{2,1}} O_{Q}^{s_{2}}\right)
$$

and it remains to define it on

$$
R_{2,1}:=f_{1,1}^{-1}\left(\bigcup_{Q \in \mathcal{Q}_{2,1}} I_{Q}^{s_{2}}\right)
$$

Since each $f_{1,1}^{-1}(Q)$ is a scaled and translated copy of our basic building block and the ratio s_{2} is fixed, we obtain

$$
\begin{aligned}
\mathcal{L}_{2}\left(G_{2,1}\right) & =\sum_{Q \in \mathcal{Q}_{2,1}} \mathcal{L}_{2}\left(f_{1,1}^{-1}\left(O_{Q}^{s_{2}}\right)\right)=\sum_{Q \in \mathcal{Q}_{2,1}} \mathcal{L}_{2}\left(O_{f_{1,1}^{-1}(Q)}^{s_{2}}\right) \\
& =\sum_{Q \in \mathcal{Q}_{2,1}}\left(1-s_{2}\right) \mathcal{L}_{2}\left(f_{1,1}^{-1}(Q)\right)=\left(1-s_{2}\right) \mathcal{L}_{2}\left(R_{1,1}\right) .
\end{aligned}
$$

It is also easy to see that

$$
\mathcal{L}_{2}\left(R_{2,1}\right)=s_{2} \mathcal{L}_{2}\left(R_{1,1}\right)
$$

We continue inductively. Assume that $\mathcal{Q}_{k, 1}, f_{k, 1}, G_{k, 1}$ and $R_{k, 1}$ have already been defined. We find a family of disjoint scaled and translated copies of $Q\left(w_{k+1}\right)$ that cover $f_{k, 1}\left(R_{k, 1}\right)$ up to a set of measure zero $E_{k+1,1}$. Define $\varphi_{k+1,1}: Q_{0} \rightarrow Q_{0}$ by

$$
\varphi_{k+1,1}(x, y)= \begin{cases}\varphi_{w_{k+1}, s_{k+1}, s_{k+1}^{\prime}}^{Q}(x, y) & (x, y) \in Q \in \mathcal{Q}_{k+1,1} \\ (x, y) & \text { otherwise }\end{cases}
$$

The mapping $f_{k+1,1}: Q_{0} \rightarrow Q_{0}$ is now defined by $\varphi_{k+1,1} \circ f_{k, 1}$. Clearly each mapping $f_{k+1,1}$ is a bi-Lipschitz homeomorphism. We further define the sets

$$
G_{k+1,1}:=f_{k, 1}^{-1}\left(\bigcup_{Q \in \mathcal{Q}_{k+1,1}} O_{Q}^{s_{k+1}}\right) \text { and } R_{k+1,1}:=f_{k, 1}^{-1}\left(\bigcup_{Q \in \mathcal{Q}_{k+1,1}} I_{Q}^{s_{k+1}}\right) .
$$

Again it is not difficult to check that

$$
\mathcal{L}_{2}\left(G_{k+1,1}\right)=\left(1-s_{k+1}\right) \mathcal{L}_{2}\left(R_{k, 1}\right) \text { and } \mathcal{L}_{2}\left(R_{k+1,1}\right)=s_{k+1} \mathcal{L}_{2}\left(R_{k, 1}\right)
$$

Using $\mathcal{L}_{2}\left(G_{1,1}\right)=\left(1-s_{1}\right) \mathcal{L}_{2}\left(Q_{0}\right)$ and $\mathcal{L}_{2}\left(R_{1,1}\right)=s_{1} \mathcal{L}_{2}\left(Q_{0}\right)$ we easily obtain

$$
\begin{equation*}
\mathcal{L}_{2}\left(R_{k, 1}\right)=s_{1} s_{2} \cdots s_{k} \mathcal{L}_{2}\left(Q_{0}\right) \text { and } \mathcal{L}_{2}\left(G_{k, 1}\right)=s_{1} s_{2} \cdots s_{k-1}\left(1-s_{k}\right) \mathcal{L}_{2}\left(Q_{0}\right) \tag{4.1}
\end{equation*}
$$

It follows that the resulting Cantor type set

$$
C_{1}:=\bigcap_{k=1}^{\infty} R_{k, 1}
$$

satisfies

$$
\mathcal{L}_{2}\left(C_{1}\right)=\mathcal{L}_{2}\left(Q_{0}\right) \prod_{i=1}^{\infty} s_{i}>0
$$

It is clear from the construction that $f_{k, 1}$ converge uniformly and hence the limiting map $F_{1}(x):=\lim _{k \rightarrow \infty} f_{k, 1}(x)$ exists and is continuous. It is not difficult to check that F_{1} is a one-to-one mapping of Q_{0} onto Q_{0}. Since Q_{0} is compact and F_{1} is continuous we obtain that F_{1} is a homeomorphism. It remains to verify that $f_{k, 1}$ form a Cauchy sequence in $W^{1, p}$ and thus $F_{1} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$.

Let us estimate the derivative of our functions $f_{m, 1}$. Let us fix $m, k \in \mathbb{N}$ such that $m \geq k$. If $Q \in \mathcal{Q}_{k, 1}$ and $(x, y) \in \operatorname{int}\left(f_{k, 1}\right)^{-1}\left(I_{Q}^{s_{k}^{\prime}}\right)$, then we have squeezed our diamond k-times. Using (2.1), (3.2) and the chain rule we obtain

$$
D f_{k, 1}(x, y)=\prod_{i=1}^{k}\left(\begin{array}{cc}
\frac{i}{i+1} & 0 \tag{4.2}\\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{k+1} & 0 \\
0 & 1
\end{array}\right) .
$$

Moreover, if $(x, y) \in \operatorname{int}\left(f_{m, 1}\right)^{-1}\left(O_{Q}^{s_{k}^{\prime}}\right)$, then we have squeezed our diamond $k-1$ times and then we have stretched it once. It follows from (2.1), (3.2), (2.2), (3.3) and the chain rule that

$$
\begin{align*}
& D f_{m, 1}(x, y)=\left(\begin{array}{cc}
\frac{t k^{2}+k}{k+1} & \pm\left(\frac{t k^{2}-1}{k+1}\right. \\
0 & 1
\end{array}\right) w_{k} \tag{4.3}\\
&\left.\hline \prod_{i=1}^{k-1}\left(\begin{array}{cc}
\frac{i}{i+1} & 0 \\
0 & 1
\end{array}\right)\right) \\
&=\left(\begin{array}{cc}
\frac{t k^{2}+k}{k(k+1)} & \pm 1 \\
0 & 1
\end{array}\right) .
\end{align*}
$$

