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Preface

This publication is devoted to the theory of product integral, its history and applica-
tions. The text represents an English translation of my dissertation with numerous
corrections and several complements.

The definition of product integral appeared for the first time in the work of Vito
Volterra at the end of the 19th century. Although it is a rather elementary concept,
it is almost unknown among mathematicians.

Whereas the ordinary integral of a function a provides a solution of the equation

y′(x) = a(x),

the product integral helps us to find solutions of the equation

y′(x) = a(x)y(x).

The function a can be a scalar function, but product integration is most useful
when a is a matrix function; in the latter case, y is a vector function and the above
equation represents in fact a system of linear differential equations of the first order.

Volterra was trying (on the whole successfully) to create analogy of infinitesimal
calculus for the product integral. However, his first papers didn’t meet with a great
response. Only the development of Lebesgue integral and the birth of functional
analysis in the 20th century was followed by the revival of interest in product
integration. The attempts to generalize the notion of product integral followed
two directions: Product integration of matrix functions whose entries are not Rie-
mann integrable, and integration of more general objects than matrix functions
(e.g. operator-valued functions).

In the 1930’s, the ideas of Volterra were taken up by Ludwig Schlesinger, who elab-
orated Volterra’s results and introduced the notion of Lebesgue product integral.
Approximately at the same time, a Czech mathematician and physicist Bohuslav
Hostinský proposed a definition of product integral for functions whose values are
integral operators on the space of continuous functions.

New approaches to ordinary integration were often followed by similar theories of
product integration; one of the aims of this work is to document this progress.
It can be also used as an introductory textbook of product integration. Most of
the text should be comprehensible to everyone with a good knowledge of calculus.
Parts of Section 1.1 and Section 2.8 require a basic knowledge of analytic functions
in complex domain, but both may be skipped. Sections 3.5 to 3.8 assume that the
reader is familiar with the basics of Lebesgue integration theory, and Chapters 4
and 5 use some elementary facts from functional analysis.

Almost every text about product integration contains references to the works of
V. Volterra, B. Hostinský, L. Schlesinger and P. Masani, who have strongly in-
fluenced the present state of product integration theory. The largest part of this
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publication is devoted to the discussion of their work. There were also other pio-
neers of product integration such as G. Rasch and G. Birkhoff, whose works [GR]
and [GB] didn’t have such a great influence and will not be treated here. The
readers with a deeper interest in product integration should consult the monograph
[DF], which includes an exhausting list of references.

All theorems and proofs that were taken over from another work include a reference
to the original source. However, especially the results of V. Volterra were reformu-
lated in the language of modern mathematics. Some of his proofs contained gaps,
which I have either filled, or suggested a different proof.

Since the work was originally written in Czech, it includes references to several
Czech monographs and articles; I have also provided a reference to an equivalent
work written in English if possible.

I am indebted especially to professor Štefan Schwabik, who supervised my disserta-
tion on product integration, suggested valuable advices and devoted a lot of time to
me. I also thank to ing. Tomáš Hostinský, who has kindly provided a photograph
of his grandfather Bohuslav Hostinský.
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Chapter 1

Introduction

This chapter starts with a brief look on the prehistory of product integration;
the first section summarizes some results concerning ordinary differential equations
that were obtained prior the discovery of product integral. The next part provides a
motivation for the definition of product integral, and the last two sections describe
simple applications of product integration in physics and in probability theory.

1.1 Ordinary differential equations in the 19th century
The notion of product integral was introduced by Vito Volterra in connection with
the differential equation of the n-th order

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = q(x). (1.1.1)

Such an equation can be converted (see Example 2.5.5) into a system of n linear
differential equations of the first order

y′i(x) =
n∑
j=1

aij(x)yj(x) + bi(x), i = 1, . . . , n,

which can be also written in the vector form

y′(x) = A(x)y(x) + b(x). (1.1.2)

Volterra was initially interested in solving this equation in the real domain: Given
the functions A : [a, b] → Rn×n (where Rn×n denotes the set of all real n × n
matrices) and b : [a, b] → Rn, we have to find all solutions y : [a, b] → Rn of the
system (1.1.2). Later Volterra considered also the complex case, where y : G→ Cn,
A : G → Cn×n and b : G → Cn, where G ⊆ C and Cn×n denotes the set of all
n× n matrices with complex entries.

To be able to appreciate Volterra’s results, let’s have a brief look on the theory of
Equations (1.1.1) and (1.1.2) as developed at the end of the 19th century. A more
detailed discussion can be found e.g. in the book [Kl] (Chapters 21 and 29).

A large amount of problems in physics and in geometry leads to differential equa-
tions; mathematicians were thus forced to solve differential equations already since
the invention of infinitesimal calculus. The solutions of many differential equations
have been obtained (often in an ingenious way) in a closed form, i.e. expressed as
combinations of elementary functions.

Leonhard Euler proposed a method for solving Equation (1.1.1) in case when the
pi are constants. Substituting y(x) = exp(λx) in the corresponding homogeneous
equation yields the characteristic equation

λn + p1λ
n−1 + · · ·+ pn = 0.
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If the equation has n distinct real roots, then we have obtained a fundamental
system of solutions. Euler knew how to proceed even in the case of multiple or
complex roots and was also able to solve inhomogeneous equations. The well-known
method of finding a particular solution using the variation of constants (which
works even in the case of non-constant coefficients) was introduced by Joseph Louis
Lagrange.

More complicated equations of the form (1.1.1) can be often solved using the power
series method: Assuming that the solution can be expressed as y(x) =

∑∞
n=0 an(x−

x0)n and substituting to the differential equation we obtain a recurrence relation for
the coefficients an. Of course, this procedure works only in case when the solution
can be indeed expressed as a power series. Consequently, mathematicians began to
be interested in the problems of existence of solutions.

The pioneering result was due to Augustin Louis Cauchy, who proved in 1820’s the
existence of a solution of the equation

y′(x) = f(x, y(x))

y(x0) = y0
(1.1.3)

under the assumption that f and ∂f
∂y are continuous functions. The statement is

also true for vector functions y, and thus the linear Equation (1.1.2) is a special
case of the Equation (1.1.3). Rudolf Lipschitz later replaced the assumption of
continuity of ∂f

∂y by a weaker condition

‖f(x, y1)− f(x, y2)‖ < K · ‖y1 − y2‖

(now known as the Lipschitz condition).

Today, the existence and uniqueness of solution of Equation (1.1.3) is usually proved
using the Banach fixed point theorem: We put

y1(x) = y0 +
∫ x

x0

f(t, y0) dt,

yn(x) = y0 +
∫ x

x0

f(t, yn−1(t)) dt, n ≥ 2.

If f is continuous and satisfies the Lipschitz condition, then the successive approx-
imations {yn}∞n=1 converge to a function y which solves Equation (1.1.3). The
method of successive approximations was already known to Joseph Liouville and
was used by Émile Picard.

Around 1840 Cauchy proved the existence of a solution of Equation (1.1.3) in
complex domain using the so-called majorant method (see [VJ, EH]). We are looking
for the solution of Equation (1.1.3) in the neighbourhood of a point x0 ∈ C; the
solution is a holomorphic function and thus can be expressed in the form

y(x) =
∞∑
n=0

cn(x− x0)n (1.1.4)
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in a certain neighbourhood of x0. Suppose that f is holomorphic for |x − x0| ≤ a
and |y − y0| ≤ b, i.e. that

f(x, y) =
∞∑

i,j=0

aij(x− x0)i(y − y0)j . (1.1.5)

Substituting the power series (1.1.4) and (1.1.5) to Equation (1.1.3) gives an equa-
tion for the unknown coefficients cn; it is however necessary to prove that the
function (1.1.4) converges in the neighbourhood of x0. We put

M = sup{|f(x, y)|, |x− x0| ≤ a, |y − y0| ≤ b}

and define

Aij =
M

aibj
,

F (x, y) =
∞∑

i,j=0

Aij(x− x0)i(y − y0)j =
M

(1− (x− x0)/a)(1− (y − y0)/b)
. (1.1.6)

The coefficients aij can be expressed using the Cauchy’s integral formula

aij =
1
i!j!

∂i+jf

∂xi∂yj
=

1
(2πi)2

∫
ϕa

∫
ϕb

f(x, y)
(x− x0)i+1(y − y0)j+1

dy dx,

where ϕa is a circle centered at x0 with radius a > 0 and ϕb is a circle centered at
y0 with radius b > 0. The last equation leads to the estimate |aij | ≤ Aij , i.e. the
infinite series (1.1.6) is a majorant to the series (1.1.5). Cauchy proved that there
exists a solution of the equation

Y ′(x) = F (x, Y (x))

that can be expressed in the form Y (x) =
∑∞
n=0 Cn(x − x0)n in a neighbourhood

of x0 and such that |cn| ≤ Cn. Consequently the series (1.1.4) is also convergent in
a neighbourhood of x0.

In particular, for the system of linear equations (1.1.2) Cauchy arrived at the fol-
lowing result:

Theorem 1.1.1. Consider functions aij , bj (i, j = 1, . . . , n) that are holomorphic
in the disk B(x0, r) = {x ∈ C; |x− x0| < r}. Then there exists exactly one system
of functions

yi(x) = y0
i +

∞∑
j=1

cij(x− x0)i (i = 1, . . . , n)

defined in B(x0, r) that satisfies

y′i(x) =
n∑
j=1

aij(x)yj(x) + bi(x),

yi(x0) = y0
i ,
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where y0
1 , . . . , y

0
n ∈ C are given numbers.

As a consequence we obtain the following theorem concerning linear differential
equations of the n-th order:

Theorem 1.1.2. Consider functions p1, . . . , pn, q that are holomorphic in the disk
B(x0, r) = {x ∈ C; |x − x0| < r}. Then there exists exactly one holomorphic
function

y(x) =
∞∑
k=0

ck(x− x0)k

defined in B(x0, r) that satisfies the differential equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = q(x)

and the initial conditions

y(x0) = y0, y
′(x0) = y′0, . . . , y

(n−1)(x0) = y
(n−1)
0 ,

where y0, y
′
0, . . . , y

(n−1)
0 ∈ C are given complex numbers.

Thus we see that the solutions of Equation (1.1.1), whose coefficients p1, . . . , pn, q
are holomorphic functions, can be indeed obtained by the power series method.

However, it is often necessary to solve Equation (1.1.1) in case when the coefficients
p1, . . . , pn, q have an isolated singularity. For example, separation of variables in
the wave partial differential equation leads to the Bessel equation

y′′(x) +
1
x
y′(x) +

(
1− n2

x2

)
y(x) = 0,

whose coefficients have a singularity at 0. Similarly, separation of variables in the
Laplace equation gives the Legendre differential equation

y′′(x)− 2x
1− x2

y′(x) +
n(n+ 1)
1− x2

y(x) = 0

with singularities at −1 and 1.

The behaviour of solutions in the neighbourhood of a singularity has been stud-
ied by Bernhard Riemann and after 1865 also by Lazarus Fuchs. Consider the
homogeneous equation

y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn(x)y(x) = 0 (1.1.7)

in the neighbourhood of an isolated singularity at x0 ∈ C; we assume that the
functions pi are holomorphic in the ring P (x0, R) = {x ∈ C; 0 < |x − x0| < r}.
If we choose an arbitrary a ∈ P (x0, R), then the functions pi are holomorphic
in U(a, r) (where r = |a − x0|), and Equation (1.1.7) has n linearly independent
holomorphic solutions y1, . . . , yn in U(a, r). We now continue these functions along
the circle

ϕ(t) = x0 + (a− x0) exp(it), t ∈ [0, 2π]

6



centered at x0 and passing through a. We thus obtain a different system of solutions
Y1, . . . , Yn in U(a, r). Since both systems are fundamental, we must have Yi =∑n
j=1Mijyj , or in the matrix notation Y = My. By a clever choice of the system

y1, . . . , yn it can be achieved that M is a Jordan matrix. Using these facts, Fuchs
was able to prove the existence of a fundamental system of solutions of Equation
(1.1.7) in P (x0, R) that consists of analytic functions of the form

(x− x0)λi
(
ϕi0(x) + ϕi1(x) log(x− x0) + · · ·+ ϕini(x) logni(x− x0)

)
,

i = 1, . . . , n, where ϕjk are holomorphic functions in P (x0, R) and λi ∈ C is such
that exp(2πiλi) is an eigenvalue of M with multiplicity ni.

Moreover, if pi has a pole of order at most i at x0 for i ∈ {1, . . . , n}, then the
Fuchs theorem guarantees that ϕjk has a pole (i.e. not an essential singularity) at
x0. This result implies that Equation (1.1.7) has at least one solution in the form
y(x) = (x − x0)r

∑∞
k=0 ak(x − x0)k; the numbers r and ak can be calculated by

substituting the solution to Equation (1.1.7) (this is the Frobenius method).

We have now recapitulated some basic facts from the theory of ordinary differential
equations. In later chapters we will see that many of them can be also obtained
using the theory of product integration.

1.2 Motivation to the definition of product integral

The theory of product integral is rather unknown among mathematicians. The
following text should provide a motivation for the following chapters.

We consider the ordinary differential equation

y′(t) = f(t, y(t)) (1.2.1)

y(a) = y0 (1.2.2)

where f : [a, b] × Rn → Rn is a given function. Thus, we are seeking a solution
y : [a, b]→ Rn that satisfies (1.2.1) on [a, b] (one-sided derivatives are taken at the
endpoints of [a, b]) as well as the initial condition (1.2.2).
An approximate solution can be obtained using the Euler method, which is based
on the observation that for small ∆t,

y(t+ ∆t)
.
= y(t) + y′(t)∆t = y(t) + f(t, y(t))∆t.

We choose a partition D : a = t0 < t1 < · · · < tm = b of interval [a, b] and put

y(t0) = y0

y(t1) = y(t0) + f(t0, y(t0))∆t1
y(t2) = y(t1) + f(t1, y(t1))∆t2

· · ·
y(tm) = y(tm−1) + f(tm−1, y(tm−1))∆tm,

7



where ∆ti = ti − ti−1, i = 1, . . . ,m. We expect that the finer partition D we
choose, the better approximation we get (provided that f is a “well-behaved”,
e.g. continuous, function).

We now turn to the special case f(t, y(t)) = A(t)y(t), where A(t) ∈ Rn×n is a
square matrix for every t ∈ [a, b]. The Euler method applied to the linear equation

y′(t) = A(t)y(t)

y(a) = y0
(1.2.3)

yields

y(t0) = y0,

y(t1) = (I +A(t0)∆t1)y(t0) = (I +A(t0)∆t1)y0,

y(t2) = (I +A(t1)∆t2)y(t1) = (I +A(t1)∆t2)(I +A(t0)∆t1)y0,

· · ·
y(tm) = (I +A(tm−1)∆tm) · · · (I +A(t1)∆t2)(I +A(t0)∆t1)y0,

where I denotes the identity matrix. Put

P (A,D) = (I +A(tm−1)∆tk) · · · (I +A(t1)∆t2)(I +A(t0)∆t1).

Provided the entires of A are continuous functions, it is possible to prove (as will
be done in the following chapters) that, if ν(D) → 0 (where ν(D) = max{∆ti, i =
1, . . . ,m}), then P (A,D) converges to a certain matrix; this matrix will be denoted
by the symbol

b∏
a

(I +A(x) dx)

and will be called the left product integral of the matrix function A over the interval
[a, b]. Moreover, the function

Y (t) =
t∏
a

(I +A(x) dx)

satisfies
Y ′(t) = A(t)Y (t)

Y (a) = I

Consequently, the vector function

y(t) =
t∏
a

(I +A(x) dx) y0

is the solution of Equation (1.2.3).
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1.3 Product integration in physics

The following example shows that product integration also finds applications out-
side mathematical analysis, particularly in fluid mechanics (a more general treat-
ment is given in [DF]).

Consider a fluid whose motion is described by a function S : [t0, t1] × R3 → R3;
the value S(t, x) corresponds to the position (at the moment t) of the particle that
was at position x at the moment t0. Thus, for every t ∈ [t0, t1], S can be viewed as
an operator on R3; we emphasize this fact by writing S(t)(x) instead of S(t, x).

If x is a position of a certain particle at the moment t, it will move to S(t + ∆t) ·
S(t)−1(x) (where · denotes the composition of two operators) during the interval
[t, t+ ∆t]. Consequently, its instantaneous velocity at the moment t is given by

V (t)(x) = lim
∆t→0

S(t+ ∆t) · S(t)−1(x)− x
∆t

=

(
lim

∆t→0

S(t+ ∆t) · S(t)−1 − I
∆t

)
(x),

where I denotes the identity operator. The velocity V (t) is an operator on R3 for
every t ∈ [t0, t1]; in the following chapters it will be called the left derivative of the
operator S.

Given the velocity operator V , how to reconstruct the position operator S? For
small ∆t we have

S(t+ ∆t)(x)
.
= (I + V (t)∆t) · S(t)(x).