Now let us fix $m, n \in \mathbb{N}, m>n$. Since $f_{n, 1}=f_{m, 1}$ outside of $R_{n, 1}$ we obtain

$$
\begin{aligned}
& \int_{Q_{0}}\left|D\left(f_{m, 1}-f_{n, 1}\right)\right|^{p}=\int_{R_{n, 1}}\left|D\left(f_{m, 1}-f_{n, 1}\right)\right|^{p} \\
& \quad \leq \int_{R_{n, 1} \backslash R_{m, 1}}\left|D f_{n, 1}\right|^{p}+\int_{R_{m, 1}}\left|D f_{m, 1}-D f_{n, 1}\right|^{p}+\sum_{k=n+1}^{m} \int_{G_{k, 1}}\left|D f_{m, 1}\right|^{p} .
\end{aligned}
$$

From (4.2) and (4.1) we obtain

$$
\int_{R_{n, 1} \backslash R_{m, 1}}\left|D f_{n, 1}\right|^{p} \leq c \mathcal{L}_{2}\left(R_{n, 1} \backslash R_{m, 1}\right) \xrightarrow{n \rightarrow \infty} 0
$$

and

$$
\int_{R_{m, 1}}\left|D f_{m, 1}-D f_{n, 1}\right|^{p} \leq c\left(\frac{1}{n+1}-\frac{1}{m+1}\right)^{p} \leq \frac{c}{(n+1)^{p}} \stackrel{n \rightarrow \infty}{\rightarrow} 0 .
$$

From (4.3) and (4.1) we obtain

$$
\begin{aligned}
\sum_{k=n+1}^{m} \int_{G_{k, 1}}\left|D f_{m, 1}\right|^{p} & \leq c \sum_{k=n+1}^{m} \mathcal{L}_{2}\left(G_{k, 1}\right)\left(\frac{t k^{2}+k}{k(k+1)}\right)^{p} \\
& \leq c \sum_{k=n+1}^{m}\left(1-s_{k}\right)\left(\frac{t k^{2}+k}{k(k+1)}\right)^{p} \\
& \leq c \sum_{k=n+1}^{m} \frac{1}{t k^{2}} t^{p} \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

It follows that the sequence $D f_{k, 1}$ is Cauchy in L^{p} and thus we can easily obtain that $f_{k, 1}$ is Cauchy in $W^{1, p}$. Since $f_{k, 1}$ converge to F_{1} uniformly we obtain that $F_{1} \in W^{1, p}$.

From (4.2) we obtain that the derivative of $f_{k, 1}$ on $R_{k, 1}$ and especially on C_{1} equals to

$$
D f_{k, 1}(x, y)=\left(\begin{array}{cc}
\frac{1}{k+1} & 0 \\
0 & 1
\end{array}\right) .
$$

Since $D f_{k, 1}$ converge to $D F_{1}$ in L^{p} we obtain that for almost every $(x, y) \in C_{1}$ we have

$$
D F_{1}(x, y)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

and therefore $J_{F_{1}}(x, y)=0$. From now on each F_{k} will equal to F_{1} on C_{1} and we need to define it only on $Q_{0} \backslash C_{1}$. Moreover it is easy to see from the construction that $J_{F_{1}} \neq 0$ a.e. on $Q_{0} \backslash C_{1}$. It follows that the preimage of each null set in $F_{1}\left(Q_{0} \backslash C_{1}\right)$ has zero measure.

5. Construction of F_{2}

We will construct a sequence of homeomorphisms $f_{k, 2}: Q_{0} \rightarrow Q_{0}$ and our mapping $F_{2} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$ will be later defined as $F_{2}(x)=\lim _{k \rightarrow \infty} f_{k, 2}(x)$. We will also construct a Cantor-type set $C_{2} \subset Q_{0} \backslash C_{1}$ of positive measure such that $J_{F_{2}}=0$ almost everywhere on C_{2}.

The set C_{1} is closed and thus we can find $\mathcal{Q}_{1,2}$, a collection of disjoint, scaled and translated copies of $P\left(w_{1}\right)$ which cover $F_{1}\left(Q_{0} \backslash C_{1}\right)$ up to a set of measure zero $E_{1,2}$. We will moreover require two additional properties. We know that $Q_{0} \backslash C_{1}$ is equal up to a set of measure zero to $\bigcup_{l=1}^{\infty} G_{l, 1}$. Hence we will also require that

$$
\begin{equation*}
\text { for each } P \in \mathcal{Q}_{1,2} \text { there is } l \in \mathbb{N} \text { such that } F_{1}^{-1}(P) \subset G_{l, 1} \text {. } \tag{5.1}
\end{equation*}
$$

Secondly, we know that $J_{F_{1}}$ is constant in each diamond from $G_{l, 1}$ (see (2.2)) and thus we may assume that $F_{1}^{-1}(P)$ is a subset of one diamond and thus

$$
\begin{equation*}
J_{F_{1}}\left(x_{1}, y_{1}\right)=J_{F_{1}}\left(x_{2}, y_{2}\right) \text { for every }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in F_{1}^{-1}(P) \tag{5.2}
\end{equation*}
$$

This fact, $\mathcal{L}_{2}\left(I_{P}^{s_{1}}\right)=s_{1} \mathcal{L}_{2}(P)$ and $\mathcal{L}_{2}\left(O_{P}^{s_{1}}\right)=\left(1-s_{1}\right) \mathcal{L}_{2}(P)$ imply that

$$
\mathcal{L}_{2}\left(F_{1}^{-1}\left(I_{P}^{s_{1}}\right)\right)=s_{1} \mathcal{L}_{2}\left(F_{1}^{-1}(P)\right) \text { and } \mathcal{L}_{2}\left(F_{1}^{-1}\left(O_{P}^{s_{1}}\right)\right)=\left(1-s_{1}\right) \mathcal{L}_{2}\left(F_{1}^{-1}(P)\right) .
$$

We define $f_{1,2}: Q_{0} \rightarrow Q_{0}$ by

$$
f_{1,2}(x, y)= \begin{cases}\varphi_{w_{1}, s_{1}, s_{1}^{\prime}}^{P} \circ F_{1}(x, y) & F_{1}(x, y) \in P \in \mathcal{Q}_{1,2} \\ F_{1}(x, y) & \text { otherwise }\end{cases}
$$

It is not difficult to check that $f_{1,2}$ is a homeomorphism. Moreover it is a $W^{1, p}$ mapping since it is a composition of a Sobolev and bi-Lipschitz mapping. From now on each $f_{k, 2}$ will equal to $f_{1,2}$ on

$$
C_{1} \cup G_{1,2}, \text { where } G_{1,2}:=F_{1}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{1,2}} O_{P}^{s_{1}}\right)
$$

and it remains to define it on

$$
R_{1,2}:=F_{1}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{1,2}} I_{P}^{s_{1}}\right)
$$

Let us note that $J_{F_{1}} \neq 0$ on $Q_{0} \backslash C_{1}$ and thus the preimage of the null set $E_{1,2}$ under F_{1} is a null set. Clearly

$$
\mathcal{L}_{2}\left(F_{1}\left(R_{1,2}\right)\right)=s_{1} \mathcal{L}_{2}\left(F_{1}\left(Q_{0} \backslash C_{1}\right)\right) \text { and } \mathcal{L}_{2}\left(F_{1}\left(G_{1,2}\right)\right)=\left(1-s_{1}\right) \mathcal{L}_{2}\left(F_{1}\left(Q_{0} \backslash C_{1}\right)\right) .
$$

We continue inductively. Assume that $\mathcal{Q}_{k, 2}, f_{k, 2}, G_{k, 2}$ and $R_{k, 2}$ have already been defined. We find a family of disjoint scaled and translated copies of $P\left(w_{k+1}\right)$ that cover $f_{k, 2}\left(R_{k, 2}\right)$ up to a set of measure zero $E_{k+1,2}$. Define $\varphi_{k+1,2}: Q_{0} \rightarrow Q_{0}$ by

$$
\varphi_{k+1,2}(x, y)= \begin{cases}\varphi_{w_{k+1}, s_{k+1}, s_{k+1}^{\prime}}^{P}(x, y) & (x, y) \in P \in \mathcal{Q}_{k+1,2} \\ (x, y) & \text { otherwise }\end{cases}
$$

The mapping $f_{k+1,2}: Q_{0} \rightarrow Q_{0}$ is now defined by $\varphi_{k+1,2} \circ f_{k, 2}$. Clearly each mapping $f_{k+1,2}$ is a homeomorphism. Moreover it is a $W^{1, p}$ mapping since it is a composition of a Sobolev and bi-Lipschitz mapping. We further define the sets

$$
G_{k+1,2}:=f_{k, 2}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{k+1,2}} O_{P}^{s_{k+1}}\right) \text { and } R_{k+1,2}:=f_{k, 2}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{k+1,2}} I_{P}^{s_{k+1}}\right)
$$

The linear maps $\varphi_{j, 2}, 1 \leq j \leq k$, on inner diamonds do not change the ratio of volumes of P and $O_{P}^{s_{k+1}}$. Therefore we obtain that

$$
\mathcal{L}_{2}\left(F_{1}\left(G_{k+1,2}\right)\right)=\left(1-s_{k+1}\right) \mathcal{L}_{2}\left(F_{1}\left(R_{k, 2}\right)\right) \text { and } \mathcal{L}_{2}\left(F_{1}\left(R_{k+1,2}\right)\right)=s_{k+1} \mathcal{L}_{2}\left(F_{1}\left(R_{k, 2}\right)\right) .
$$

Analogously as before we obtain

$$
\mathcal{L}_{2}\left(F_{1}\left(R_{k, 2}\right)\right)=s_{1} s_{2} \cdots s_{k} \mathcal{L}_{2}\left(F_{1}\left(Q_{0} \backslash C_{1}\right)\right)
$$

and

$$
\mathcal{L}_{2}\left(F_{1}\left(G_{k, 2}\right)\right)=s_{1} s_{2} \cdots s_{k-1}\left(1-s_{k}\right) \mathcal{L}_{2}\left(F_{1}\left(Q_{0} \backslash C_{1}\right)\right) .
$$

Therefore using (5.2) we obtain that

$$
\begin{equation*}
\mathcal{L}_{2}\left(R_{k, 2}\right)=s_{1} s_{2} \cdots s_{k} \mathcal{L}_{2}\left(Q_{0} \backslash C_{1}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\mathcal{L}_{2}\left(G_{k, 2}\right)=s_{1} s_{2} \cdots s_{k-1}\left(1-s_{k}\right) \mathcal{L}_{2}\left(Q_{0} \backslash C_{1}\right) .
$$

Since the sets P are uniformly placed among $F_{1}\left(G_{l, 1}\right)$ (see (5.1)) we can moreover obtain the similar estimate on each $G_{l, 1}, l \in \mathbb{N}$. Therefore

$$
\begin{equation*}
\mathcal{L}_{2}\left(G_{k, 2} \cap G_{l, 1}\right)=s_{1} s_{2} \cdots s_{k-1}\left(1-s_{k}\right) \mathcal{L}_{2}\left(G_{l, 1}\right) \tag{5.4}
\end{equation*}
$$

It follows from (5.3) that the resulting Cantor type set

$$
C_{2}:=\bigcap_{k=1}^{\infty} R_{k, 2}
$$

satisfies

$$
\mathcal{L}_{2}\left(C_{2}\right)=\mathcal{L}_{2}\left(Q_{0} \backslash C_{1}\right) \prod_{i=1}^{\infty} s_{i}>0
$$

It is clear from the construction that $f_{k, 2}$ converge uniformly and hence it is not difficult to check that the limiting map $F_{2}(x):=\lim _{k \rightarrow \infty} f_{k, 2}(x)$ exists and is a homeomorphism. It remains to verify that $f_{k, 2}$ form a Cauchy sequence in $W^{1, p}$ and thus $F_{2} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$.
Let us estimate the derivative of our functions $f_{m, 2}$. Let us fix $m, k \in \mathbb{N}$ such that $m \geq k$. If $R \in \mathcal{Q}_{k, 2}$ and $(x, y) \in \operatorname{int}\left(f_{k, 2}\right)^{-1}\left(I_{R}^{s_{k}^{\prime}}\right)$, then after applying F_{1} we have squeezed our diamond k-times. Analogously to (4.2) we can use (2.1), (3.2) and the chain rule to obtain

$$
D f_{k, 2}(x, y)=\left(\begin{array}{cc}
1 & 0 \tag{5.5}\\
0 & \frac{1}{k+1}
\end{array}\right) D F_{1}(x, y)
$$