If we choose a sufficiently fine partition D : t0 = u0 < u1 < · · · < um = t of interval
[t0, t], we obtain

S(t)(x)
.
= (I + V (um−1)∆um) · · · (I + V (u0)∆u1)(x),

where ∆ui = ui − ui−1, i = 1, . . . ,m. The above product (or composition) resem-
bles the product encountered in the previous section. Indeed, passing to the limit
ν(D)→ 0, we see that S is the left product integral of operator V , i.e.

S(t) =
t∏
t0

(I + V (u) du), t ∈ [t0, t1].

In a certain sense, the left derivative and the left product integral are inverse
operations.

1.4 Product integration in probability theory

Some results of probability theory can be elegantly expressed in the language of
product integration. We present two examples concerning survival analysis and
Markov processes; both are inspired by [Gil].

Example 1.4.1. Let T be a non-negative continuous random variable with dis-
tribution function F (t) = P (T ≤ t) and probability density function f(t) = F ′(t).

9



For example, T can be interpreted as the service life of a certain component (or the
length of life of a person etc.). The probability of failure in the interval [t, t+ ∆t]
is

P (t ≤ T ≤ t+ ∆t) = F (t+ ∆t)− F (t).

We remind that the survival function is defined as

S(t) = 1− F (t) = P (T > t)

and the failure rate (or the hazard rate) is

a(t) =
f(t)
S(t)

=
f(t)

1− F (t)
= − S′(t)

S(t)
= − d

dt
logS(t). (1.4.1)

The name “failure rate” stems from the fact that

lim
∆t→0

P (t ≤ T ≤ t+ ∆t |T > t)
∆t

= lim
∆t→0

P (t ≤ T ≤ t+ ∆t)
P (T > t)∆t

=

= lim
∆t→0

F (t+ ∆t)− F (t)
S(t)∆t

=
f(t)
S(t)

= a(t),

i.e. for small ∆t, the conditional probability of failure during the interval [t, t+ ∆t]
is approximately a(t)∆t.

Given the function a, Equation (1.4.1) tells us how to calculate S:

S(t) = exp

(
−
∫ t

0
a(u) du

)
. (1.4.2)

We can also proceed in a different way: If we choose an arbitrary partition

D : 0 = t0 < t1 < · · · < tm = t,

then

S(t) = P (T > t) = P (T > t0)P (T > t1 |T > t0) · · ·P (T > tm |T > tm−1) =

=
m∏
i=1

P (T > ti |T > ti−1) =
m∏
i=1

(1− P (T ≤ ti |T > ti−1)).

In case the partition is sufficiently fine, the last product is approximately equal to

m∏
i=1

(1− a(ti)∆ti).

This product is similar to the one used in the definition of left product integral, but
the factors are reversed. Its limit for ν(D)→ 0 is called the right product integral
of the function −a on interval [0, t] and will be denoted by the symbol

S(t) = (1− a(u) du)
t∏
0

. (1.4.3)
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Comparing Equations (1.4.2) and (1.4.3) we obtain the result

(1− a(u) du)
t∏
0

= exp

(
−
∫ t

0
a(u) du

)
,

which will be proved in Chapter 2 (see Example 2.5.6). The product integral
representation of S has the advantage that it can be intuitively viewed as the
product of probabilities 1 − a(u) du that correspond to infinitesimal intervals of
length du.

The last example corresponds in fact to a simple Markov process with two states s1

(“the component is operating”) and s2 (“the component is broken”). The process
starts in the state s1 and goes over to the state s2 at time T . We now generalize our
calculation to Markov processes with more than two states; before that we recall
the definition of a Markov process.
A stochastic process X on interval [0,∞) is a random function t 7→ X(t), where
X(t) is a random variable for every t ∈ [0,∞). We say that the process is in the
state X(t) at time t. A Markov process is a stochastic process such that the range
of X is either finite or countably infinite and such that for every choice of numbers
n ∈ N, n > 1, 0 ≤ t1 < t2 < · · · < tn, we have

P (X(tn)=xn|X(tn−1)=xn−1, . . . , X(t1)=x1) = P (X(tn)=xn|X(tn−1)=xn−1),

where x1, . . . , xn are arbitrary states (i.e. values from the range of X). The above
condition means that the conditional probability distribution of the process at time
tn depends only on the last observation at tn−1 and not on the whole history.

Example 1.4.2. Let {X(t); t ≥ 0} be a Markov process with a finite number of
states S = {s1, . . . , sn}. For example, we can imagine that X(t) determines the
number of patients in physician’s waiting room (whose capacity is of course finite).

Suppose that the limit

aij(t) = lim
∆t→0+

P (X(t+ ∆t) = sj |X(t) = si)
∆t

exists for every i, j = 1, . . . , n, i 6= j and for every t ∈ [0,∞). The number aij(t) is
called the transition rate from state i to state j at time t. For sufficiently small ∆t
we have

P (X(t+ ∆t) = sj |X(t) = si)
.
= aij(t)∆t, i 6= j, (1.4.4)

P (X(t+ ∆t) = si |X(t) = si)
.
= 1−

∑
j 6=i

aij(t)∆t. (1.4.5)

We also define
aii(t) = −

∑
j 6=i

aij(t), i = 1, . . . , n

and denote A(t) = {aij(t)}ni,j=1. Given the matrix A, we are interested in calculat-
ing the probabilities

pi(t) = P (X(t) = si), t ∈ [0,∞), i = 1, . . . , n,

11



and
pij(s, t) = P (X(t) = sj |X(s) = si), 0 ≤ s < t, i, j = 1, . . . , n.

The total probability theorem gives

pj(t) =
n∑
i=1

pi(0)pij(0, t).

The probabilities pi(0), i = 1, . . . , n are usually given and it is thus sufficient
to calculate the probabilities pij(0, t), or generally pij(s, t). Putting P (s, t) =
{pij(s, t)}ni,j=1 we can rewrite Equations (1.4.4) and (1.4.5) to the matrix form

P (t, t+ ∆t)
.
= I +A(t)∆t (1.4.6)

for sufficiently small ∆t.

Using the total probability theorem once more we obtain

pij(s, u) =
n∑
k=1

pik(s, t)pkj(t, u), (1.4.7)

for 0 ≤ s < t < u, i, j = 1, . . . , n. This is equivalent to the matrix equation

P (s, u) = P (s, t)P (t, u). (1.4.8)

If we choose a sufficiently fine partition s = u0 < u1 < · · · < um = t of interval
[s, t], then Equations (1.4.6) and (1.4.8) imply

P (s, t) =
m∏
i=1

P (ui−1, ui)
.
=

m∏
i=1

(I +A(ui)∆ui).

Passing to the limit for ν(D) → 0 we obtain a matrix which is called the right
product integral of the function A over interval [s, t]:

P (s, t) = (I +A(u) du)
t∏
s

.

The last result can be again intuitively interpreted as the product of matrices
I + A(u) du which correspond to transition probabilities in the infinitesimal time
intervals of length du.
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Chapter 2

The origins of product integration

The notion of product integral has been introduced by Vito Volterra at the end of
the 19th century. We start with a short biography of this eminent Italian mathe-
matician and then proceed to discuss his work on product integration.

Vito Volterra was born at Ancona on 3rd May 1860. His father died two years
later; Vito moved in with his mother Angelica to Alfonso, Angelica’s brother, who
supported them and was like a boy’s father. Because of their financial situation,
Angelica and Alfonso didn’t want Vito to study his favourite subject, mathematics,
at university, but eventually Edoardo Almagià, Angelica’s cousin and a railroad
engineer, helped to persuade them. An important role was also played by Volterra’s
teacher Ròiti, who secured him a place of assistant in a physical laboratory.

Vito Volterra1

In 1878 Volterra entered the University of Pisa; among his professors was the fa-
mous Ulisse Dini. In 1879 he passed the examination to Scuola Normale Superiore
of Pisa. Under the influence of Enrico Betti, his interest shifted towards mathe-
matical physics. In 1882 he offered a thesis on hydrodynamics, graduated doctor
of physics and became Betti’s assistent. Shortly after, in 1883, the young Volterra
won the competition for the vacant chair of rational mechanics and was promoted

1 Photo from [McT]
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to professor of the University of Pisa. After Betti’s death he took over his course in
mathematical physics. In 1893 he moved to the University of Turin, but eventually
settled in Rome in 1900. The same year he married Virginia Almagià (the daughter
of Edoardo Almagià).

During the first quarter of the 20th century Volterra not only represented the
leading figure of Italian mathematics, but also became involved in politics and was
nominated a Senator of the Kingdom in 1905.

When Italy entered the world war in 1915, Volterra volunteered the Army Corps
of Engineers and engaged himself in perfecting of airships and firing from them; he
also promoted the collaboration with French and English scientists. After the end
of the war he returned to scientific work and teaching at the university.

Volterra strongly opposed the Mussolini regime which came to power in 1922. As
one of the few professors who refused to take an oath of loyalty imposed by the
fascists in 1931, he was forced to leave the University of Rome and other scien-
tific institutions. After then he spent a lot of time abroad (giving lectures e.g. in
France, Spain, Czechoslovakia or Romania) and also at his country house in Ar-
iccia. Volterra, who was of Jewish descent, was also affected by the antisemitic
racial laws of 1938. Although he began to suffer from phlebitis, he still devoted
himself actively to mathematics. He died in isolation on 11th October 1940 without
a greater interest of Italian scientific community.

Despite the fact that Volterra is best known as a mathematician, he was a man of
universal interests and devoted himself also to physics, biology and economy. His
mathematical research often had origins in physical problems. Volterra was also
an enthusiastic bibliophile and his collection, which reached nearly seven thousand
volumes and is now deposited in the United States, included rare copies of scientific
papers e.g. by Galileo, Brahe, Tartaglia, Fermat etc. The monograph [JG] contains
a wealth of information about Volterra’s life and times.

Volterra’s name is closely connected with integral equations. He contributed the
method of successive approximations for solving integral equations of the second
kind, and also noted that an integral equation might be considered as a limiting
case of a system of algebraic linear equations; this observation was later utilized by
Ivar Fredholm (see also the introduction to Chapter 4).

His investigations in calculus of variations led him to the study of functionals (he
called them “functions of lines”); in fact he built a complete calculus including
the definitions of continuity, derivative and integral of a functional. Volterra’s
pioneering work on integral equations and functionals is often regarded as the dawn
of functional analysis. An overview of his achievements in this field can be obtained
from the book [VV5].

Volterra was also one of the founders of mathematical biology. The motivation
came from his son-in-law Umberto D’Ancona, who was studying the statistics of
Adriatic fishery. He posed to Volterra the problem of explaining the relative in-
crease of predator fishes, as compared with their prey, during the period of First
World War (see e.g. [MB]). Volterra interpreted this phenomenon with the help of
mathematical models of struggle between two species; from mathematical point of
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view, the models were combinations of differential and integral equations. Volterra’s
correspondence concerning mathematical biology was published in the book [IG].

A more detailed description of Volterra’s activites (his work on partial differential
equations, theory of elasticity) can be found in the biographies [All, JG] and also
in the books [IG, VV5]. An interesting account of Italian mathematics and its
intertwining with politics in the first half of the 20th century is given in [GN].

2.1 Product integration in the work of Vito Volterra

Volterra’s first work devoted to product integration [VV1] was published in 1887
and was written in Italian. It introduces the two basic concepts of the multiplicative
calculus, namely the derivative of a matrix function and the product integral. The
topics discussed in [VV1] are essentially the same as in Sections 2.3 to 2.6 of the
present chapter. The publication [VV1] was followed by a second part [VV2] printed
in 1902, which is concerned mainly with matrix functions of a complex variable. It
includes results which are recapitulated in Sections 2.7 and 2.8, and also a treatment
of product integration on Riemann surfaces. Volterra also published two short
Italian notes, [VV3] from 1887 and [VV4] from 1888, which summarize the results
of [VV1, VV2] but don’t include proofs.

Volterra’s final treatment of product integration is represented by the book Opéra-
tions infinitésimales linéaires [VH] written together with a Czech mathematician
Bohuslav Hostinský. The publication appeared in the series Collection de mono-
graphies sur la théorie des fonctions directed by Émile Borel in 1938.

More than two hundred pages of [VH] are divided into eighteen chapters. The
first fifteen chapters represent a French translation of [VV1, VV2] with only small
changes and complements. The remaining three chapters, whose author is Bohuslav
Hostinský, will be discussed in Chapter 4.

As Volterra notes in the book’s preface, the publication of [VH] was motivated
by the results obtained by Bohuslav Hostinský, as well as by an increased interest
in matrix theory among mathematicians and physicists. As the bibliography of
[VH] suggests, Volterra was already aware of the papers [LS1, LS2] by Ludwig
Schlesinger, who linked up to Volterra’s first works (see Chapter 3).

The book [VH] is rather difficult to read for contemporary mathematicians. One
of the reasons is a somewhat cumbersome notation. For example, Volterra uses the
same symbol to denote additive as well as multiplicative integration: The sign

∫
applied to a matrix function denotes the product integral, while the same sign ap-
plied to a scalar function stands for the ordinary (additive) integral. Calculations
with matrices are usually written out for individual entries, whereas using the ma-
trix notation would have greatly simplified the proofs. Moreover, Volterra didn’t
hesitate to calculate with infinitesimal quantities, he interchanges the order of sum-
mation and integration or the order of partial derivatives without any justification
etc. The conditions under which individual theorems hold (e.g. continuity or differ-
entiability of the given functions) are often omitted and must be deduced from the
proof. This is certainly surprising, since the rigorous foundations of mathematical
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analysis were already laid out at the end of the 19th century, and even Volterra
contributed to them during his studies by providing an example of a function which
is not Riemann integrable but has an antiderivative.

The following sections summarize Volterra’s achievements in the field of product
integration. Our discussion is based on the text from [VH], but the results are
stated in the language of contemporary mathematics (with occasional comments on
Volterra’s notation). Proofs of most theorems are also included; they are generally
based on Volterra’s original proofs except for a few cases where his calculations
with infinitesimal quantities were replaced by a different, rigorous argument.

2.2 Basic results of matrix theory

The first four chapters of the book [VH] recapitulate some basic results of matrix
theory. Most of them are now taught in linear algebra courses and we repeat
only some of them for reader’s convenience, as we will refer to them in subsequent
chapters.

Volterra refers to matrices as to substitutions, because they can be used to represent
a linear change of variables. A composition of two substitutions then corresponds
to multiplication of matrices: If

x′i =
n∑
j=1

aijxj and x′′i =
n∑
j=1

bijx
′
j ,

then

x′′i =
n∑
j=1

cijxj ,

where

cij =
n∑
k=1

bikakj , (2.2.1).

We will use the symbol Rn×n to denote the set of all square matrices with n rows
and n columns. If

A = {aij}ni,j=1, B = {bij}ni,j=1, C = {cij}ni,j=1,

we can write Equation (2.2.1) in the form C = B ·A.

A matrix A = {aij}ni,j=1 is called regular if it has a nonzero determinant. If
i ∈ {1, . . . , n}, the theorem on expansion by minors gives

det

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 =
n∑
k=1

aikAik, (2.2.2)

where
Aik = (−1)i+kMik
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is the so-called cofactor corresponding to minor Mik; the minor is defined as the
determinant of a matrix obtained from A by deleting the i-th row and k-th column.
Since the determinant of a matrix with two or more identical rows is zero, it follows
that

n∑
k=1

ajkAik = δij detA. (2.2.3)

for each pair of numbers i, j ∈ {1, . . . , n}; recall that δij is the Kronecker symbol

δij =

{
1 if i = j,
0 if i 6= j.

If we thus define the matrix

A−1 =

{
Aji

detA

}n
i,j=1

,

then Equation (2.2.3) yields

AA−1 = I = A−1A,

where

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is the identity matrix. The matrix A−1 is called the inverse of A.

The definition of matrix multiplication gives the following rule for multiplication of
block matrices:

Theorem 2.2.1.1 Consider a matrix that is partitioned into m2 square blocks Aij
and a matrix partitioned into m2 square blocks Bij such that Aij has the same
dimensions as Bij for every i, j ∈ {1, . . . ,m}. Then A11 · · · A1m

...
. . .

...
Am1 · · · Amm

 B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm

 =

 C11 · · · C1m
...

. . .
...

Cm1 · · · Cmm

 ,

where Cik =
∑
j AijBjk.

We will be often dealing with block diagonal matrices, i.e. with matrices of the form
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am


1 [VH], p. 27
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composed of smaller square matrices A1, A2, . . . , Am; Volterra denotes such a matrix
by the symbols {

A1 ·A2 · · ·Am
}

or


m∏
i=1

Ai

 ,

but we don’t follow his notation.

The following theorem expresses the fact that every square matrix can be trans-
formed to a certain canonical form called the Jordan normal form. Volterra proves
the theorem by induction on the dimension of the matrix; we refer the reader to
any good linear algebra textbook.