Moreover, if $(x, y) \in \operatorname{int}\left(f_{m, 2}\right)^{-1}\left(O_{R}^{s_{k}^{\prime}}\right)$, then after applying F_{1} we have squeezed our diamond $k-1$ times and then we have stretched it once. Analogously to (4.3) we can use (2.1), (3.2), (2.2), (3.3) and the chain rule to obtain that

$$
\begin{align*}
D f_{m, 2}(x, y) & =\left(\begin{array}{cc}
1 & 0 \\
\pm\left(\frac{t k^{2}-1}{k+1}\right) w_{k} & \frac{t k^{2}+k}{k+1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{k}
\end{array}\right) D F_{1}(x, y) \tag{5.6}\\
& =\left(\begin{array}{cc}
1 & 0 \\
\pm 1 & \frac{t k^{2}+k}{k(k+1)}
\end{array}\right) D F_{1}(x, y) .
\end{align*}
$$

Now let us fix $m, n \in \mathbb{N}, m>n$. Since $f_{n, 2}=f_{m, 2}$ outside of $R_{n, 2}$ we obtain

$$
\begin{aligned}
& \int_{Q_{0}}\left|D\left(f_{m, 2}-f_{n, 2}\right)\right|^{p}=\int_{R_{n, 2}}\left|D\left(f_{m, 2}-f_{n, 2}\right)\right|^{p} \\
& \quad \leq \int_{R_{n, 2} \backslash R_{m, 2}}\left|D f_{n, 2}\right|^{p}+\int_{R_{m, 2}}\left|D f_{m, 2}-D f_{n, 2}\right|^{p}+\sum_{k=n+1}^{m} \int_{G_{k, 2}}\left|D f_{m, 2}\right|^{p} .
\end{aligned}
$$

By (5.5) we get

$$
\int_{R_{n, 2} \backslash R_{m, 2}}\left|D f_{n, 2}\right|^{p} \leq c \int_{R_{n, 2} \backslash R_{m, 2}}\left|D F_{1}\right|^{\mid} \xrightarrow{n \rightarrow \infty} 0
$$

since $D F_{1} \in L^{p}$ and $\mathcal{L}_{2}\left(R_{n, 2} \backslash R_{m, 2}\right) \rightarrow 0$. From (5.5) we obtain

$$
\int_{R_{m, 2}}\left|D f_{m, 2}-D f_{n, 2}\right|^{p} \leq \frac{c}{(n+1)^{p}} \int_{R_{m, 2}}\left|D F_{1}\right|^{p} \xrightarrow{n \rightarrow \infty} 0 .
$$

Clearly

$$
\left(\begin{array}{cc}
1 & 0 \tag{5.7}\\
\pm 1 & \frac{t k^{2}+k}{k(k+1)}
\end{array}\right)\left(\begin{array}{cc}
\frac{t l^{2}+l}{l(l+1)} & \pm 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{t l^{2}+l}{l(l+1)} & \pm 1 \\
\pm \frac{t l^{2}+l}{l(l+1)} & \pm 1+\frac{t k^{2}+k}{k(k+1)}
\end{array}\right) .
$$

Thus we may use (4.3), (5.6), (4.1) and (5.4) to obtain

$$
\begin{align*}
& \sum_{k=n+1}^{m} \int_{G_{k, 2}}\left|D f_{m, 2}\right|^{p} \leq \sum_{k=n+1}^{m} \sum_{l=1}^{\infty} \int_{G_{k, 2} \cap G_{l, 1}}\left|D f_{m, 2}\right|^{p} \\
& \quad \leq \sum_{k=n+1}^{m} \sum_{l=1}^{\infty} \mathcal{L}_{2}\left(G_{k, 2} \cap G_{l, 1}\right)\left\|\left(\begin{array}{cc}
\frac{t l^{2}+l}{l(l+1)} & \pm 1 \\
\pm \frac{t l^{+}+l}{l(l+1)} & \pm 1+\frac{t k^{2}+k}{k(k+1)}
\end{array}\right)\right\| \|^{p} \tag{5.8}\\
& \quad \leq \sum_{k=n+1}^{m} \sum_{l=1}^{\infty}\left(1-s_{k}\right)\left(1-s_{l}\right) 10^{p}\left(\max \left\{\frac{t k^{2}+k}{k(k+1)}, \frac{t l^{2}+l}{l(l+1)}\right\}\right)^{p} \\
& \quad \leq c \sum_{k=n+1}^{m} \sum_{l=1}^{\infty} \frac{1}{t l^{2} t k^{2}} t^{p} \leq c \sum_{k=n+1}^{m} \frac{1}{k^{2}} t^{p-2} \xrightarrow{n \rightarrow \infty} 0 .
\end{align*}
$$

It follows that the sequence $D f_{k, 2}$ is Cauchy in L^{p} and thus we can easily obtain that $f_{k, 2}$ is Cauchy in $W^{1, p}$. Since $f_{k, 2}$ converge to F_{2} uniformly we obtain that $F_{2} \in W^{1, p}$.

From (5.5) we obtain that the derivative of $f_{k, 2}$ on $R_{k, 2}$ and especially on C_{2} equals to

$$
D f_{k, 2}(x, y)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{k+1}
\end{array}\right) D F_{1}(x, y)
$$

Since $D f_{k, 2}$ converge to $D F_{2}$ in L^{p} we obtain that for almost every $(x, y) \in C_{2}$ we have

$$
J_{F_{2}}(x, y)=\operatorname{det}\left(\lim _{k \rightarrow \infty}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{k+1}
\end{array}\right) D F_{1}(x, y)\right)=0
$$

From now on each F_{k} will equal to F_{2} on $C_{1} \cup C_{2}$ and we need to define it only on $Q_{0} \backslash\left(C_{1} \cup C_{2}\right)$. Analogously as before $J_{F_{2}} \neq 0$ a.e. on $Q_{0} \backslash\left(C_{1} \cup C_{2}\right)$ and thus the preimages of the exceptional null sets will be null sets.

6. Construction of general F_{j}

Assume that the mapping F_{j-1} and the Cantor type set C_{j-1} have already been defined. We will construct a sequence of homeomorphisms $f_{k, j}: Q_{0} \rightarrow Q_{0}$ and our mapping $F_{j} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$ will be later defined as $F_{j}(x)=\lim _{k \rightarrow \infty} f_{k, j}(x)$. We will also construct a Cantor-type set $C_{j} \subset Q_{0} \backslash\left(\cup_{i=1}^{j-1} C_{i}\right)$ of positive measure such that $J_{F_{j}}=0$ almost everywhere on C_{j}.

The set $C:=\cup_{i=1}^{j-1} C_{i}$ is closed and thus we can find $\mathcal{Q}_{1, j}$, a collection of disjoint, scaled and translated copies of $P\left(w_{1}\right)$ for j even (or copies of $Q\left(w_{1}\right)$ for j odd) which cover $F_{1}\left(Q_{0} \backslash C\right)$ up to a set of measure zero. From now on we will assume that j is even but it will be clear that the proof works with obvious minor modifications also for j odd. We will moreover require that

$$
\begin{equation*}
\text { for each } P \in \mathcal{Q}_{1, j} \text { there are } k_{1}, \ldots, k_{j-1} \in \mathbb{N} \text { such that } F_{j-1}^{-1}(P) \subset \bigcap_{i=1}^{j-1} G_{k_{i}, i} \tag{6.1}
\end{equation*}
$$

and that $F_{j-1}^{-1}(P)$ is a subset of a single diamond from the previous construction and thus

$$
\begin{equation*}
J_{F_{j-1}}\left(x_{1}, y_{1}\right)=J_{F_{j-1}}\left(x_{2}, y_{2}\right) \text { for every }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in F_{j-1}^{-1}(P) \tag{6.2}
\end{equation*}
$$

We define $f_{1, j}: Q_{0} \rightarrow Q_{0}$ by

$$
f_{1, j}(x, y)= \begin{cases}\varphi_{w_{1}, s_{1}, s_{1}^{\prime}}^{P} \circ F_{j-1}(x, y) & F_{j-1}(x, y) \in P \in \mathcal{Q}_{1, j}, \\ F_{j-1}(x, y) & \text { otherwise } .\end{cases}
$$

It is not difficult to check that $f_{1, j}$ is a Sobolev homeomorphism since it is a composition of a Sobolev and bi-Lipschitz mapping. From now on each $f_{k, j}$ will equal to $f_{1, j}$ on

$$
C \cup G_{1, j}, \text { where } G_{1, j}:=F_{j-1}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{1, j}} O_{P}^{s_{1}}\right)
$$

and it remains to define it on

$$
R_{1, j}:=F_{j-1}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{1, j}} I_{P}^{s_{1}}\right) .
$$

Clearly

$$
\begin{aligned}
& \mathcal{L}_{2}\left(F_{j-1}\left(R_{1, j}\right)\right)=s_{1} \mathcal{L}_{2}\left(F_{j-1}\left(Q_{0} \backslash C\right)\right) \text { and } \\
& \mathcal{L}_{2}\left(F_{j-1}\left(G_{1, j}\right)\right)=\left(1-s_{1}\right) \mathcal{L}_{2}\left(F_{j-1}\left(Q_{0} \backslash C\right)\right) .
\end{aligned}
$$

We continue inductively. Assume that $\mathcal{Q}_{k, j}, f_{k, j}, G_{k, j}$ and $R_{k, j}$ have already been defined. We find a family of disjoint scaled and translated copies of $P\left(w_{k+1}\right)$ that cover $f_{k, j}\left(R_{k, j}\right)$ up to a set of measure zero $E_{k+1, j}$. Define $\varphi_{k+1, j}: Q_{0} \rightarrow Q_{0}$ by

$$
\varphi_{k+1, j}(x, y)= \begin{cases}\varphi_{w_{k+1}, s_{k+1}, s_{k+1}^{\prime}}^{P}(x, y) & (x, y) \in P \in \mathcal{Q}_{k+1, j} \\ (x, y) & \text { otherwise }\end{cases}
$$

The mapping $f_{k+1, j}: Q_{0} \rightarrow Q_{0}$ is now defined by $\varphi_{k+1, j} \circ f_{k, j}$. Clearly each mapping $f_{k+1, j}$ is a Sobolev homeomorphism since it is a composition of a Sobolev and biLipschitz mapping. We further define the sets

$$
G_{k+1, j}:=f_{k, j}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{k+1, j}} O_{P}^{s_{k+1}}\right) \text { and } R_{k+1, j}:=f_{k, 2}^{-1}\left(\bigcup_{P \in \mathcal{Q}_{k+1, j}} I_{P}^{s_{k+1}}\right) .
$$

The linear maps $\varphi_{i, j}, 1 \leq i \leq k$, on inner diamonds do not change the ratio of volumes of P and $O_{P}^{s_{k+1}}$. Therefore we obtain that
$\mathcal{L}_{2}\left(F_{j-1}\left(G_{k+1, j}\right)\right)=\left(1-s_{k+1}\right) \mathcal{L}_{2}\left(F_{j-1}\left(R_{k, j}\right)\right)$ and $\mathcal{L}_{2}\left(F_{j-1}\left(R_{k+1, j}\right)\right)=s_{k+1} \mathcal{L}_{2}\left(F_{j-1}\left(R_{k, j}\right)\right)$.
Analogously as before we obtain using (6.2) that

$$
\mathcal{L}_{2}\left(R_{k, j}\right)=s_{1} s_{2} \cdots s_{k} \mathcal{L}_{2}\left(Q_{0} \backslash C\right)
$$

and

$$
\mathcal{L}_{2}\left(G_{k, j}\right)=s_{1} s_{2} \cdots s_{k-1}\left(1-s_{k}\right) \mathcal{L}_{2}\left(Q_{0} \backslash C\right)
$$

Since the sets P are uniformly placed among $F_{j-1}\left(G_{l, i}\right)$ (see (6.1)) we moreover obtain that

$$
\begin{equation*}
\mathcal{L}_{2}\left(\bigcap_{i=1}^{j} G_{k_{i}, i}\right)=s_{1} s_{2} \cdots s_{k_{j}-1}\left(1-s_{k_{j}}\right) \mathcal{L}_{2}\left(\bigcap_{i=1}^{j-1} G_{k_{i}, i}\right) \tag{6.3}
\end{equation*}
$$