Theorem 2.2.2.1 To every matrix A ∈ Rn×n there exist matrices C, J ∈ Rn×n

such that
A = C−1JC

and J has the form

J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jm

 , where Ji =


λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi


and {λ1, . . . , λm} are (not necessarily distinct) eigenvalues of A.

Recall that if A = C−1BC for some regular matrix C, then the matrices A, B are
called similar. Thus the previous theorem says that every square matrix is similar
to a certain Jordan matrix.
The next two theorems concern the properties of block diagonal matrices and are
simple consequences of Theorem 2.2.1.

Theorem 2.2.3. If Ai is a square matrix of the same dimensions as Bi for every
i ∈ {1, . . . ,m}, then
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am



B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm

=


A1B1 0 · · · 0

0 A2B2 · · · 0
...

...
. . .

...
0 0 · · · AmBm

.

Theorem 2.2.4. The inverse of a block diagonal matrix composed of invertible
matrices A1, . . . , Am is equal to

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am


−1

=


A−1

1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

m

 .

1 [VH], p. 20–24
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2.3 Derivative of a matrix function

In this section we focus on first of the basic operations of Volterra’s matrix calculus,
which is the derivative of a matrix function.
A matrix function A : [a, b]→ Rn×n will be called differentiable at a point x ∈ (a, b)
if all the entries aij , i, j ∈ {1, . . . , n} of A are differentiable at x; in this case we
denote

A′(x) = {a′ij(x)}ni,j=1.

We also define A′(x) for the endpoints x = a and x = b as the matrix of the
corresponding one-sided derivatives (provided they exist).

Definition 2.3.1. Let A : [a, b]→ Rn×n be a matrix function that is differentiable
and regular at a point x ∈ [a, b]. We define the left derivative of A at x as

d
dx
A(x) = A′(x)A−1(x) = lim

∆x→0

A(x+ ∆x)A−1(x)− I
∆x

and the right derivative of A at x as

A(x)
d

dx
= A−1(x)A′(x) = lim

∆x→0

A−1(x)A(x+ ∆x)− I
∆x

.

Volterra doesn’t use the matrix notation and instead writes out the individual
entries:

d
dx
{aij} =

{
lim

∆x→0

n∑
k=1

aik(x+ ∆x)− aik(x)
∆x

Ajk(x)

}
,

{aik}
d

dx
=

{
lim

∆x→0

n∑
k=1

Aki(x)
akj(x+ ∆x)− akj(x)

∆x

}
,

where {Aji}ni,j=1 denote the entries of A−1. He also defines the left differential as

d{aij} = A(x+ dx)A(x)−1 = I +A′(x)A(x)−1 dx =

{
δij +

n∑
k=1

a′ik(x)Ajk(x) dx

}

and the right differential as

{aij}d = A(x)−1A(x+ dx) = I +A(x)−1A′(x) dx =

{
δij +

n∑
k=1

Aki(x)a′kj(x) dx

}
,

where dx is an infinitesimal quantity. Both differentials are considered as matrices
that differ infinitesimally from the identity matrix.
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Volterra uses infinitesimal quantities without any scruples, which sometimes leads
to very unreadable proofs. This is also the case of the following theorem; Volterra’s
justification has been replaced by a rigorous proof.

Theorem 2.3.2.1 If A,B : [a, b] → Rn×n are differentiable and regular matrix
functions at x ∈ [a, b], then

d
dx

(AB) =
d

dx
A+A

(
d

dx
B

)
A−1 = A

(
A

d
dx

+
d

dx
B

)
A−1,

(AB)
d

dx
= B

d
dx

+B−1

(
A

d
dx

)
B = B−1

(
A

d
dx

+
d

dx
B

)
B,

where all derivatives are taken at the given point x.

Proof. The definition of the left derivative gives

d
dx

(AB) = (AB)′(AB)−1 = (A′B +AB′)B−1A−1 = A′A−1 +AB′B−1A−1,

where the expression on the right hand side is equal to

d
dx
A+A

(
d

dx
B

)
A−1,

but can be also transformed to the form

AA−1A′A−1 +AB′B−1A−1 = A

(
A

d
dx

+
d

dx
B

)
A−1.

The second part is proved in a similar way.

Corollary 2.3.3.2 Consider a matrix function A : [a, b] → Rn×n that is differen-
tiable and regular on [a, b]. Then for an arbitrary regular matrix C ∈ Rn×n we
have

d
dx

(AC) =
d

dx
A.

The corollary can be expressed like this: The left derivative of a matrix function
doesn’t change, if the function is multiplied by a constant matrix from right. It is
also easy to prove a dual statement: The right derivative of a matrix function doesn’t
change, if the function is multiplied by a constant matrix from left. Symbolically
written,

(CA)
d

dx
= A

d
dx
.

As Volterra notes, this is a general principle: Each statement concerning matrix
functions remains true, if we replace all occurences of the word “left” by the word

1 [VH], p. 43
2 [VH], p. 39
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“right” and vice versa. A precise formulation and justification of this duality prin-
ciple is due to P. R. Masani and will be given in Chapter 5, Remark 5.2.2.

Theorem 2.3.4.1 If A : [a, b] → Rn×n is differentiable and regular at x ∈ [a, b],
then

d
dx

(A−1) = −A d
dx
, (A−1)

d
dx

= − d
dx
A,

where all derivatives are taken at the given point x.

Proof. Differentiating the equation AA−1 = I yields A′A−1 + A(A−1)′ = 0, and
consequently (A−1)′ = −A−1A′A−1. The statement follows easily.

Corollary 2.3.5.2 If A,B : [a, b] → Rn×n are differentiable and regular matrix
functions at x ∈ [a, b], then

d
dx

(A−1B) = A−1

(
d

dx
B − d

dx
A

)
A,

(AB−1)
d

dx
= B

(
A

d
dx
− B

d
dx

)
B−1,

where all derivatives are taken at the given point x.

Proof. A simple consequence of Theorems 2.3.2 and 2.3.4.

Theorem 2.3.6.3 Consider functions A,B : [a, b] → Rn×n that are differentiable
and regular on [a, b]. If

d
dx
A =

d
dx
B

on [a, b], then there exists a matrix C ∈ Rn×n such that B(x) = A(x)C for every
x ∈ [a, b].

Proof. Define C(x) = A−1(x)B(x) for x ∈ [a, b]. Corollary 2.3.5 gives

d
dx
C = A−1

(
d

dx
B − d

dx
A

)
A = 0,

which implies that 0 = C ′(x) for every x ∈ [a, b]. This means that C is a constant
function.

A combination of Theorem 2.3.6 and Corollary 2.3.3 leads to the following state-
ment: Two matrix functions have the same left derivative on a given interval, if
and only if one of the functions is obtained by multiplying the other by a constant
matrix from right. This is the fundamental theorem of Volterra’s differential cal-
culus; a dual statement is again obtained by interchanging the words “left” and

1 [VH], p. 41
2 [VH], p. 44
3 [VH], p. 46
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“right”. Both statements represent an analogy of the well-known theorem: Two
functions have the same derivative if and only if they differ by a constant.

Theorem 2.3.7.1 Consider a matrix function A : [a, b] → Rn×n that is differen-
tiable and regular on [a, b]. Then for an arbitrary regular matrix C ∈ Rn×n we
have

d
dx

(CA) = C

(
d

dx
A

)
C−1.

Proof. A simple consequence of Theorem 2.3.2.

Theorem 2.3.8. Let A : [a, b]→ Rn×n be a matrix function of the form

A(x) =


A1(x) 0 · · · 0

0 A2(x) · · · 0
...

...
. . .

...
0 0 · · · Ak(x)

 ,

where A1, . . . , Ak are square matrix functions. If

d
dx
Ai(x) = Bi(x), i = 1, . . . , k,

then

d
dx
A(x) =


B1(x) 0 · · · 0

0 B2(x) · · · 0
...

...
. . .

...
0 0 · · · Bk(x)

 .

Proof. The statement follows from the definition of left derivative and from The-
orems 2.2.3 and 2.2.4.

2.4 Product integral of a matrix function

Consider a matrix function A : [a, b] → Rn×n with entries {aij}ni,j=1. For every
tagged partition

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

of interval [a, b] with division points ti and tags ξi we denote

∆ti = ti − ti−1, i = 1, . . . ,m,

ν(D) = max
1≤i≤m

∆ti.

1 [VH], p. 41
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We also put

P (A,D) =
1∏

i=m

(I +A(ξi)∆ti) = (I +A(ξm)∆tm) · · · (I +A(ξ1)∆t1),

P ∗(A,D) =
m∏
i=1

(I +A(ξi)∆ti) = (I +A(ξ1)∆t1) · · · (I +A(ξm)∆tm).

Volterra now defines the left integral of A as the matrix∫ b

a

{aij} = lim
ν(D)→0

P (A,D)

(in case the limit exists) and the right integral as

{aij}
∫ b

a

= lim
ν(D)→0

P ∗(A,D)

(again if the limit exists). Volterra isn’t very precise about the meaning of the limit
taken with respect to partitions; we make the following agreement:

If M(D) is a matrix which is dependent on the choice of a tagged partition D of
interval [a, b], then the equality

lim
ν(D)→0

M(D) = M

means that for every ε > 0 there exists δ > 0 such that |M(D)ij −Mij | < ε for
every tagged partition D of interval [a, b] satisfying ν(D) < δ and for i, j = 1, . . . , n.

The following definition also introduces a different notation to better distinguish
between ordinary and product integrals.

Definition 2.4.1. Consider function A : [a, b]→ Rn×n. If the limit

lim
ν(D)→0

P (A,D) or lim
ν(D)→0

P ∗(A,D)

exists, it is called the left (or right) product integral of A over the interval [a, b].
We use the notation

b∏
a

(I +A(t) dt) = lim
ν(D)→0

P (A,D)

for the left product integral and

(I +A(t) dt)
b∏
a

= lim
ν(D)→0

P ∗(A,D)
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for the right product integral.

We note that in the case when the upper limit of integration coincides with the
lower limit, then

a∏
a

(I +A(t) dt) = (I +A(t) dt)
a∏
a

= I.

In the subsequent text we use the following convention: A function A : [a, b] →
Rn×n is called Riemann integrable, if its entries aij are Riemann integrable func-
tions on [a, b]. In this case we put∫ b

a

A(t) dt =

{∫ b

a

aij(t) dt

}n
i,j=1

.

We will often encounter integrals of the type∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

These integrals should be interpreted as iterated integrals, where xk ∈ [a, b] and
xi ∈ [a, xi+1] for i ∈ {1, . . . , k − 1}.
Lemma 2.4.2. Let A : [a, b]→ Rn×n be a Riemann integrable function such that
A(x)A(y) = A(y)A(x) for every x, y ∈ [a, b]. Then∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk =

=
1
k!

∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1) dx1 · · · dxk

for every k ∈ N.

Proof. If P (k) denotes all permutations of the set {1, . . . , k} and

Mπ = {(x1, . . . , xk) ∈ [a, b]k; xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(k)}

for every π ∈ P (k), then∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1) dx1 · · · dxk =

=
∑

π∈P (k)

∫ ∫
· · ·
∫
Mπ

A(xk) · · ·A(x1) dx1 · · · dxk.

The assumption of commutativity implies∫ ∫
· · ·
∫
Mπ

A(xk) · · ·A(x1) dx1 · · · dxk =
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk
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for every permutation π ∈ P (k), which completes the proof.

Theorem 2.4.3.1 If A : [a, b] → Rn×n is a Riemann integrable function, then
both product integrals exist and

b∏
a

(I +A(x) dx) = I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

(I +A(x) dx)
b∏
a

= I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk.

Proof. Volterra’s proof goes as follows: Expanding the product P (A,D) gives

1∏
i=m

(I +A(ξi)∆ti) = I +
m∑
k=1

 ∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik

 .

Volterra now argues that for ν(D)→ 0 we obtain∑
1≤i1≤m

A(ξi1)∆ti1 →
∫ b

a

A(x1) dx1,

∑
1≤i1<i2≤m

A(ξi2)A(ξi1)∆ti1∆ti2 →
∫ b

a

∫ x2

a

A(x2)A(x1) dx1 dx2,

and generally∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik →
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk

for every k ∈ {1, . . . ,m}. Using the fact that m → ∞ for ν(D) → 0, Volterra
arrived at the result

b∏
a

(I +A(x) dx) = I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The proof for the right product integral is carried out in a similar way.

The infinite series expressing the value of the product integrals are often referred
to as the Peano series. They were discussed by Giuseppe Peano in his paper [GP]
from 1888 dealing with systems of linear differential equations.

Remark 2.4.4. The proof of Theorem 2.4.3 given by Volterra is somewhat unsat-
isfactory. First, he didn’t justify that∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik →
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk

1 [VH], p. 49–52
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for ν(D)→ 0. This can be done as follows: Define

Xk = {(x1, . . . , xk) ∈ Rk; a ≤ x1 < x2 < · · · < xk ≤ b}

and let χk be the characteristic function of the set Xk. Then

lim
ν(D)→0

∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik =

= lim
ν(D)→0

m∑
i1,...,ik=1

A(ξik) · · ·A(ξi1)χ(ξi1 , . . . , ξik)∆ti1 · · ·∆tik =

=
∫ b

a

∫ b

a

· · ·
∫ b

a

A(xk) · · ·A(x1)χ(x1, . . . , xk) dx1 · · · dxk =

=
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The second problem is that Volterra didn’t explain the equality

lim
ν(D)→0

I +
m∑
k=1

∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik

 =

I +
∞∑
k=1

lim
ν(D)→0

∑
1≤i1<···<ik≤m

A(ξik) · · ·A(ξi1)∆ti1 · · ·∆tik .

We postpone its justification to Chapter 5, Lemma 5.5.9.

Theorem 2.4.5.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then the
infinite series

x∏
a

(I +A(t) dt) = I +
∞∑
k=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

(I +A(t) dt)
x∏
a

= I +
∞∑
k=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk

converge absolutely and uniformly for x ∈ [a, b].

Proof. We give only the proof for the first series: Its sum is a matrix whose (i, j)-th
entry is the number

∞∑
k=1

 n∑
l1,...,lk−1=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

ai,l1(xk) · · · alk−1,j(x1) dx1 · · · dxk

 . (2.4.1)

1 [VH], p. 51–52

26



The functions aij are Riemann integrable, therefore bounded: There exists a posi-
tive number M ∈ R such that |aij(t)| ≤M for i, j ∈ {1, . . . , n} and t ∈ [a, b]. Using
Lemma 2.4.2 we obtain the estimate∣∣∣∣∣∣

n∑
l1,...,lk−1=1

∫ x

a

∫ xk

a

· · ·
∫ x2

a

ai,l1(xk) · · · alk−1,j(x1) dx1 · · · dxk

∣∣∣∣∣∣ ≤
≤ nk−1Mk

∫ b

a

∫ xk

a

· · ·
∫ x2

a

dx1 · · · dxk =
1
n

(nM(b− a))k

k!

for every x ∈ [a, b]. Since

∞∑
k=1

1
n

(nM(b− a))k

k!
=

1
n
enM(b−a),

we see that (according to the Weierstrass M-test) the infinite series (2.4.1) converges
uniformly and absolutely on [a, b].

Theorem 2.4.6.1 If A : [a, c]→ Rn×n is a Riemann integrable function, then

c∏
a

(I +A(x) dx) =
c∏
b

(I +A(x) dx) ·
b∏
a

(I +A(x) dx)

and

(I +A(x) dx)
c∏
a

= (I +A(x) dx)
b∏
a

· (I +A(x) dx)
c∏
b

for every c ∈ [a, b].

Proof. Take two sequences of tagged partitions {D1
k}∞k=1 of interval [a, b] and

{D2
k}∞k=1 of interval [b, c] such that

lim
k→∞

ν(D1
k) = lim

k→∞
ν(D2

k) = 0.

If we put Dk = D1
k ∪ D2

k, we obtain a sequence of tagged partitions {Dk}∞k=1 of
interval [a, c] such that limk→∞ ν(Dk) = 0. Consequently

c∏
a

(I +A(x) dx) = lim
k→∞

P (A,Dk) = lim
k→∞

P (A,D2
k) · lim

k→∞
P (A,D1

k) =

=
c∏
b

(I +A(x) dx) ·
b∏
a

(I +A(x) dx).

The second part is proved in the same way.

1 [VH], p. 54–56
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Remark 2.4.7. Volterra also offers a different proof of Theorem 2.4.6, which goes
as follows1: Denote

D(i) = {x ∈ Ri; a ≤ x1 ≤ · · · ≤ xi ≤ c},

D(j, i) = {x ∈ Ri; a ≤ x1 ≤ · · · ≤ xj ≤ b ≤ xj+1 ≤ · · · ≤ xi ≤ c}
for each pair of numbers i ∈ N and j ∈ {0, . . . , i}. Clearly

D(i) = D(0, i) ∪

i−1⋃
j=1

D(i− j, i− j)×D(0, j)

 ∪D(i, i) (2.4.2)

for every i ∈ N. We have

b∏
a

(I +A(x) dx) = I +
∞∑
i=1

∫
D(i,i)

A(xi) · · ·A(x1) dx1 · · · dxi,

c∏
b

(I +A(x) dx) = I +
∞∑
i=1

∫
D(0,i)

A(xi) · · ·A(x1) dx1 · · · dxi.