It follows that the resulting Cantor type set

$$
C_{j}:=\bigcap_{k=1}^{\infty} R_{k, j}
$$

satisfies

$$
\begin{equation*}
\mathcal{L}_{2}\left(C_{j}\right)=\mathcal{L}_{2}\left(Q_{0} \backslash C\right) \prod_{i=1}^{\infty} s_{i}>0 \tag{6.4}
\end{equation*}
$$

It is clear from the construction that $f_{k, j}$ converge uniformly and hence it is not difficult to check that the limiting map $F_{j}(x):=\lim _{k \rightarrow \infty} f_{k, j}(x)$ exists and is a homeomorphism. It remains to verify that $f_{k, j}$ form a Cauchy sequence in $W^{1, p}$ and thus $F_{j} \in W^{1, p}\left(Q_{0}, \mathbb{R}^{2}\right)$.

Let us estimate the derivative of our functions $f_{m, j}$. Let us fix $m, k \in \mathbb{N}$ such that $m \geq k$. If $R \in \mathcal{Q}_{k, j}$ and $(x, y) \in \operatorname{int}\left(f_{k, j}\right)^{-1}\left(I_{R}^{s_{k}^{\prime}}\right)$, then after applying F_{j-1} we have squeezed our diamond k-times. Analogously to (4.2) we can use (2.1), (3.2) and the chain rule to obtain

$$
D f_{k, j}(x, y)=\left(\begin{array}{cc}
1 & 0 \tag{6.5}\\
0 & \frac{1}{k+1}
\end{array}\right) D F_{j-1}(x, y)
$$

Moreover, if $(x, y) \in \operatorname{int}\left(f_{m, j}\right)^{-1}\left(O_{R}^{s_{k}^{\prime}}\right)$, then after applying F_{j-1} we have squeezed our diamond $k-1$ times and then we have stretched it once. Analogously to (4.3) we can use (2.1), (3.2), (2.2), (3.3) and the chain rule to obtain that

$$
\begin{align*}
D f_{m, j}(x, y) & =\left(\begin{array}{cc}
1 & 0 \\
\pm\left(\frac{t k^{2}-1}{k+1}\right) w_{k} & \frac{t k^{2}+k}{k+1}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{k}
\end{array}\right) D F_{j-1}(x, y) \tag{6.6}\\
& =\left(\begin{array}{cc}
1 & 0 \\
\pm 1 & \frac{t k^{2}+k}{k(k+1)}
\end{array}\right) D F_{j-1}(x, y) .
\end{align*}
$$

Now let us fix $m, n \in \mathbb{N}, m>n$. Since $f_{n, j}=f_{m, j}$ outside of $R_{n, j}$ we obtain

$$
\begin{aligned}
& \int_{Q_{0}}\left|D\left(f_{m, j}-f_{n, j}\right)\right|^{p}=\int_{R_{n, j}}\left|D\left(f_{m, j}-f_{n, j}\right)\right|^{p} \\
& \quad \leq \int_{R_{n, j} \backslash R_{m, j}}\left|D f_{n, j}\right|^{p}+\int_{R_{m, j}}\left|D f_{m, j}-D f_{n, j}\right|^{p}+\sum_{k=n+1}^{m} \int_{G_{k, j}}\left|D f_{m, j}\right|^{p} .
\end{aligned}
$$

By (6.5) we get

$$
\int_{R_{n, j} \backslash R_{m, j}}\left|D f_{n, j}\right|^{p} \leq c \int_{R_{n, j} \backslash R_{m, j}}\left|D F_{j-1}\right|^{p} \xrightarrow{n \rightarrow \infty} 0
$$

since $D F_{j-1} \in L^{p}$ and $\mathcal{L}_{2}\left(R_{n, j} \backslash R_{m, j}\right) \rightarrow 0$. From (6.5) we obtain

$$
\int_{R_{m, j}}\left|D f_{m, j}-D f_{n, j}\right|^{p} \leq \frac{c}{(n+1)^{p}} \int_{R_{m, j}}\left|D F_{j-1}\right|^{p} \xrightarrow{n \rightarrow \infty} 0 .
$$

Let us denote $d_{i}:=\frac{t i^{2}+i}{i(i+1)}$. In the estimate of the norm of the derivative we use the chain rule and then we multiply couples of adjacent matrices as in (5.7). Later we
estimate the norm of the product by the product of norms. Then we use (6.6), (6.3), $\sum \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$ and we proceed similarly to (5.8) (6.7)

$$
\begin{aligned}
& \sum_{k=n+1}^{m} \int_{G_{k, j}}\left|D f_{m, j}\right|^{p} \leq \sum_{k_{j}=n+1}^{m} \sum_{k_{1}, \ldots, k_{j-1}=1}^{\infty} \int_{\bigcap_{i=1}^{j} G_{k_{i}, i}}\left|D f_{m, j}\right|^{p} \\
& \quad \leq c \sum_{k_{j}=n+1}^{m} \sum_{k_{1}, \ldots, k_{j-1}=1}^{\infty} \mathcal{L}_{2}\left(\bigcap_{i=1}^{j} G_{k_{i}, i}\right) 10^{p} \max \left\{d_{k_{1}}, d_{k_{2}}\right\}^{p} \cdots 10^{p} \max \left\{d_{k_{j-1}}, d_{k_{j}}\right\}^{p} \\
& \quad \leq c\left(\sum_{k_{1}, k_{2}=1}^{\infty} 10^{p} \frac{t^{p}}{t k_{1}^{2} t k_{2}^{2}}\right)\left(\sum_{k_{3}, k_{4}=1}^{\infty} 10^{p} \frac{t^{p}}{t k_{3}^{2} t k_{4}^{2}}\right) \cdots\left(\sum_{k_{j}=n+1}^{m} \sum_{k_{j-1}=1}^{\infty} 10^{p} \frac{t^{p}}{t k_{j-1}^{2} t k_{j}^{2}}\right) \\
& \quad \leq c\left(10^{p} \frac{\pi^{4}}{6^{2}} t^{p-2}\right)^{\frac{j}{2}-1} \cdot\left(10^{p} \frac{\pi^{2}}{6} t^{p-2} \sum_{k_{j}=n+1}^{m} \frac{1}{k_{j}^{2}}\right)^{n \rightarrow \infty} 0 .
\end{aligned}
$$

As before this implies that $F_{j} \in W^{1, p}$ and similarly we also obtain that $J_{F_{j}}=0$ almost everywhere on C_{j} and that $J_{F_{j}} \neq 0$ almost everywhere on $Q_{0} \backslash C$.

7. Properties of f

Now we define $f(x)=\lim _{j \rightarrow \infty} F_{j}(x)$. Since F_{j} converge uniformly it is easy to see that f is a homeomorphism. It remains to show that $D F_{j}$ is Cauchy in L^{p} and thus $F \in W^{1, p}$.
Since $F_{j}=F_{j-1}$ on $\bigcup_{i=1}^{j-1} C_{i}$ we obtain

$$
\int_{Q_{0}}\left|D\left(F_{j}-F_{j-1}\right)\right|^{p} \leq \int_{C_{j}}\left(\left|D F_{j}\right|^{p}+\left|D F_{j-1}\right|^{p}\right)+\sum_{k=1}^{\infty} \int_{G_{k, j}}\left(\left|D F_{j}\right|^{p}+\left|D F_{j-1}\right|^{p}\right) .
$$

We will proceed analogously to (6.7) but we will estimate the multiplicative constant more carefully. Again we will suppose that j is even but everything works for j odd analogously. Analogously to (6.7) we can use (3.1) to obtain

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \int_{G_{k, j}}\left(\left|D F_{j}\right|^{p}+\left|D F_{j-1}\right|^{p}\right) \leq \sum_{k_{1}, \ldots, k_{j}=1}^{\infty} \int_{\bigcap_{i=1}^{j} G_{k_{i}, i}}\left(\left|D F_{j}\right|^{p}+\left|D F_{j-1}\right|^{p}\right) \\
& \quad \leq c \sum_{k_{1}, \ldots, k_{j}=1}^{\infty} \mathcal{L}_{2}\left(\bigcap_{i=1}^{j} G_{k_{i}, i}\right) 10^{p} \max \left\{d_{k_{1}}, d_{k_{2}}\right\}^{p} \cdots 10^{p} \max \left\{d_{k_{j-1}}, d_{k_{j}}\right\}^{p} \\
& \quad \leq c\left(10^{p} \frac{\pi^{4}}{6^{2}} t^{p-2}\right)^{\frac{j}{2}} \leq c\left(\frac{1}{2}\right)^{\frac{j}{2}} .
\end{aligned}
$$

From (6.5) we know that

$$
D f_{k, j}(x, y)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{k+1}
\end{array}\right) D F_{j-1}(x, y)
$$

on C_{j}. Since the limit as $k \rightarrow \infty$ exists it is easy to see that $\left|D F_{j}\right| \leq C\left|D F_{j-1}\right|$ there. Hence

$$
\begin{aligned}
& \int_{C_{j}}\left(\left|D F_{j}\right|^{p}+\left|D F_{j-1}\right|^{p}\right) \leq c \sum_{k_{1}, \ldots, k_{j-1}=1}^{\infty} \int_{C_{j} \cap \cap \cap_{i=1}^{j-1} G_{k_{i}, i}}\left|D F_{j-1}\right|^{p} \\
& \quad \leq c \sum_{k_{1}, \ldots, k_{j-1}=1}^{\infty} \mathcal{L}_{2}\left(\bigcap_{i=1}^{j-1} G_{k_{i}, i}\right) 10^{p} \max \left\{d_{k_{1},}, d_{k_{2}}\right\}^{p} \cdots 10^{p} d_{k_{j}}^{p} \leq c\left(\frac{1}{2}\right)^{\frac{j}{2}-1} .
\end{aligned}
$$

It follows that

$$
\sum_{j=1}^{\infty} \int_{Q_{0}}\left|D\left(F_{j}-F_{j-1}\right)\right|^{p}<\infty
$$

and thus $D F_{j}$ forms a Cauchy sequence in L^{p} and $f \in W^{1, p}$.
From (6.4) we know that

$$
\mathcal{L}_{2}\left(C_{j}\right)=\mathcal{L}_{2}\left(Q_{0} \backslash \bigcup_{i=1}^{j-1} C_{i}\right) \prod_{i=1}^{\infty} s_{i}
$$

for each j. Since $\prod_{i=1}^{\infty} s_{i}>0$ we easily obtain

$$
\mathcal{L}_{2}\left(\bigcup_{j=1}^{\infty} C_{j}\right)=\mathcal{L}_{2}\left(Q_{0}\right) .
$$

Together with $J_{F_{j}}=0$ on C_{j} and $F_{k}=F_{j}$ on C_{j} for each $k>j$ this implies that $J_{f}=0$ almost everywhere on Q_{0}.

Remark 7.1. It follows from our construction that the mappings F_{j} are Lipschitz with constant $(C t)^{j}$ (see (6.7)). Therefore the distributional jacobian of F_{j} can be represented by the usual jacobian and we get

$$
\begin{aligned}
\mathcal{J}_{F_{j}}(\varphi) & =-\int_{Q_{0}}\left(F_{j}\right)_{1}(x) J\left(\varphi(x),\left(F_{j}\right)_{2}(x)\right) d x \\
& =\int_{Q_{0}} \varphi(x) J_{F_{j}}(x) d x=\int_{Q_{0}} \varphi\left(F_{j}^{-1}(y)\right) d y
\end{aligned}
$$

for every test function $\varphi \in C_{0}^{\infty}\left(Q_{0}\right)$. Here $\left(F_{j}\right)_{i}$ denotes the i-th component of the function F_{j} and $J\left(\varphi,\left(F_{j}\right)_{2}\right)$ denotes the jacobian of a mappings with first component φ and second $\left(F_{j}\right)_{2}$. Since F_{j} converge to F uniformly and in $W^{1, p}$ we get that the left hand side converges to the distributional jacobian of f. It also follows that it is a nonnegative distribution and thus can be represented by some measure. Since $J_{f}=0$ a. e. we get that this measure is singular with respect to the Lebesgue measure. Similarly we obtain the same conclusion also in higher dimension if $p>N-1$.