Since both infinite series converge absolutely, their product is equal to the Cauchy
product:

c∏
b

(I +A(x) dx)
b∏
a

(I +A(x) dx) = I +
∞∑
i=1

∫
D(i,i)

A(xi) · · ·A(x1) dx1 · · · dxi+

+
∞∑
i=1

∫
D(0,i)

A(xi) · · ·A(x1) dx1 · · · dxi+

+
∞∑
i=1

(
i−1∑
j=1

(∫
D(0,j)

A(xj) · · ·A(x1) dx1 · · · dxj
)
·

·
(∫

D(i−j,i−j)
A(xi−j) · · ·A(x1) dx1 · · · dxi−j

))
=

= I +
∞∑
i=1

∫
D(i)

A(xi) · · ·A(x1) dx1 · · · dxi =
c∏
a

(I +A(x) dx)

(we have used Equation (2.4.2)).

If a and b are two real numbers such that a < b, we usually define∫ a

b

f = −
∫ b

a

f.

1 [VH], p. 54–56

28



The following definition assigns a meaning to product integral whose lower limit is
greater than its upper limit.

Definition 2.4.8. For any function A : [a, b]→ Rn×n we define

a∏
b

(I +A(t) dt) = lim
ν(D)→0

m∏
i=1

(I −A(ξi)∆ti) = (I −A(t) dt)
b∏
a

and

(I +A(t) dt)
a∏
b

= lim
ν(D)→0

1∏
i=m

(I −A(ξi)∆ti) =
b∏
a

(I −A(t) dt),

provided that the integrals on the right hand sides exist.

Corollary 2.4.9. If A : [a, b]→ Rn×n is a Riemann integrable function, then

a∏
b

(I +A(t) dt) = I +
∞∑
k=1

(−1)k
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk,

(I +A(t) dt)
a∏
b

= I +
∞∑
k=1

(−1)k
∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk.

The following statement represents a generalized version of Theorem 2.4.6.

Theorem 2.4.10.1 If A : [p, q]→ Rn×n is a Riemann integrable function, then

c∏
a

(I +A(x) dx) =
c∏
b

(I +A(x) dx) ·
b∏
a

(I +A(x) dx),

(I +A(x) dx)
c∏
a

= (I +A(x) dx)
b∏
a

· (I +A(x) dx)
c∏
b

for every a, b, c ∈ [p, q].

Proof. If a ≤ b ≤ c, then the statement reduces to Theorem 2.4.6. Let’s have a
look at the case b < a = c: Denote

E(j, i) = {x ∈ Ri; b ≤ x1 ≤ · · · ≤ xj ≤ a and a ≥ xj+1 ≥ · · · ≥ xi ≥ b}

for each pair of numbers i ∈ N and j ∈ {0, . . . , i}. A simple observation reveals
that

E(j, i) = E(j, j)× E(0, i− j) (2.4.3)

for every i ∈ N and j ∈ {1, . . . , i− 1}. We also assert that

E(0, i) ∪ E(2, i) ∪ · · · = E(1, i) ∪ E(3, i) ∪ · · · (2.4.4)

1 [VH], p. 56–58
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for every i ∈ N. Indeed, if x ∈ Ri is a member of the union on the left side, then
x ∈ E(2k, i) for some k. If 2k < i and x2k ≤ x2k+1, then x ∈ E(2k+1, i). If 2k = i,
or 2k < i and x2k+1 < x2k, then x ∈ E(2k − 1, i). In any case, x is a member of
the union on the right side; the reverse inclusion is proved similarly.

Now, the Peano series expansions might be written as

a∏
b

(I +A(x) dx) = I +
∞∑
i=1

∫
E(i,i)

A(x1) · · ·A(xi) dx1 · · · dxi,

b∏
a

(I +A(x) dx) = I +
∞∑
i=1

(−1)i
∫
E(0,i)

A(x1) · · ·A(xi) dx1 · · · dxi

(we have used Corollary 2.4.9). Since both infinite series converge absolutely, their
product is equal to the Cauchy product:

a∏
b

(I +A(x) dx) ·
b∏
a

(I +A(x) dx) = I +
∞∑
i=1

∫
E(i,i)

A(x1) · · ·A(xi) dx1 · · · dxi+

+
∞∑
i=1

(−1)i
∫
E(0,i)

A(x1) · · ·A(xi) dx1 · · · dxi+

+
∞∑
i=1

(
i−1∑
j=1

(∫
E(j,j)

A(x1) · · ·A(xk) dx1 · · · dxk
)
·

·
(

(−1)i−j
∫
E(0,i−j)

A(x1) · · ·A(xi−j) dx1 · · · dxi−j
))

=

= I +
∞∑
i=1

i∑
j=0

(−1)i−j
∫
E(j,i)

A(x1) · · ·A(xi) dx1 · · · dxi,

where the last equality is a consequence of Equation (2.4.3). Equation (2.4.4)
implies

i∑
j=0

(−1)i−j
∫
E(j,i)

A(x1) · · ·A(xi) dx1 · · · dxi = 0

for every positive number i, which proves that

a∏
b

(I +A(x) dx) ·
b∏
a

(I +A(x) dx) = I.

We see that our statement is true is even in the case b > a = c.

The remaining cases are now simple to check: For example, if a < c < b, then

c∏
a

(I +A(x) dx) =
c∏
b

(I +A(x) dx) ·
b∏
c

(I +A(x) dx) ·
c∏
a

(I +A(x) dx) =
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= (I +A(x) dx)
b∏
a

· (I +A(x) dx)
c∏
b

.

The prove the second part, we calculate

(I +A(x) dx)
c∏
a

=
a∏
c

(I −A(x) dx) =
a∏
b

(I −A(x) dx) ·
b∏
c

(I −A(x) dx) =

= (I +A(x) dx)
b∏
a

· (I +A(x) dx)
c∏
b

.

Corollary 2.4.11. If A : [a, b]→ Rn×n is a Riemann integrable function, then

a∏
b

(I +A(x) dx) =

(
b∏
a

(I +A(x) dx)

)−1

,

(I +A(x) dx)
a∏
b

=

(
(I +A(x) dx)

b∏
a

)−1

.

Theorem 2.4.12.1 If A : [a, b] → Rn×n is a Riemann integrable function, then
the functions

Y (x) =
x∏
a

(I +A(t) dt),

Z(x) = (I +A(t) dt)
x∏
a

satisfy the integral equations

Y (x) = I +
∫ x

a

A(t)Y (t) dt,

Z(x) = I +
∫ x

a

Z(t)A(t) dt

for every x ∈ [a, b].

Proof. Theorem 2.4.3 implies

A(t)Y (t) = A(t) +
∞∑
k=1

∫ t

a

∫ xk

a

· · ·
∫ x2

a

A(t)A(xk) · · ·A(x1) dx1 · · · dxk. (2.4.5)

1 [VH], p. 52–53
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The Peano series converges uniformly and the entries of A are bounded, therefore
the series (2.4.5) also converges uniformly for t ∈ [a, b] and might be integrated
term by term to obtain ∫ x

a

A(t)Y (t) dt =
∫ x

a

A(t) dt+

+
∞∑
k=1

∫ x

a

∫ t

a

∫ xk

a

· · ·
∫ x2

a

A(t)A(xk) · · ·A(x1) dx1 · · · dxk dt = Y (x)− I.

The other integral equation is deduced similarly.

2.5 Continuous matrix functions

Volterra is now ready to state and prove the fundamental theorem of calculus for
product integral. Recall that the ordinary fundamental theorem has two parts:

1) If f is a continuous function on [a, b], then the function F (x) =
∫ x
a
f(t) dt satisfies

F ′(x) = f(x) for every x ∈ [a, b].
2) If f is a continuous function on [a, b] and F its antiderivative, then∫ b

a

f(t) dt = F (b)− F (a).

The function
∫ x
a
f(t) dt is usually referred to as the indefinite integral of f ; similarly,

the functions
∏x
a(I+A(t) dt) and (I+A(t) dt)

∏x
a are called the indefinite product

integrals of A.

Before proceeding to the fundamental theorem we make the following agreement:
A matrix function A : [a, b]→ Rn×n is called continuous, if the entries aij of A are
continuous functions on [a, b].

Theorem 2.5.1.1 If A : [a, b] → Rn×n is a continuous matrix function, then the
indefinite product integrals

Y (x) =
x∏
a

(I +A(t) dt) and Z(x) = (I +A(t) dt)
x∏
a

satisfy the equations
Y ′(x) = A(x)Y (x),

Z ′(x) = Z(x)A(x)

for every x ∈ [a, b].

Proof. The required statement is easily deduced by differentiating the integral
equations obtained in Theorem 2.4.12.

1 [VH], p. 60–61
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The differential equations from the previous theorem can be rewritten in the form

d
dx

x∏
a

(I +A(t) dt) = A(x), (I +A(t) dt)
x∏
a

d
dx

= A(x),

which closely resembles the first part of the ordinary fundamental theorem. We see
that the left (or right) derivative is in a certain sense inverse operation to the left
(or right) product integral.

Remark 2.5.2. A function Y : [a, b]→ Rn×n is a solution of the equation

Y ′(x) = A(x)Y (x), x ∈ [a, b]

and satisfies Y (a) = I if and only if Y solves the integral equation

Y (x) = I +
∫ x

a

A(t)Y (t) dt, x ∈ [a, b]. (2.5.1)

This is a special type of equation of the form

y(x) = f(x) +
∫ x

a

K(x, t)y(t) dt,

which is today called the Volterra’s integral equation of the second kind. Volterra
proved (see e.g. [Kl, VV4]) that such equations may be solved by the method of
successive approximations; in case of Equation (2.5.1) we obtain the solution

Y (x) = I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(xk) · · ·A(x1) dx1 · · · dxk,

which is exactly the Peano series.

Theorem 2.5.3.1 Consider a continuous matrix function A : [a, b] → Rn×n. If
there exists a function Y : [a, b]→ Rn×n such that

d
dx

Y (x) = A(x)

for every x ∈ [a, b], then

b∏
a

(I +A(x) dx) = Y (b)Y (a)−1.

Similarly, if there exists a function Z : [a, b]→ Rn×n such that

Z(x)
d

dx
= A(x)

1 [VH], p. 62–63
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for every x ∈ [a, b], then

(I +A(x) dx)
b∏
a

= Z(a)−1Z(b).

Proof. We prove the first part: The functions
∏x
a(I +A(t) dt) and Y (x) have the

same left derivative for every x ∈ [a, b]. Theorem 2.3.6 implies the existence of a
matrix C such that

x∏
a

(I +A(t) dt) = Y (x)C

for every x ∈ [a, b]. Substituting x = a yields C = Y (a)−1.

Theorem 2.5.4.1 If A : [a, b]→ Rn×n is a continuous function, then the function

Y (x) =
x∏
a

(I +A(t) dt)

is the fundamental matrix of the system of differential equations

y′i(x) =
n∑
j=1

aij(x)yj(x), i = 1, . . . , n. (2.5.2)

Proof. Let yk denote the k-th column of Y , i.e.

yk(x) =
x∏
a

(I +A(t) dt) · ek,

where ek is the k-th vector from the canonical basis of Rn. Theorem 2.5.1 implies
that each of the vector functions yk, k = 1, . . . , n yields a solution of the system
(2.5.2). Since yk(a) = ek, the system of functions {yk}nk=1 is linearly independent
and represents a fundamental set of solutions of the system (2.5.2).

Example 2.5.5.2 Volterra now shows the familiar method of converting a linear
differential equation of the n-th order

y(n)(x) = p1(x)yn−1(x) + p2(x)yn−2(x) + · · ·+ pn(x)y(x)

to a system of equations of the first order. If we introduce the functions z0 = y,
z1 = z′0, z2 = z′1, . . . , zn−1 = z′n−2, then the above given n-th order equation is
equivalent to the system of equations written in matrix form as

z′0
z′1
...

z′n−2
z′n−1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
pn pn−1 pn−2 · · · p1




z0

z1
...

zn−2

zn−1

 .

1 [VH], p. 69
2 [VH], p. 70
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The fundamental matrix of this system can be calculated using the product integral
and the solution of the original equation (which corresponds to the function z0)
is represented by the first column of the matrix (we obtain a set of n linearly
independent solutions).

Example 2.5.6. If n = 1, then the function A : [a, b] → Rn×n is in fact a scalar
function, and we usually write

∏b
a(1 + A(t) dt) instead of

∏b
a(I + A(t) dt). Using

Theorem 2.4.3 and Lemma 2.4.2 we obtain

y(x) =
x∏
a

(1 +A(t) dt) = 1 +
∞∑
k=1

1
k!

(∫ x

a

A(t) dt

)k
= exp

(∫ x

a

A(t) dt

)
,

which is indeed a solution of the differential equation y′(x) = A(x)y(x) and satisfies
y(a) = 1.

Example 2.5.7.1 Recall that if A ∈ Rn×n, then the exponential of A is defined as

expA =
∞∑
k=0

Ak

k!
(2.5.3).

The fundamental matrix of the system of equations

y′i(x) =
n∑
j=1

aijyj(x), i = 1, . . . , n

is given by

Y (x) =
x∏
a

(I +Adt) = I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

Ak dx1 · · · dxk =

I +
∞∑
k=1

(x− a)kAk

k!
= e(x−a)A

(we have used Theorem 2.4.3 and Lemma 2.4.2), which is a well-known result from
the theory of differential equations. We also remark that a similar calculation leads
to the relation

(I +A dt)
x∏
a

= e(x−a)A, x ∈ [a, b].

Example 2.5.8.2 Volterra is also interested in actually calculating the matrix
eA(x−a). Convert A to the Jordan normal form

A = C−1


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

C, where Ji =


λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi


1 [VH], p. 70–71
2 [VH], p. 66–68
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for i ∈ {1, . . . , k}. If

Si(x) =


eλix 0 0 · · · 0 0
x1

1! e
λix eλix 0 · · · 0 0

x2

2! e
λix x1

1! e
λix eλix · · · 0 0

...
...

. . .
...

...


is a square matrix which has the same dimensions as Ji, it is easily verified that

Si(x)−1 = Si(−x),

d
dx
Si(x) = Si(x)′Si(x)−1 = Ji.

Applying Theorem 2.3.8 to matrix

S(x) =


S1(x) 0 · · · 0

0 S2(x) · · · 0
...

...
. . .

...
0 0 · · · Sk(x)


we obtain

d
dx
S(x) =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk


and Theorem 2.3.7 gives

d
dx

(
C−1S(x)

)
= C−1


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

C = A.

Theorem 2.3.6 implies the existence of a matrix D ∈ Rn×n such that e(x−a)A =
C−1S(x)D for every x ∈ [a, b]; substituting x = a yields D = S(a)−1C.

Remark 2.5.9. Volterra gives no indication how to “guess” the calculation in the
previous example. We may proceed as follows: Let again A = C−1JC, where

J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 , Ji =


λi 0 · · · 0 0
1 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λi

 .

The definition of matrix exponential implies

exp(Ax) = exp(C−1JxC) = C−1 exp(Jx)C
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for every x ∈ R and it suffices to calculate exp(Jx). We see that

Jix = x


λi 0 · · · 0 0
0 λi · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λi

+ x


0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

It is easy to calculate an arbitrary power of the matrices on the right hand side (the
second one is a nilpotent matrix); the definition of matrix exponential then gives

exp(Jix) =


eλix 0 0 · · · 0 0
x1

1! e
λix eλix 0 · · · 0 0

x2

2! e
λix x1

1! e
λix eλix · · · 0 0

...
...

. . .
...

...

 ,

exp(Jx) =


exp(J1x) 0 · · · 0

0 exp(J2x) · · · 0
...

...
. . .

...
0 0 · · · exp(Jkx)

 .

Theorem 2.5.10.1 If A : [a, b] → Rn×n is a continuous function and ϕ : [c, d] →
[a, b] a continuously differentiable function such that ϕ(c) = a and ϕ(d) = b, then

b∏
a

(I +A(x) dx) =
d∏
c

(I +A(ϕ(t))ϕ′(t) dt).

Proof. Define

Y (x) =
x∏
a

(I +A(t) dt)

for every x ∈ [a, b]. Then

d
dt

(Y ◦ ϕ) = Y ′(ϕ(t))ϕ′(t)Y (ϕ(t))−1 = A(ϕ(t))ϕ′(t)

for every t ∈ [c, d]. The fundamental theorem for product integral gives

b∏
a

(I +A(x) dx) = Y (b)Y (a)−1 = Y (ϕ(d))Y (ϕ(c))−1 =
d∏
c

(I +A(ϕ(t))ϕ′(t) dt).

1 [VH], p. 65
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Theorem 2.5.11.1 If A : [a, b]→ Rn×n is a continuous function, then

det

(
b∏
a

(I +A(x) dx)

)
= exp

(∫ b

a

n∑
i=1

aii(x) dx

)
.

Proof. Denote

Y (x) =
x∏
a

(I +A(t) dt), x ∈ [a, b].

The determinant of Y (x) might be interpreted as a function of the n2 entries yij(x),
i, j ∈ {1, . . . , n}. The chain rule therefore gives

(detY )′(x) =
n∑

i,j=1

∂(detY )
∂yij

y′ij(x).

Formula (2.2.2) for the expansion of determinant by minors implies

∂(detY )
∂yij

= Yij ,

and consequently

(detY )′(x) =
n∑

i,j=1

y′ij(x)Yij(x) =
n∑

i,j,k=1

aik(x)ykj(x)Yij(x) =

=
n∑

i,j,k=1

aik(x)δik(x) detY (x) =

(
n∑
i=1

aii(x)

)
detY (x)

(we have used Theorem 2.5.1 and Equation (2.2.3)). However, the differential
equation

(detY )′(x) =

(
n∑
i=1

aii(x)

)
detY (x)

has a unique solution that satisfies

detY (a) = det I = 1.

It is given by

detY (x) = exp

(∫ x

a

n∑
i=1

aii(t) dt

)
, x ∈ [a, b].

1 [VH], p. 61–62
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Theorem 2.5.12.1 If A : [a, b]→ Rn×n is a continuous function and C ∈ Rn×n a
regular matrix, then

b∏
a

(I + C−1A(x)C dx) = C−1
b∏
a

(I +A(x) dx)C.

Proof. Define

Y (x) =
x∏
a

(I +A(t) dt)

for every x ∈ [a, b]. Theorem 2.3.7 gives

d
dx

(C−1Y ) = C−1

(
d

dx
Y

)
C = C−1AC,

and therefore

b∏
a

(I + C−1A(x)C dx) = C−1Y (b)(C−1Y (a))−1 = C−1
b∏
a

(I +A(x) dx)C.

2.6 Multivariable calculus

In this section we turn our attention to matrix functions of several variables, i.e. to
functions A : Rm → Rn×n, where m,n ∈ N. We introduce the notation

∂A

∂xk
(x) =

{
∂aij
∂xk

(x)

}n
i,j=1

,

provided the necessary partial derivatives exist.

Definition 2.6.1. Let G be a domain in Rm and x ∈ G. Consider a function
A : G→ Rn×n that is regular at x and such that ∂A

∂xk
(x) exists. We define the left

partial derivative of A at x with respect to the k-th variable as

d
dxk

A(x) =
∂A

∂xk
(x)A−1(x).

Remark 2.6.2. Volterra also introduces the left differential of A as the matrix

dA = A(x1 + dx1, . . . , xm + dxm)A−1(x1, . . . , xm) = I +
m∑
k=1

(
d

dxk
A(x)

)
dxk,

(2.6.1)

1 [VH], p. 63
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which differs infinitesimally from the identity matrix. He also claims that

dA =
m∏
k=1

(
I +

(
d

dxk
A(x)

)
dxk

)
,

since the product of infinitesimal quantities can be neglected.

Recall the following well-known theorem of multivariable calculus: If f1, . . . , fm :
Rm → R are functions that have continuous partial derivatives with respect to all
variables, then the following statements are equivalent:

(1) There exists a function F : Rm → R such that ∂F
∂xi

= fi for i = 1, . . . ,m.

(2)
∂fi
∂xj
− ∂fj
∂xi

= 0 for i, j = 1, . . . ,m, i 6= j.

Volterra proceeds to the formulation of a similar theorem concerning left derivatives.

Definition 2.6.3. Let A,B : Rm → Rn×n be matrix functions that possess partial
derivatives with respect to the i-th and j-th variable. We define

∆(A,B)xi,xj =
∂B

∂xi
− ∂A

∂xj
+BA−AB.

Volterra’s proof of the following lemma has been slightly modified to make it more
readable. We also require the equality of mixed partial derivatives, whereas Volterra
supposes that the mixed derivatives can be interchanged without any comment.

Lemma 2.6.4.1 Let m ∈ N, i, j ∈ {1, . . . ,m}, i 6= j. Let G be an open set in Rm

and x ∈ G. Consider a pair of matrix functions X,Y : G → Rn×n that possess
partial derivatives with respect to xi and xj at x, and a function S : G → Rn×n

that satisfies
d

dxi
S(x) = X(x), (2.6.2)

∂2S

∂xi∂xj
(x) =

∂2S

∂xj∂xi
(x).

Then the equality

∂

∂xi

(
S−1

(
Y − d

dxj
S

)
S

)
= S−1∆(X,Y )xi,xjS

holds at the point x.

Proof. Using the formula for the derivative of an inverse matrix and the assumption
(2.6.2) we calculate

∂S−1

∂xi

(
Y − d

dxj
S

)
S = −S−1 ∂S

∂xi
S−1

(
Y − d

dxj
S

)
S =

1 [VH], p. 81
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= −S−1X

(
Y − d

dxj
S

)
S = S−1

(
−XY +X

(
d

dxj
S

))
S,

further

S−1 ∂

∂xi

(
Y − d

dxj
S

)
S = S−1

(
∂Y

∂xi
− ∂

∂xi

(
∂S

∂xj
S−1

))
S =

= S−1

(
∂Y

∂xi
− ∂2S

∂xi∂xj
S−1 − ∂S

∂xj

∂S−1

∂xi

)
S =

= S−1

(
∂Y

∂xi
− ∂(XS)

∂xj
S−1 − ∂S

∂xj
S−1 ∂S

∂xi
S−1

)
S =

= S−1

(
∂Y

∂xi
− ∂X

∂xj
−X

(
d

dxj
S

)
−
(

d
dxj

S

)
X

)
S =

= S−1

(
∂Y

∂xi
− ∂X

∂xj
−X

(
d

dxj
S

)
−
(

d
dxj

S

)
X

)
S,

and finally

S−1

(
Y − d

dxj
S

)
∂S

∂xi
= S−1

(
Y − d

dxj
S

)
XS = S−1

(
Y X −

(
d

dxj
S

)
X

)
S.

The product rule for differentiation gives (using the previous three equations)

∂

∂xi

(
S−1

(
Y − d

dxj
S

)
S

)
= S−1

(
−XY +X

(
d

dxj
S

)
+
∂Y

∂xi
− ∂X

∂xj
−

−X
(

d
dxj

S

)
−
(

d
dxj

S

)
X + Y X −

(
d

dxj
S

)
X

)
S = S−1∆(X,Y )xi,xjS.

Theorem 2.6.5.1 If B1, . . . , Bm : Rm → Rn×n are continuously differentiable
with respect to all variables, then the following statements are equivalent:

(1) There exists a function A : Rm → Rn×n such that Bk = d
dxk

A for k = 1, . . . ,m.
(2) ∆(Bi, Bj)xi,xj = 0 for i, j = 1, . . . ,m, i 6= j.

Proof. We start with the implication (1)⇒ (2):

∂Bi
∂xj
− ∂Bj
∂xi

=
∂

∂xj

(
∂A

∂xi
A−1

)
− ∂

∂xi

(
∂A

∂xj
A−1

)
=

=
∂

∂xj

(
∂A

∂xi

)
A−1 +

∂A

∂xi

∂A−1

∂xj
− ∂

∂xi

(
∂A

∂xj

)
A−1 − ∂A

∂xj

∂A−1

∂xi
=

1 [VH], p. 78–85
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=
∂A

∂xi

∂A−1

∂xj
− ∂A

∂xj

∂A−1

∂xi
= − ∂A

∂xi
A−1 ∂A

∂xj
A−1 +

∂A

∂xj
A−1 ∂A

∂xi
A−1 = BjBi −BiBj

(statement (1) implies that the mixed partial derivatives of A are continuous, and
therefore interchangeable).

The reverse implication (2) ⇒ (1) is first proved for m = 2: Suppose that the
function A : R2 → Rn×n from (2) exists. Choose x0 ∈ R and define

S(x, y) =
x∏
x0

(I +B1(t, y) dt).

Then
d

dx
S = B1 =

d
dx
A,

which implies the existence of a matrix function T : R→ Rn×n such that A(x, y) =
S(x, y)T (y) (T is independent on x). We calculate

d
dy
T =

d
dy

(S−1A) = S−1

(
d
dy
A− d

dy
S

)
S = S−1

(
B2 −

d
dy
S

)
S.

We now relax the assumption that the function A exists; the function on the right
hand side of the last equation is nevertheless independent on x, because Lemma
2.6.4 gives

∂

∂x

(
S−1

(
B2 −

d
dy
S

)
S

)
= S−1∆(B1, B2)x,yS = 0.

Thus we define

T (y) =
y∏
y0

(
I + S−1(x, t)

(
B2(x, t)− d

dy
S(x, t)

)
S(x, t) dt

)

(where x is arbitrary) and A = ST . Since

d
dx
A =

d
dx

(ST ) =
d

dx
S = B1

and
d
dy
A =

d
dy

(ST ) =
d
dy
S + S

(
d
dy
T

)
S−1 = B2,

the proof is finished; we now proceed to the case m > 2 by induction: Choose
x0 ∈ R and define

S(x1, . . . , xm) =
x1∏
x0

(I +B1(t, x2, . . . , xm) dt).
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If the function A : Rm → Rn×n exists, we must have

d
dx1

S = B1 =
d

dx1
A

and consequently

A(x1, . . . , xm) = S(x1, . . . , xm)T (x2, . . . , xm)

for some matrix function T : Rm−1 → Rn×n. Then

d
dxk

T =
d

dxk
(S−1A) = S−1

(
Bk −

d
dxk

S

)
S, k = 2, . . . ,m.

We now relax the assumption that the function A exists and define

Uk = S−1

(
Bk −

d
dxk

S

)
S, k = 2, . . . ,m.

Each of these functions Uk is indeed independent on x1, because Lemma 2.6.4 gives

∂Uk
∂x1

= S−1∆(B1, Bk)x1,xkS = 0.

Since
∆(Ui, Uj)xi,xj = S−1∆(Bi, Bj)xi,xjS = 0, i, j = 2, . . . ,m,

the induction hypothesis implies the existence of a function T of m − 1 variables
x2, . . . , xm such that

d
dxk

T = Uk, k = 2, . . . ,m.

We now let A = ST and obtain

d
dx1

A =
d

dx1
(ST ) =

d
dx1

S = B1

and
d

dxk
A =

d
dxk

(ST ) =
d

dxk
S + S

(
d

dxk
T

)
S−1 = Bk

for k = 2, . . . ,m, which completes the proof.

Remark 2.6.6. Volterra’s proof of Theorem 2.6.5 contains a deficiency: We have
applied Lemma 2.6.4 to the function

S(x1, . . . , xm) =
x1∏
x0

(I +B1(t, x2, . . . , xm) dt)

without verifying that

∂2S

∂xi∂x1
(x) =

∂2S

∂x1∂xi
(x), i ∈ {2, . . . ,m}.
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This equality follows from the well-known theorem of multivariable calculus pro-
vided the derivatives ∂S

∂xi
exist in some neighbourhood of x for every i ∈ {1, . . . ,m},

and the derivatives
∂2S

∂x1∂xi
(x)

are continuous at x for every i ∈ {2, . . . ,m}. We have

∂S

∂x1
= B1

and consequently
∂2S

∂x1∂xi
=
∂B1

∂xi
,

which is a continuous function for every i ∈ {2, . . . ,m}. The existence of the
derivatives ∂S

∂xi
for i ∈ {2, . . . ,m} is certainly not obvious but follows from Theorem

3.6.14 on differentiating the product integral with respect to a parameter, which
will be proved in Chapter 3.

Remark 2.6.7. An analogy of Theorem 2.6.5 holds also for right derivatives; the
condition ∆(Bi, Bj)xi,xj = 0 must be replaced by ∆∗(Bi, Bj)xi,xj = 0, where

∆∗(A,B)xi,xj =
∂B

∂xi
− ∂A

∂xj
+AB −BA.

The second fundamental notion of multivariable calculus is the contour integral.
While Volterra introduces only product integrals along a contour ϕ in R2, which
he denotes by ∫

ϕ

X dx · Y dy,

we give a general definition for curves in Rm; we also use a different notation.

We will always consider curves that are given using a parametrization ϕ : [a, b] →
Rm that is piecewise continuously differentiable, which means that ϕ′−(x) exists for
x ∈ (a, b], ϕ′+(x) exists for x ∈ [a, b), and ϕ′−(x) = ϕ′+(x) except a finite number of
points in (a, b).

The image of the curve is then defined as

〈ϕ〉 = ϕ([a, b]) = {ϕ(t); t ∈ [a, b]}.

Definition 2.6.8. Consider a piecewise continuously differentiable function ϕ :
[a, b] → Rm and a system of m matrix functions B1, . . . , Bm : 〈ϕ〉 → Rn×n. The
contour product integral of these functions along ϕ is defined as

∏
ϕ

(I+B1 dx1+· · ·+Bm dxm) =
b∏
a

(I+(B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt).
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Given an arbitrary curve ϕ : [a, b]→ Rm, we define the curve −ϕ as

(−ϕ)(t) = ϕ(−t), t ∈ [−b,−a].

This curve has the same image as the original curve, but is traversed in the opposite
direction.
For any pair of curves ϕ1 : [a1, b1] → Rm, ϕ2 : [a2, b2] → Rm such that ϕ1(b1) =
ϕ2(a2) we define the composite curve ϕ1 + ϕ2 by

(ϕ1 + ϕ2)(t) =

{
ϕ1(t), t ∈ [a1, b1],
ϕ2(t− b1 + a2), t ∈ [b1, b1 + b2 − a2].

Theorem 2.6.9.1 Contour product integral has the following properties:

(1) If ϕ1 + ϕ2 is a curve obtained by joining two curves ϕ1 and ϕ2, then∏
ϕ1+ϕ2

(I +B1 dx1 + · · ·+Bm dxm) =

=
∏
ϕ2

(I +B1 dx1 + · · ·+Bm dxm) ·
∏
ϕ1

(I +B1 dx1 + · · ·+Bm dxm).

(2) If −ϕ is a curve obtained by reversing the orientation of ϕ, then

∏
−ϕ

(I +B1 dx1 + · · ·+Bm dxm) =

(∏
ϕ

(I +B1 dx1 + · · ·+Bm dxm)

)−1

.

Proof. Let ϕ1 : [a1, b1]→ Rm, ϕ2 : [a2, b2]→ Rm. Then∏
−ϕ

(I +B1 dx1 + · · ·+Bm dxm) =

b1+b2−a2∏
b1

(I + (B1(ϕ(t− b1 + a2))ϕ′1(t) + · · ·+Bm(ϕ(t− b1 + a2))ϕ′m(t)) dt)·

·
b1∏
a1

(I + (B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt).

The change of variables Theorem 2.5.10 gives

b1+b2−a2∏
b1

(I + (B1(ϕ(t− b1 + a2))ϕ′1(t) + · · ·+Bm(ϕ(t− b1 + a2))ϕ′m(t)) dt) =

1 [VH], p. 91
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=
b2∏
a2

(I + (B1(ϕ(t))ϕ′1(t) + · · ·+Bm(ϕ(t))ϕ′m(t)) dt),

which proves the first statement. The second one is also a direct consequence of
Theorem 2.5.10. Note that the change of variables theorem was proved only for
continuously differentiable functions, while our contours are piecewise continuously
differentiable. It is however always possible to partition the integration interval in
such a way that the integrated functions are continuously differentiable on every
subinterval.

Definition 2.6.10. Let G be a subset of Rm and B1, . . . , Bm : G → Rn×n. The
contour product integral

∏
(I +B1 dx1 + · · ·+Bm dxm) is called path-independent

in G if ∏
ϕ

(I +B1 dx1 + · · ·+Bm dxm) =
∏
ψ

(I +B1 dx1 + · · ·+Bm dxm)

for each pair of curves ϕ,ψ : [a, b]→ G such that ϕ(a) = ψ(a) and ϕ(b) = ψ(b).

Using Theorem 2.6.9 it is easy to see that the contour product integral is path-
independent in G if and only if∏

ϕ

(I +B1 dx1 + · · ·+Bm dxm) = I

for every closed curve ϕ in G.

As already mentioned, Volterra is concerned especially with curves in R2. His effort
is directed towards proving the following theorem:

Theorem 2.6.11.1 Let G be a simply connected domain in R2. Consider a pair
of functions A,B : G→ Rn×n such that ∆(A,B)x,y = 0 at every point of G. Then∏

ϕ

(I +A dx+B dy) = I

for every piecewise continuously differentiable closed curve ϕ in G.

Although Volterra’s proof is somewhat incomplete, we try to indicate its main steps
in the rest of the section. Theorem 2.6.11 is of great importance for Volterra as
he uses it to prove an analogue of Cauchy theorem for product integral in complex
domain; this topic will be discussed in the next section.

Definition 2.6.12. A set S in R2 is called simple in the x-direction, if the set
S ∩ {(x, y0); x ∈ R} is connected for every y0 ∈ R. Similarly, S is simple in the
y-direction, if the set S ∩ {(x0, y); y ∈ R} is connected for every x0 ∈ R.

1 [VH], p. 95
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Equivalently said, the intersection of S and a line parallel to the x-axis (or the
y-axis) is either an interval (possibly degenerated to a single point), or an empty
set.

Definition 2.6.13. Let F be a closed bounded subset of R2 that is simple in the
x-direction. For every y ∈ R denote

πF = {y ∈ R; there exists x ∈ R such that (x, y) ∈ G}. (2.6.3)

Further, for every y ∈ πF let

xA(y) = inf{x; (x, y) ∈ F}, xB(y) = sup{x; (x, y) ∈ F}.

The meaning of these symbols is illustrated by the following figure. Note that the
segment [xA(y), xB(y)] × {y} is contained in F for every y ∈ πF , i.e. the set F is
enclosed between the graphs of the functions y 7→ xA(y) and y 7→ xB(y), y ∈ πF .

(x, y)

xA(y) xB(y)

F

x

y

πF

Definition 2.6.14. Let F be a closed bounded subset of R2 that is simple in the
x-direction. The double product integral of a continuous function A : F → Rn×n

is defined as

∏
F

(I +A(x, y) dx dy) =
supπF∏
inf πF

(
I +

(∫ xB(y)

xA(y)
A(x, y) dx

)
dy

)
.

Before proceeding to the next theorem we recall that a Jordan curve is a closed
curve with no self-intersections. Formally written, it is a curve with parametrization
ϕ : [a, b]→ R2 that is injective on [a, b) and ϕ(a) = ϕ(b). It is known that a Jordan
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curve divides the plane in two components – the interior and the exterior of ϕ. In
the following text we denote the interior of ϕ by Intϕ.

Theorem 2.6.15.1 Consider a piecewise continuously differentiable Jordan curve
ϕ : [a, b]→ R2 such that the set F = 〈ϕ〉∪Intϕ is simple in the x-direction. Assume
that ϕ starts at a point C = (cx, cy) such that cy = inf πF and cx = xA(cy). Denote

S(x, y) =
x∏

xA(y)

(I +X(t, y) dt)
(xA(y),y)∏

C

(I +X dx+ Y dy),

where the second integral is taken over that part of ϕ that joins the points C and
(xA(y), y) (see the figure below).

(x, y)(xA(y), y)

C

ϕ

Let G be an open neighbourhood of the set F . Then the equation∏
ϕ

(I +X dx+ Y dy) =
∏
F

(I + S−1∆(X,Y )x,yS dx dy)

holds for each pair of continuously differentiable functions X,Y : G→ Rn×n.

Theorem 2.6.15 might be regarded as an analogy of Green’s theorem, since it pro-
vides a relationship between the double product integral over F and the contour
product integral over the boundary of F . The proof in [VH] is somewhat obscure
(mainly because of Volterra’s calculations with infinitesimal quantities) and will
not be reproduced here. A statement similar to Theorem 2.6.15 will be proved in
Chapter 3, Theorem 3.7.4.

Theorem 2.6.16.2 Consider a piecewise continuously differentiable Jordan curve
ϕ : [a, b] → R2 such that the set F = 〈ϕ〉 ∪ Intϕ is simple in the x-direction.
Let G be an open neighbourhood of the set F . If A,B : G → Rn×n is a pair of
continuously differentiable functions such that ∆(A,B)x,y = 0 at every point of G,
then ∏

ϕ

(I +Adx+B dy) = I.

1 [VH], p. 92–94
2 [VH], p. 95
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Proof. Let C = (cx, cy) be the point such that cy = inf πF and cx = xA(cy). If A
is the starting point of ϕ, we may write ϕ = ϕ1 + ϕ2, where ϕ1 is the part of the
curve between the points A, C and ϕ2 is the part between C, A provided we travel
along ϕ in direction of its orientation.

C

A

ϕ1

ϕ2

Theorem 2.6.15 gives ∏
ϕ2+ϕ1

(I +Adx+B dy) = I,

and consequently∏
ϕ

(I +Adx+B dy) =
∏

ϕ1+ϕ2

(I +Adx+B dy) =

=
∏
ϕ2

(I +A dx+B dy)
∏

ϕ2+ϕ1

(I +A dx+B dy)

(∏
ϕ2

(I +Adx+B dy)

)−1

= I.

Remark 2.6.17. In case the set G in statement of the last theorem is simple both
in the x direction and in the y direction, there is a simpler alternative proof of
Theorem 2.6.16. It is based on Theorem 2.6.5, which we proved for G = R2, but
the proof is exactly the same also for sets G which are simple in x as well as in y
direction. Consequently, the assumption ∆(A,B)x,y = 0 and Theorem 2.6.5 imply
the existence of a function T : G→ R2 such that

A(x, y) =
d

dx
T (x, y), B(x, y) =

d
dy

T (x, y)

for every (x, y) ∈ G. Thus for arbitrary closed curve ϕ : [a, b]→ G we have

∏
ϕ

(I +Adx+B dy) =
∏
ϕ

(
I +

d
dx

T dx+
d
dy

T dy

)
=

=
b∏
a

(
I +

(
∂T

∂x
(ϕ(t))T (ϕ(t))−1ϕ′1(t) +

∂T

∂y
(ϕ(t))T (ϕ(t))−1ϕ′2(t)

)
dt

)
=
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=
b∏
a

(
I +

d
dt

(T ◦ ϕ)(t) dt

)
= T (ϕ(b))T (ϕ(a))−1 = I.

Both the statement and its proof is easily generalized to the case of curves in Rm,
m > 2.

Volterra now comes to the justification of Theorem 2.6.12: Let G be a simply
connected domain in R2 and A,B : G→ Rn×n such that ∆(A,B)x,y = 0 at every
point of G. We have to verify that∏

ϕ

(I +A dx+B dy) = I (2.6.4)

for every piecewise continuously differentiable closed curve ϕ in G. Theorem 2.6.16
ensures that the statement is true, if the set F = 〈ϕ〉 ∪ Intϕ is simple in the x-
direction. Volterra first notes that it remains true, if F can be split by a curve in
two parts each of which is simple in the x-direction.

ϕ2d

ϕ2c

ϕ2b ϕ1c

ϕ1b

ϕ1a

ϕ1dϕ2a

T

S

Indeed, using the notation from the above figure, if ϕ1 = ϕ1a+ϕ1b+ϕ1c+ϕ1d and
ϕ2 = ϕ2a + ϕ2b + ϕ2c + ϕ2d, then∏

ϕ1

(I +Adx+B dy) = I,
∏
ϕ2

(I +Adx+B dy) = I,

and thus∏
ϕ1+ϕ2

(I +Adx+B dy) =
∏
ϕ2

(I +A dx+B dy) ·
∏
ϕ1

(I +A dx+B dy) = I.

Now if S denotes the initial point of ϕ, then∏
ϕ

(I +Adx+B dy) =

=
T∏
S

(I +A dx+B dy) ·
∏

ϕ1+ϕ2

(I +Adx+B dy) ·
S∏
T

(I +Adx+B dy) = I,
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where
∏T
S denotes the contour product integral taken along the part of ϕ that

connects the points S, T , and
∏S
T is taken along the same curve with reversed

orientation (it is thus the inverse matrix of
∏T
S ).

By induction it follows that (2.6.4) holds if the set F = 〈ϕ〉 ∪ Intϕ can be decom-
posed into a finite number of subsets which are simple in the x-direction. Volterra
now states that this is possible for every curve ϕ in consideration, and so Theorem
2.6.12 is proved. He however gave no justification of the last statement, so his proof
remains incomplete.

2.7 Product integration in complex domain

So far we have been concerned with real matrix functions defined on a real interval,
i.e. with functions A : [a, b] → Rn×n. Most of our results can be, without greater
effort, generalized to complex-valued matrix functions, i.e. to functions A : [a, b]→
Cn×n. However, in the following two sections, we will focus our interest to matrix
functions of a complex variable, i.e. A : G → Cn×n, where G is a subset of the
complex plane.
A matrix function A = {ajk}nj,k=1 will be called differentiable at a point z ∈ C, if
its entries ajk are differentiable at that point. We will use the notation

A′(z) = {a′jk(z)}nj,k=1.

The function A is called holomorphic in an open domain G ⊆ C, if it is differentiable
everywhere in G.

Definition 2.7.1. The left derivative of a complex matrix function A at a point
z ∈ C is defined as

d
dz
A = A′(z)A−1(z),

provided that A is differentiable and regular at the point z.

Each matrix function A of a complex variable z might be interpreted as a function
of two real variables x, y, where z = x+ iy. The Cauchy-Riemann equation states
that

A′(z) =
∂A

∂x
(x+ iy) =

1
i

∂A

∂y
(x+ iy),

thus the left derivative satisfies

d
dz
A =

d
dx
A =

1
i

d
dy
A,

provided all the derivatives exist.
We now proceed to the definition of product integral along a contour in the complex
domain. We again restrict ourselves to contours with a piecewise continuously
differentiable parametrization ϕ : [a, b] → C, i.e. ϕ′−(x) exists for all x ∈ (a, b],
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ϕ′+(x) exists for all x ∈ [a, b), and ϕ′−(x) = ϕ′+(x) except a finite number of points
in (a, b).

Definition 2.7.2. Let ϕ : [a, b]→ C be a piecewise continuously differentiable con-
tour in the complex plane and A a matrix function which is defined and continuous
on 〈ϕ〉. The left product integral along ϕ is defined as

∏
ϕ

(I +A(z) dz) =
b∏
a

(I +A(ϕ(t))ϕ′(t) dt). (2.7.1)

As Volterra remarks, the left contour product integral is equal to the limit

lim
ν(D)→0

P (A,D),

where D is a tagged partition of [a, b] with division points ti, tags ξi ∈ [ti−1, ti] and

P (A,D) =
1∏

i=m

(I +A(ϕ(ξi))(ϕ(ti)− ϕ(ti−1))) . (2.7.2)

Instead of our
∏
ϕ(I +A(z) dz) he uses the notation

∫
ϕ
A(z) dz.

The product integral
∏
ϕ(I+A(z) dz) can be converted to a contour product integral

taken along a contour ϕ̃ in R2 with the parametrization

ϕ̃(t) = (Re ϕ(t), Im ϕ(t)), t ∈ [a, b].

Indeed, define A1(x, y) = A(x+ iy) and A2(x, y) = iA(x+ iy). Then

∏
ϕ

(I +A(z) dz) =
b∏
a

(I +A(ϕ(t))ϕ′(t) dt) =

b∏
a

(I + (A1(ϕ(t))Re ϕ′(t) +A2(ϕ(t))Im ϕ′(t)) dt),

thus ∏
ϕ

(I +A(z) dz) =
∏
ϕ̃

(I +A(x+ iy) dx+ iA(x+ iy) dy). (2.7.3)

The following theorem is an analogy of Theorem 2.6.9. It can be proved directly in
the same way as Theorem 2.6.9, or alternatively by using the relation (2.7.3) and
applying Theorem 2.6.9.

Theorem 2.7.3.1 The left contour product integral has the following properties:

1 [VH], p. 107
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(1) If ϕ1 + ϕ2 is a curve obtained by joining two curves ϕ1 and ϕ2, then∏
ϕ1+ϕ2

(I +A(z) dz) =
∏
ϕ2

(I +A(z) dz) ·
∏
ϕ1

(I +A(z) dz).

(2) If −ϕ is a curve obtained by reversing the orientation of ϕ, then

∏
−ϕ

(I +A(z) dz) =

(∏
ϕ

(I +A(z) dz)

)−1

.

Our interest in product integral of a matrix function A : [a, b] → Rn×n stems
from the fact that it provides a solution of the differential equation (or a system of
equations)

y′(x) = A(x)y(x),

where y : [a, b] → Rn. The situation is similar in the complex domain: Since
the contour product integral is a limit of the products (2.7.2), we expect that the
solution of the differential equation

y′(z) = A(z)y(z)

that satisfies y(z0) = y0 will be given by

y(z) =

(∏
ϕ

(I +A(w) dw)

)
y0,

where ϕ : [a, b] → C is a contour connecting the points z0 and z. However, this
definition of y is correct only if the product integral is independent on the choice
of a particular contour, i.e. if∏

ϕ

(I +A(z) dz) =
∏
ψ

(I +A(z) dz),

whenever ϕ and ψ are two curves with the same initial points and the same end-
points. From Theorem 2.7.3 we see that

∏
ϕ+(−ψ)(I + A(z) dz) should be the

identity matrix. Equivalently said,∏
ϕ

(I +A(z) dz) = I

should hold for every closed contour ϕ.
Volterra proves that the last condition is satisfied in every simply connected do-
main G provided that the function A is holomorphic in G. He first uses the formula
(2.7.3) to convert the integral in complex domain to an integral in R2. Then, since

∆(A, iA)x,y =
∂iA

∂x
− ∂A

∂y
+ iAA−AiA = 0,
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Theorem 2.6.11 implies that the contour product integral along any closed curve
in G is equal to the identity matrix. Because we didn’t prove Theorem 2.6.11, we
offer a different justification taken over from [DF].

Theorem 2.7.4.1 If G ⊆ C is a simply connected domain and A : G → Cn×n

a holomorphic function in G, then the contour product integral of A is path-
independent in G.

Proof. Let ϕ : [a, b] → G be a curve in G. We expand the product integral of A
along ϕ to the Peano series

∏
ϕ

(I +A(z) dz) =
b∏
a

(I +A(ϕ(t))ϕ′(t) dt) =

= I +
∫ b

a

A(ϕ(t))ϕ′(t) dt+
∫ b

a

∫ t2

a

A(t2)A(t1)ϕ′(t2)ϕ′(t1) dt1 dt2 + · · ·

This infinite series might be written as

∏
ϕ

(I +A(z) dz) = I +
∫ ϕ(b)

ϕ(a)
A(z) dz +

∫ ϕ(b)

ϕ(a)

∫ z2

ϕ(a)
A(z2)A(z1) dz1 dz2 + · · ·

where the contour integrals are all taken along ϕ (or its initial segment). However,
since ordinary contour integrals of holomorphic functions are path-independent
in G, the sum of the infinite series depends only on the endpoints of ϕ.

In case the product integral is path-independent in a given domain G, we will
occasionally use the symbol

z2∏
z1

(I +A(z) dz)

to denote product integral taken along an arbitrary curve in G with initial point z1

and endpoint z2.
Volterra now claims that if G is a simply connected domain and A is a holomorphic
matrix function in G, then the function

Y (z) =
z∏
z0

(I +A(w) dw)

provides a solution of the differential equation Y ′(z) = A(z)Y (z) in G.

Theorem 2.7.5. If G ⊆ C is a simply connected domain and A : G → Cn×n a
holomorphic function in G, then the function

Y (z) =

(
z∏
z0

(I +A(w) dw)

)

1 [DF], p. 62–63
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satisfies Y ′(z) = A(z)Y (z) in G.

Proof. The statement is obtained by differentiating the series

z∏
z0

(I +A(w) dw) = I +
∫ z

z0

A(w) dw +
∫ z

z0

∫ w2

z0

A(w2)A(w1) dw1 dw2 + · · ·

with respect to z.

Corollary 2.7.6. Let G ⊆ C be a simply connected domain and A : G → Cn×n

a holomorphic function. If z0 ∈ G and y0 ∈ Cn, then the function y : G → Cn

defined by

y(z) =

(
z∏
z0

(I +A(w) dw)

)
y0

satisfies y′(z) = A(z)y(z) in G and y(z0) = y0.

Theorem 2.7.7.1 Let G ⊆ C be a domain and A : G → Cn×n a holomorphic
matrix function in G. If ϕ1, ϕ2 : [a, b] → G are two positively oriented Jordan
curves such that ϕ1 ⊂ Intϕ2 and Intϕ2\ Intϕ1 ⊂ G, then∏

ϕ1

(I +A(z) dz) and
∏
ϕ2

(I +A(z) dz)

are similar matrices.

Proof. We introduce two disjoint auxiliary segments ψ1, ψ2 that connect the curves
ϕ1, ϕ2 (see the figure).

ψ1

ϕ1b

ϕ2b

ψ2
ϕ2a

ϕ1a ϕ1 = ϕ1a + ϕ1b,

ϕ2 = ϕ2a + ϕ2b

Theorem 2.7.4 gives

∏
ϕ2a

(I +A(z) dz) ·
∏
ψ1

(I +A(z) dz) ·
(∏
ϕ1a

(I +A(z) dz)

)−1

=

(∏
ψ2

(I +A(z) dz)

)−1

1 [VH], p. 114–116
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and(∏
ϕ1b

(I+A(z) dz)

)−1

·
(∏

ψ1

(I+A(z) dz)

)−1

·
∏
ϕ2b

(I+A(z) dz) =
∏
ψ2

(I+A(z) dz).

Multiplying the first equality by the second from left yields(∏
ϕ1b

(I +A(z) dz)

)−1

·
(∏

ψ1

(I +A(z) dz)

)−1

·
∏
ϕ2b

(I +A(z) dz) ·
∏
ϕ2a

(I +A(z) dz)·

·
∏
ψ1

(I +A(z) dz) ·
(∏
ϕ1a

(I +A(z) dz)

)−1

= I,

which can be simplified to(∏
ψ1

(I+A(z) dz)

)−1

·
∏
ϕ2

(I+A(z) dz)·
∏
ψ1

(I+A(z) dz) =
∏
ϕ1

(I+A(z) dz). (2.7.4)

Remark 2.7.8. Volterra offers a slightly different proof of the previous theorem:
From Theorem 2.7.4 he deduces that(∏

ϕ2

(I+A(z) dz)

)−1

·
(∏

ψ1

(I+A(z) dz)

)−1

·
∏
ϕ2

(I+A(z) dz)
∏
ψ1

(I+A(z) dz) = I,

which implies (2.7.4). This argument is however incorrect, because the domain
bounded by ψ1 + ϕ2 − ψ1 − ϕ2 need not be simply connected.

Definition 2.7.9. Let R > 0, G = {z ∈ C; 0 < |z − z0| < R}. Suppose A : G →
Cn×n is holomorphic in G. Let ϕ : [a, b]→ G be a positively oriented Jordan curve,
z0 ∈ Intϕ. Then ∏

ϕ

(I +A(z) dz) = CJC−1,

where J is certain Jordan matrix, which is, according to Theorem 2.7.7, independent
on the choice of ϕ. This Jordan matrix is called the residue of A at the point z0.

Example 2.7.10.1 We calculate the residue of a matrix function

T (z) =
A

z − z0
+B(z)

1 [VH], p. 117–120
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at the point z0, where A ∈ Cn×n and B is a matrix function holomorphic in the
neighbourhood U(z0, R) of point z0. We take the product integral along the circle
ϕr(t) = z0 + reit, t ∈ [0, 2π], r < R and obtain

∏
ϕr

(I + T (z) dz) =
2π∏
0

(I + iA+ ireitB(z0 + reit) dt).

Volterra suggests the following procedure (which is however not fully correct, see
Remark 2.7.11): Since iA+ ireitB(z0 + reit)→ iA for r → 0, we have

∏
ϕr

(I + T (z) dz)→
2π∏
0

(I + iA dt).

The integrals
∏
ϕr

(I+T (z) dz), r ∈ (0, R), are all similar to a single Jordan matrix.

Their limit
∏2π

0 (I + iAdt) is thus similar to the same matrix and it is sufficient to
find its Jordan normal form. By the way, this integral is equal to e2πiA, giving an
analogy of the residue theorem:

The matrix
∏
ϕr

(I + T (z) dz) is similar to e2πiA. (2.7.5)

Consider the Jordan normal form of A:

A = C−1


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak

C, where Aj =


λj 0 · · · 0 0
1 λj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λj

 .

Using the result of Example 2.5.8 we obtain

2π∏
0

(I + iA dt)= C−1


S1(2π) 0 · · · 0

0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)

 ·

·

C−1


S1(0) 0 · · · 0

0 S2(0) · · · 0
...

...
. . .

...
0 0 · · · Sk(0)



−1

= C−1


S1(2π) 0 · · · 0

0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)

C,
where

Sj(x) =


eiλjx 0 0 · · · 0 0
x1

1! e
iλjx eiλjx 0 · · · 0 0

x2

2! e
iλjx x1

1! e
iλjx eiλjx · · · 0 0

...
...

. . .
...

...


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is a square matrix of the same dimensions as Aj . The Jordan normal form of the
matrix 

S1(2π) 0 · · · 0
0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)

 ,

and therefore also the demanded residue, is
V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vk

, where Vj =


e2πiλj 0 · · · 0 0

1 e2πiλj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 e2πiλj


is a square matrix of the same dimensions as Sj .

Remark 2.7.11. The calculation from the previous example contains two defi-
ciencies: First, Volterra interchanges the order of limit and product integral to
obtain

lim
r→0

2π∏
0

(I + iA+ ireitB(z0 + reit) dt) =
2π∏
0

(I + iA dt)

without any further comment. However, the convergence iA+ireitB(z0+reit)→ iA
for r → 0 is uniform and in this case, as we will prove in Chapter 5, Theorem 5.6.4,
the statement is in fact true.
The second deficiency is more serious. Volterra seems to have assumed that if some
matrices S(r), r ∈ (0, R) (in our case S(r) is the product integral taken along ϕr),
are all similar to a single Jordan matrix J , then limr→0 S(r) is also similar to J .
This statement is incorrect, as demonstrated by the example

S(r) =

(
1 0
r 1

)
,

where S(r) is similar to (
1 0
1 1

)
for r > 0, but

lim
r→0

S(r) =

(
1 0
0 1

)
isn’t. The mentioned statement can be proved only under additional assumptions
on S(r). For example, if the matrices S(r), r > 0, have n distinct eigenvalues
λ1, . . . , λn, then the limit matrix limr→0 S(r) has the same eigenvalues, because

det(S(0)− λI) = lim
r→0

det(S(r)− λI) = (λ− λ1) · · · (λ− λn).
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This means that all the matrices S(r), r ≥ 0, are similar to a single Jordan matrix
λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 λn


A more detailed discussion of the residue theorem for product integral can be found
in the book [DF]; for example, if the set

σ(A)− σ(A) = {λ1 − λ2; λ1 and λ2 are eigenvalues of matrix A}

doesn’t contain any positive integers, then the statement (2.7.5) is shown to be
true.

2.8 Linear differential equations at a singular point

In this section we assume that the reader is familiar with the basics of the theory
of analytic functions (see e.g. [EH] or [VJ]). We are interested in studying the
differential equation

Y ′(z) = A(z)Y (z), (2.8.1)

where the function A is holomorphic in the ring P (z0, R) = {z ∈ C; 0 < |z − z0| <
R} and R > 0. If we choose z1 ∈ P (z0, R) and denote r = min(|z1−z0|, R−|z1−z0|),
then the function

Y1(z) =
z∏
z1

(I +A(w) dw)

provides a solution of (2.8.1) in B(z1, r) = {z ∈ C; |z − z1| < r}; the product inte-
gral is path-independent, because A is holomorphic in U(z1, r). The holomorphic
function Y1 can be continued along an arbitrary curve ϕ v P (z0, R); this procedure
leads to a (multiple-valued) analytic function Y, which will be denoted by

Y(z) =
z∏
z1

(I +A(w) dw), z ∈ P (z0, R).

If the element (z1, Y1) ∈ Y is continued along a curve ϕ in P (z0, R) to an element

(z2, Y2) ∈ Y (we write this as (z1, Y1)
ϕ→(z2, Y2)), then (using Y1(z1) = I)

Y2(z2) =
∏
ϕ

(I +A(w) dw) · Y1(z1) =
∏
ϕ

(I +A(w) dw).

Let ϕ be the circle with center z0 which passes through the point z1, i.e.

ϕ(t) = z0 + (z1 − z0) exp(it), t ∈ [0, 2π].
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If (z1, Y2) ∈ Y is the element such that (z1, Y1)
ϕ→(z1, Y2), then

d
dz
Y1 =

d
dz
Y2 = A(z)

for z ∈ B(z1, r). Consequently, there is a matrix C ∈ Cn×n such that Y2(z) =
Y1(z) · C. Substituting z = z1 gives

C =
∏
ϕ

(I +A(w) dw).

Volterra refers1 to the point z0 as point de ramification abélien of the analytic
function Y; this means that it is the branch point of Y, but not of its derivative A,
which is a single-valued function. Volterra proceeds to prove that Y can be written
in the form

Y = S1 · S2,

where S1 is single-valued in P (z0, R) and S2 is an analytic function that is uniquely
determined by the matrix C =

∏
ϕ(I +A(w) dw).

Here is the proof2: We write C = M−1TM , where T is a Jordan matrix. Then

T =


T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tk

, kde Tj =


e2πiλj 0 · · · 0 0

1 e2πiλj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 e2πiλj

,
where we have expressed the eigenvalues of T in the form exp(2πiλj); this is cer-
tainly possible as the matrices C and consequently also T are regular, and thus
have nonzero eigenvalues. We now define the analytic function

V(z) =
z∏
z1

(
I +

U

w − z0
dw

)
, z ∈ P (z0, R),

where

U =


U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · Uk

 and Uj =


λj 0 · · · 0 0
1 λj · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 λj


and Uj has the same dimensions as Tj for j ∈ {1, . . . , k}. Consider a function
element (z1, V1) of V; what happens if we continue it along the circle ϕ? As in the
case of function Y we obtain the result

(z1, V1)
ϕ→(z1, V1 ·D),

1 [VH], p. 121
2 [VH], p. 122–124
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where

D =
∏
ϕ

(
I +

U

w − z0
dw

)
=

2π∏
0

(I + iU dw).

In Example 2.7.10 we have calculated the result

D = S(2π) · S(0)−1 = S(2π) =


S1(2π) 0 · · · 0

0 S2(2π) · · · 0
...

...
. . .

...
0 0 · · · Sk(2π)

,
where

Sj(x) =


eiλjx 0 0 · · · 0 0
x1

1! e
iλjx eiλjx 0 · · · 0 0

x2

2! e
iλjx x1

1! e
iλjx eiλjx · · · 0 0

...
...

. . .
...

...

.
The matrix D is similar to the Jordan matrix T ; thus

D = N−1TN,

and consequently

(z1, V1)
ϕ→(z1, V1N

−1TN),

(z1, Y1)
ϕ→(z1, Y1M

−1TM).

We now consider the analytic function

S1(z) = Y(z)M−1NV(z)−1

and continue its element along ϕ:

(z1, Y1M
−1NV −1

1 )
ϕ→(z1, Y1M

−1TMM−1N(V1N
−1TN)−1) = (z1, Y1M

−1NV −1
1 ).

Thus the analytic function S1 is in fact single-valued in P (z0, R). The proof is
finished by putting

S2(z) = V(z)N−1M.

Consequently
Y = S1 · S2

and S2 is uniquely determined by the matrix C.

We now briefly turn our attention to the analytic function V. Assume that

(z1, V1)
ψ→(z, V2),
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where ψ : [a, b]→ P (z0, R), ψ(a) = z1, ψ(b) = z. It is known from complex analysis
that given the curve ϕ, we can find a function a function g : [a, b]→ C such that

exp(g(t)) = ψ(t)− z0,

for every t ∈ [a, b]; g is a continuous branch of logarithm of the function ψ − z0.
For convenience we will use the notation

g(t) = log(ψ(t)− z0)

with the understanding that g is defined as above. We also have

g′(t) =
ψ′(t)

ψ(t)− z0

for every t ∈ [a, b]. We now calculate

V2(z) =
∏
ψ

(
I +

U

z − z0
dz

)
=

b∏
a

(
I +

U

ψ(t)− z0
ψ′(t) dt

)
.

Substituting v = g(t) gives

V2(z) =
g(b)∏
g(a)

(I + U dv) = S(g(b))S(g(a))−1,

where

S(z) =


S1(z) 0 · · · 0

0 S2(z) · · · 0
...

...
. . .

...
0 0 · · · Sk(z)


is a block diagonal matrix composed of the matrices

Sj(z) =


eλjz 0 0 · · · 0 0
z1

1! e
λjz eλjz 0 · · · 0 0

z2

2! e
λjz z1

1! e
λjz eλjz · · · 0 0

...
...

. . .
...

...

 .

Consequently, the solution of Equation (2.8.1), i.e. the analytic function Y, can be
expressed as

Y(z) = S1(z)S2(z) = S1(z)S(g(b))S(g(a))−1N−1M, (2.8.2)

where
S(g(b)) = S(log(z − z0)),
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Sj(log(z − z0)) =

=


(z − z0)λj 0 0 · · · 0 0

(z − z0)λj log(z − z0) (z − z0)λj 0 · · · 0 0

(z − z0)λj log2(z−z0)
2! (z − z0)λj log(z − z0) (z − z0)λj · · · 0 0

...
...

. . .
...

...

 .

The above result can be applied to obtain the general form of solution of the
differential equation

y(n)(z) + p1(z)y(n−1)(z) + · · ·+ pn(z)y(z) = 0, (2.8.3)

where the functions pi are holomorphic in P (z0, R). We have seen that this equation
of the n-th order is easily converted to a system of linear differential equations of
first order, which can be written in the vector form as

y′(z) = A(z)y(z),

where A is a holomorphic matrix function in P (z0, R). The fundamental matrix of
this system is given by (2.8.2); the first row of this matrix then yields the funda-
mental system of solutions (composed of n analytic functions) of Equation (2.8.3).
From the form of Equation (2.8.2) we infer that every solution of Equation (2.8.3)
can be expressed as a linear combination of analytic functions of the form

(z − z0)λj
(
ϕj0(z) + ϕj1(z) log(z − z0) + · · ·+ ϕjnj (z) lognj (z − z0)

)
,

where ϕjk are holomorphic functions in P (z0, R).

Thus we see that Volterra was able to obtain the result of Lazarus Fuchs (see
Chapter 1) using the theory of product integration. The next chapters of Volterra’s
book [VH] are concerned with the study of analytic functions on Riemann surfaces;
the topic is rather special and we don’t follow Volterra’s treatment here.
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Chapter 3

Lebesgue product integration

While it is sufficient to use the Riemann integral in applications, it is rather un-
satisfactory from the viewpoint of theoretical mathematics. The generalization of
Riemann integral due to Henri Lebesgue is based on the notion of measure. The
problem of extending Volterra’s definition of product integral in a similar way has
been solved by Ludwig Schlesinger.

Volterra’s and Schlesinger’s works differ in yet another way: Volterra did not worry
about using infinitesimal quantities, and it is not always easy to translate his ideas
into the language of modern mathematics. Schlesinger’s proofs are rather precise
and can be read without greater effort except for occasionally strange notation. The
foundations of mathematical analysis in 1930’s were firmer than in 1887; moreover,
Schlesinger inclined towards theoretical mathematics, as opposed to Volterra, who
always kept applications in mind.

Ludwig Schlesinger1

Schlesinger’s biographies can be found in [Lex, McT]: Ludwig (Lajos in Hungarian)
Schlesinger was born on the 1st November 1864 in a Hungarian town Trnava (Nagys-
zombat), which now belongs to Slovakia. He studied mathematics and physics at
the universities of Heidelberg and Berlin, where he received a doctorate in 1887.

1 Photo from [McT]
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The advisors of his thesis (which was concerned with homogeneous linear differ-
ential equations of the fourth order) were Lazarus Fuchs (who later became his
father-in-law) and Leopold Kronecker. Two years later Schlesinger became an as-
sociate professor in Berlin and in 1897 an invited professor at the University of
Bonn. During the years 1897 to 1911 he served as an ordinary professor and also as
the head of the department of higher mathematics at the University of Kolozsvár
(now Cluj in Romania). In 1911 he moved to Giessen in Germany where he con-
tinued to teach until his retirement in 1930. Ludwig Schlesinger died on the 16th
December 1933.

Schlesinger devoted himself especially to complex function theory and linear dif-
ferential equations; he also made valuable contributions to the history of mathe-
matics. He translated Descartes’ Geometrie into German, and was one of the orga-
nizers of the centenary festivities dedicated to the hundredth anniversary of János
Bolyai, one of the pioneers of non-Euclidean geometry. The most important works
of Schlesinger include Handbuch der Theorie der linearen Differentialgleichungen
(1895–98), J. Bolyai in Memoriam (1902), Vorlesungen über lineare Differential-
gleichungen (1908) and Raum, Zeit und Relativitätstheorie (1920).

Schlesinger’s paper on product integration called Neue Grundlagen für einen In-
finitesimalkalkul der Matrizen [LS1] was published in 1931. The author links up to
Volterra’s theory of product integral. He starts with the Riemann-type definition
and establishes the basic properties of the product integral. His proofs are nev-
ertheless original – while Volterra proved most of his statements using the Peano
series expansion, Schlesinger prefers the “ε− δ” proofs. He then proceeds to define
the Lebesgue product integral (as a limit of product integrals of step functions) and
explores its properties.

A continuation of this paper appeared in 1932 under the title Weitere Beiträge zum
Infinitesimalkalkul der Matrizen [LS2]. Schlesinger again studies the properties of
Lebesgue product integral and is also concerned with contour product integration
in R2 and in C.

This chapter summarizes the most important results from both Schlesinger’s papers;
the final section then presents a generalization of Schlesinger’s definition of the
Lebesgue product integral.

3.1 Riemann integrable matrix functions
When dealing with product integral we need to work with sequences of matrices and
their limits. Volterra was mainly working with the individual entries of the matrices
and convergence of a sequence of matrices was for him equivalent to convergence
of all entries.

Schlesinger chooses a different approach: He defines the norm of a matrix A =
{aij}ni,j=1 by

[A] = n · max
1≤i,j≤n

|aij |.

He also mentions another norm

ΩA = max{|λ|; λ is an eigenvalue of A}
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and states that

ΩA ≤

√√√√ n∑
i,j=1

|aij |2 ≤ [A].

The second inequality is obvious, the first is proved in [LS1]1.

Schlesinger’s norm [A] has the nice property that [A · B] ≤ [A] · [B] for every
A,B ∈ Rn×n, but its disadvantage is that [I] = n. In the following text we will
use the operator norm

‖A‖ = sup{‖Ax‖; ‖x‖ ≤ 1},
where ‖Ax‖ and ‖x‖ denote the Euclidean norms of vectors Ax, x ∈ Rn. This
simplifies Schlesinger’s proofs slightly, because ‖I‖ = 1 and

‖A ·B‖ ≤ ‖A‖ · ‖B‖

still holds for every A,B ∈ Rn×n. It should be noted that the space Rn×n is
finite-dimensional, therefore it doesn’t matter which norm we choose since they are
all equivalent.

The convergence of a sequence of matrices and the limit of a matrix function is now
defined in a standard way using the norm introduced above.

For an arbitrary matrix function A : [a, b]→ Rn×n and a tagged partition

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

of interval [a, b] with division points ti and tags ξi we denote

P (A,D) =
m∏
k=1

(I +A(ξk)∆tk),

where ∆tk = tk − tk−1.

Schlesinger is now interested in the limit value of P (A,D) as the lengths of the
intervals [tk−1, tk] approach zero (if the limit exists independently on the choice
of ξk ∈ [tk−1, tk]). Clearly, the limit is nothing else than Volterra’s right product
integral.

Definition 3.1.1. Consider function A : [a, b]→ Rn×n. In case the limit

lim
ν(D)→0

P (A,D)

exists, it is called the product integral of function A on interval [a, b] and denoted
by the symbol

(I +A(t) dt)
b∏
a

.

1 [LS1], p. 34–35
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Remark 3.1.2. Schlesinger in fact defines the product integral as the limit of the
products

P (A,D) = Y 0
m∏
k=1

(I +A(ξk)∆tk),

where Y 0 is an arbitrary regular matrix (which plays the role of an “integration
constant”). In the following text we assume for simplicity that Y 0 = I. Also,
instead of Schlesinger’s notation

b︷︷∫
a

(I +A(x) dx)

we use the symbol (I +A(x) dx)
∏b
a to denote the product integral.

Lemma 3.1.3.1 Let A1, A2, . . . , Am ∈ Rn×n be arbitrary matrices. Then

‖(I +A1)(I +A2) · · · (I +Am)‖ ≤ exp

(
m∑
k=1

‖Ak‖
)
.

Proof. A simple consequence of the inequalities

‖I +Ak‖ ≤ 1 + ‖Ak‖ ≤ exp ‖Ak‖.

Corollary 3.1.4.2 If ‖A(x)‖ ≤ M for every x ∈ [a, b], then ‖P (A,D)‖ ≤ eM(b−a)

for every tagged partition D of interval [a, b].

Corollary 3.1.5. If the function A : [a, b] → Rn×n is product integrable and
‖A(x)‖ ≤M for every x ∈ [a, b], then∥∥∥∥∥(I +A(x) dx)

b∏
a

∥∥∥∥∥ ≤ eM(b−a).

Schlesinger’s first task is to prove the existence of product integral for Riemann
integrable matrix functions, i.e. functions A : [a, b] → Rn×n whose entries aij are
Riemann integrable on [a, b]. The proof is substantially different from the proof
given by Volterra; the technique is similar to Cauchy’s proof of the existence of∫ b
a
f for a continuous function f (see [CE, SŠ]).

Definition 3.1.6. Consider function A : [a, b] → Rn×n and let [c, d] ⊆ [a, b]. The
oscillation of A on interval [c, d] is the number

osc(A, [c, d]) = sup{‖A(ξ1)−A(ξ2)‖; ξ1, ξ2 ∈ [c, d]}.
1 [LS1], p. 37
2 [LS1], p. 38
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The following characterization of Riemann integrable function will be needed in
subsequent proofs:

Lemma 3.1.7. If A : [a, b]→ Rn×n is a Riemann integrable function, then

lim
ν(D)→0

m∑
k=1

osc(A, [tk−1, tk])∆tk = 0.

Proof. The statement follows easily from Darboux’s definition of the Riemann
integral which is based on upper and lower sums; it is in fact equivalent to Riemann
integrability of the given function (see e.g. [Sch2]).

Definition 3.1.8. We say that a tagged partition D′ is a refinement of a tagged
partition D (we write D′ ≺ D), if every division point of D is also a division point
of D′ (no condition being imposed on the tags).

Lemma 3.1.9.1 Let the function A : [a, b]→ Rn×n be such that ‖A(x)‖ ≤M for
every x ∈ [a, b]. Then for every pair of tagged partitions D,D′ of interval [a, b] such
that D′ ≺ D we have

‖P (A,D)− P (A,D′)‖ ≤ eM(b−a)
m∑
k=1

(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk),

where ti, i = 0, . . . ,m are division points of the partition D.

Proof. Let the partition D consist of division points and tags

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b.

First, we refine it only on the subinterval [tk−1, tk], i.e. we consider a partition D∗

which contains division points and tags

tk−1 = u0 ≤ η1 ≤ u1 · · · ≤ ul−1 ≤ ηl ≤ ul = tk

and coincides with the partition D on the rest of interval [a, b]. Then

‖P (A,D∗)− P (A,D)‖ ≤
∥∥∥∥∥
k−1∏
i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ·
·
∥∥∥∥∥

l∏
j=1

(I +A(ηj)∆uj)− I −A(ξk)∆tk

∥∥∥∥∥ ·
∥∥∥∥∥

m∏
i=k+1

(I +A(ξi)∆ti)

∥∥∥∥∥.
We estimate ∥∥∥∥∥

k−1∏
i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ·
∥∥∥∥∥

m∏
i=k+1

(I +A(ξi)∆ti)

∥∥∥∥∥ ≤ eM(b−a)

1 [LS1], p. 39–41
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and ∥∥∥∥∥∥
l∏

j=1

(I +A(ηj)∆uj)− I −A(ξk)∆tk

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

l∑
j=1

(A(ηj)−A(ξk))∆uj

∥∥∥∥∥∥+

+

∥∥∥∥∥∥
l∑

p=2

∑
1≤r1<···<rp≤l

A(ηr1) · · ·A(ηrp)∆ur1 · · ·∆urp

∥∥∥∥∥∥ ≤
≤ osc(A, [tk−1, tk])∆tk +

l∑
p=2

∑
1≤r1<···<rp≤l

Mp ∆ur1 · · ·∆urp =

= osc(A, [tk−1, tk])∆tk +
l∏

j=1

(1 +M∆uj)− 1−
l∑

j=1

M∆uj ≤

≤ osc(A, [tk−1, tk])∆tk+eM∆tk−1−M∆tk ≤ osc(A, [tk−1, tk])∆tk+(M∆tk)2eM∆tk .

Therefore we conclude that

‖P (A,D)− P (A,D∗)‖ ≤ eM(b−a)(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk).

Now, since the given partition D′ can be obtained from D by successively refining
the subintervals [t0, t1], . . . , [tm−1, tm], we obtain

‖P (A,D)− P (A,D′)‖ ≤ eM(b−a)
m∑
k=1

(osc(A, [tk−1, tk])∆tk + (M∆tk)2eM∆tk).

Corollary 3.1.10.1 Consider a Riemann integrable function A : [a, b] → Rn×n.
Then for every ε > 0 there exists δ > 0 such that

‖P (A,D)− P (A,D′)‖ < ε

whenever ν(D) < δ and D′ ≺ D.

Proof. The statement follows from the previous lemma, Lemma 3.1.7 and the
estimate

m∑
k=1

(M∆tk)2eM∆tk ≤ ν(D)M2eMν(D)
m∑
k=1

∆tk = (b− a)ν(D)M2eMν(D).
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Theorem 3.1.11.1 The product integral (I+A(x) dx)
∏b
a exists for every Riemann

integrable function A : [a, b]→ Rn×n.

Proof. Take ε > 0. Corollary 3.1.10 guarantees the existence of a δ > 0 such that

‖P (A,D)− P (A,D′)‖ < ε/2

whenever ν(D) < δ and D′ ≺ D. Consider a pair of tagged partitions D1, D2 of
interval [a, b] satisfying ν(D1) < δ and ν(D2) < δ. These partitions have a common
refinement, i.e. a partition D such that D ≺ D1, D ≺ D2 (the tags in D can be
chosen arbitrarily). Then

‖P (A,D1)− P (A,D2)‖ ≤ ‖P (A,D1)− P (A,D)‖+ ‖P (A,D)− P (A,D2)‖ < ε.

We have proved that every Riemann integrable function A : [a, b]→ Rn×n satisfies
a certain Cauchy condition and this is also the end of Schlesinger’s proof; the
existence of product integral follows from the Cauchy condition in the same way as
in the analoguous theorem for the ordinary Riemann integral (see e.g. [Sch2]).

Theorem 3.1.12.2 Consider a Riemann integrable function A : [a, b]→ Rn×n. If
c ∈ [a, b], then

(I +A(x) dx)
b∏
a

= (I +A(x) dx)
c∏
a

· (I +A(x) dx)
b∏
c

.

Proof. As Schlesinger remarks, the proof follows directly from the definition of
product integral (see the proof in Chapter 2).

3.2 Matrix exponential function
Let A : [a, b] → Rn×n be a constant function. If Dm is a partition of [a, b] to m
subintervals of length (b− a)/m, then

P (A,Dm) =

(
I +

b− a
m

A

)m
.

Since ν(Dm)→ 0 as m→∞, we have

(I +A(x) dx)
b∏
a

= lim
m→∞

(
I +

b− a
m

A

)m
= e(b−a)A.

The last equality follows from the fact that eA = limm→∞(I + A/m)m for every
A ∈ Rn×n; recall that the matrix exponential was defined in Chapter 2 using the
series

eA =
∞∑
m=0

Am

m!
. (3.2.1)

1 [LS1], p. 41
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Lemma 3.2.1. If A1, . . . , Am ∈ Rn×n and B1, . . . , Bm ∈ Rn×n, then

m∏
i=1

Ai −
m∏
i=1

Bi =
m∑
i=1

i−1∏
j=1

Bj · (Ai −Bi) ·
m∏

j=i+1

Aj

 .

Proof.

m∏
i=1

Ai −
m∏
i=1

Bi =
m∑
i=1

(B1 · · ·Bi−1Ai · · ·Am −B1 · · ·BiAi+1 · · ·Am) =

=
m∑
i=1

i−1∏
j=1

Bj · (Ai −Bi) ·
m∏

j=i+1

Aj

 .

Theorem 3.2.2.1 Consider a Riemann integrable function A : [a, b] → Rn×n.
Then

lim
ν(D)→0

m∏
k=1

eA(ξk)∆tk = lim
ν(D)→0

m∏
k=1

(I +A(ξk)∆tk) = (I +A(t) dt)
b∏
a

.

Proof. Since every Riemann integrable function is bounded, we have ‖A(x)‖ ≤M
for some M ∈ R and for every x ∈ [a, b]. The definition of matrix exponential
(3.2.1) implies∥∥∥eA(ξk)∆tk − (I +A(ξk)∆tk)

∥∥∥ ≤ (‖A(ξk)‖∆tk)2e‖A(ξk)‖∆tk ≤ (M∆tk)2eM∆tk

for k = 1, . . . ,m. According to Lemma 3.2.1,∥∥∥∥∥
m∏
k=1

eA(ξk)∆tk −
m∏
k=1

(I +A(ξk)∆tk)

∥∥∥∥∥ =

=

∥∥∥∥∥∥
m∑
j=1

j−1∏
k=1

(I +A(ξk)∆tk) · (eA(ξj)∆tj − I −A(ξj)∆tj) ·
m∏

k=j+1

eA(ξk)∆tk

∥∥∥∥∥∥ ≤
≤ eM(b−a)

m∑
j=1

∥∥∥eA(ξj)∆tj − I −A(ξj)∆tj
∥∥∥ ≤ eM(b−a)M2

m∑
j=1

(∆tj)
2eM∆tj ≤

≤ eM(b−a)M2ν(D)eMν(D)
m∑
j=1

∆tj = (b− a)eM(b−a)M2ν(D)eMν(D).
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By choosing a sufficiently fine partition D of [a, b], the last expression can be made
arbitrarily small.

Definition 3.2.3. The trace of a matrix A = {aij}ni,j=1 is the number

TrA =
n∑
i=1

aii.

Theorem 3.2.4.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then

det

(
(I +A(x) dx)

b∏
a

)
= exp

(∫ b

a

TrA(x) dx

)
.

Proof.

det

(
(I +A(x) dx)

b∏
a

)
= det

(
lim

ν(D)→0

m∏
k=1

eA(ξk)∆tk

)
= lim
ν(D)→0

m∏
k=1

det eA(ξk)∆tk =

= lim
ν(D)→0

m∏
k=1

eTrA(ξk)∆tk = lim
ν(D)→0

exp

(
m∑
k=1

TrA(ξk)∆tk

)
= exp

(∫ b

a

TrA(x) dx

)
(we have used a theorem from linear algebra: det expA = exp TrA).

Remark 3.2.5. This formula (sometimes called the Jacobi formula) appeared
already in Volterra’s work. Schlesinger employs a different proof and his statement
is also more general – it requires only the Riemann integrability of A, in contrast
to Volterra’s assumption that A is continuous.

Corollary 3.2.6. If A : [a, b]→ Rn×n is a Riemann integrable function, then the
product integral (I +A(x) dx)

∏b
a is a regular matrix.

Recall that Volterra has also assigned meaning to product integrals whose lower
limit is greater than the upper limit; his definition for the right integral was

(I +A(t) dt)
a∏
b

= lim
ν(D)→0

1∏
k=m

(I −A(ξk)∆tk).

If A is Riemann integrable, we know that this is equivalent to

(I +A(t) dt)
a∏
b

= lim
ν(D)→0

1∏
k=m

e−A(ξk)∆tk .
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Thus

I = lim
ν(D)→0

(
m∏
k=1

eA(ξk)∆tk ·
1∏

k=m

e−A(ξk)∆tk

)
=

= lim
ν(D)→0

m∏
k=1

eA(ξk)∆tk · lim
ν(D)→0

1∏
k=m

e−A(ξk)∆tk =

(I +A(t) dt)
b∏
a

·(I +A(t) dt)
a∏
b

,

which proves that (I+A(t) dt)
∏a
b is the inverse matrix of (I+A(t) dt)

∏b
a; compare

with Volterra’s proof of Theorem 2.4.10.

3.3 The indefinite product integral

Schlesinger now proceeds to study the properties of the indefinite product integral,
i.e. of the function Y (x) = (I +A(t) dt)

∏x
a.

Theorem 3.3.1.1 If A : [a, b] → Rn×n is Riemann integrable, then the function
Y (x) = (I +A(t) dt)

∏x
a is continuous on [a, b].

Proof. We prove the right-continuity of Y at x0 ∈ [a, b); continuity from left is
proved similarly. Let x0 ≤ x0 + h ≤ b. The function A is bounded: ‖A(x)‖ ≤ M
for some M ∈ R. We now employ the inequality from Lemma 3.1.9. Let D′ be a
partition of interval [x0, x0 + h]. Then

‖I +A(x0)h− P (A,D′)‖ ≤ eMh(osc(A, [x0, x0 + h])h+ (Mh)2eMh).

Passing to the limit ν(D′)→ 0 we obtain∥∥∥∥∥I +A(x0)h− (I +A(t) dt)
x0+h∏
x0

∥∥∥∥∥ ≤ eMh(osc(A, [x0, x0 + h])h+ (Mh)2eMh),

which implies

lim
h→0+

(I +A(t) dt)
x0+h∏
x0

= I.

Therefore

lim
h→0+

(Y (x0 + h)− Y (x0)) = Y (x0)

(
(I +A(t) dt)

x0+h∏
x0

−I
)

= 0.
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Theorem 3.3.2.1 If A : [a, b]→ Rn×n is Riemann integrable, then the function

Y (x) = (I +A(t) dt)
x∏
a

,

satisfies the integral equation

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Proof. It is sufficient to prove the statement for x = b. Let

D : a = t0 ≤ ξ1 ≤