8. Construction for $N>2$

The construction in higher dimension is similar and therefore we will only sketch it and point out the differences. Let $0<w$ and $s, s^{\prime} \in(0,1)$. Our basic building block is a diamond of width w in the first coordinate

$$
Q(w)=\left\{x \in \mathbb{R}^{N}:\left|x_{1}\right|<w\left(1-\left|x_{2}\right|-\left|x_{3}\right|-\ldots-\left|x_{N}\right|\right)\right\}
$$

and again we denote

$$
I(w, s)=Q(w s) \text { and } O(w, s)=Q(w) \backslash Q(w s)
$$

We define the mapping $\varphi_{s, s^{\prime}}: Q(w) \rightarrow Q(w)$ by

$$
\begin{aligned}
& \left(\left(\frac{1-s^{\prime}}{1-s}\right) x_{1}+\operatorname{sgn}\left(x_{1}\right)\left(1-\left|x_{2}\right|-\ldots-\left|x_{N}\right|\right) w\left(1-\frac{1-s^{\prime}}{1-s}\right), x_{2}, \ldots, x_{N}\right) \text { for } x \in I(w, s) \text {, } \\
& \left(\left(\frac{s^{\prime}}{s}\right) x_{1}, x_{2}, \ldots, x_{N}\right) \text { for } x \in O(w, s) .
\end{aligned}
$$

If $s^{\prime}<s$, then this linear homeomorphism horizontally compresses $I(w, s)$ onto $I\left(w, s^{\prime}\right)$, while stretching $O(w, s)$ onto $O\left(w, s^{\prime}\right)$.

If x is an interior point of $I(w, s)$, then

$$
D \varphi_{w, s, s^{\prime}}(x)=\left(\begin{array}{cccc}
\frac{s^{\prime}}{s} & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

and if x is an interior point of $O(w, s)$ and $x_{2}, \ldots, x_{N} \neq 0$, then

$$
D \varphi_{w, s, s^{\prime}}(x)=\left(\begin{array}{cccc}
\frac{1-s^{\prime}}{1-s} & \pm w\left(1-\frac{1-s^{\prime}}{1-s}\right) & \ldots & \pm w\left(1-\frac{1-s^{\prime}}{1-s}\right) \tag{8.1}\\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

and again this matrix is close to diagonal matrix for w small enough.
Let $1 \leq p<N$. We can clearly fix $t>1$ such that

$$
\begin{equation*}
A^{p}\left(\frac{\pi^{2}}{6}\right)^{N} t^{p-N}<\frac{1}{2} \tag{8.2}
\end{equation*}
$$

where A is a fixed constant to be chosen later. We define the sequences w_{k}, s_{k} and s_{k}^{\prime} by the same formula as in (3.2).

The mapping $f_{k, j}$ and F_{j} are defined by the use of our N-dimensional building blocks similarly as in dimension $N=2$. Given j we find $a \in \mathbb{N}_{0}$ and $b \in\{1, \ldots, N\}$ such that $j=a N+b$. Then we define the mapping F_{j} with the use of building blocks that are thin in the direction of the x_{b}-axis. That is in the key estimate of the derivative we multiply N adjacent matrices and we obtain a matrix that is almost diagonal and almost of the form

$$
M_{a}:=\left(\begin{array}{cccc}
d_{k_{a N+1}} & 0 & \ldots & 0 \\
0 & d_{k_{a N+2}} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & d_{k_{a N+N-1}}
\end{array}\right)
$$

The actual matrix is non-diagonal because of the non-diagonal terms in (8.1). On the other hand the non-diagonal terms in (8.1) equal to ± 1 and hence it is not difficult to deduce that the norm of the actual matrix can be estimated by a constant A times the norm of the matrix M_{a} and thus by $A t$.

Similarly to $N=2$ we may deduce that all the constructed sequences are Cauchy in L^{p} and thus $F_{j} \in W^{1, p}$ and $f \in W^{1, p}$. The key for the last is (8.2) and the estimate

$$
\begin{aligned}
\sum_{k_{1}, \ldots, k_{j}=1}^{\infty} \mathcal{L}_{2}\left(\bigcap_{i=1}^{j} G_{k_{i}, i}\right) \prod_{a=0}^{j / N} A^{p}\left\|M_{a}\right\|^{p} & \leq c \sum_{k_{1}, \ldots, k_{j}=1}^{\infty} \frac{1}{t k_{1}^{2} \cdots t k_{j}^{2}} \prod_{a=0}^{j / N} A^{p} t^{p} \\
& \leq c\left(A^{p}\left(\frac{\pi^{2}}{6}\right)^{N} t^{p-N}\right)^{\frac{j}{N}}
\end{aligned}
$$

Acknowledgement. The author would like to thank Jan Malý and Kevin Wildrick for many stimulating conversations and valuable comments. He would also like to thank Robert Černý for carefully reading the manuscript.

References

[1] K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009.
[2] P. Hajl'asz, Change of variables formula under minimal assumptions, Colloq. Math. 64 (1993), 93-101.
[3] S. Hencl and J. Malý, Jacobians of Sobolev homeomorphisms, to a appear in Calc. Var. Partial Differential Equations.
[4] T. Iwaniec and G. Martin, Geometric function theory and nonlinear analysis, Oxford Mathematical Monographs, Clarendon Press, Oxford 2001.
[5] J. Kauhanen, An example concerning the zero set of the Jacobian, J. Math. Anal. Appl. 315 (2006), 656-665.
[6] J. Kauhanen, P. Koskela and J. Malý, Mappings of finite distortion: Condition N, Michigan Math. J. 49 (2001), 169-181.
[7] P. Koskela and J. Malý, Mappings of finite distortion: the zero set of the Jacobian, J. Eur. Math. Soc. 5 (2003), 95-105.
[8] J. Malý and O. Martio, Lusin's condition (N) and mappings of the class $W^{1, n}$, J. Reine Angew. Math. 458 (1995), 19-36.
[9] S. Müller, On the singular support of the distributional determinant, Ann. Inst. Henri Poincaré 10 (1993), 657-696.
[10] S. Ponomarev, Examples of homeomorphisms in the class $A C T L^{p}$ which do not satisfy the absolute continuity condition of Banach (Russian), Dokl. Akad. Nauk USSR 201 (1971), 1053-1054.

Department of Mathematical Analysis, Charles University, Sokolovská 83, 18600
Prague 8, Czech Republic
E-mail address: hencl@karlin.mff.cuni.cz

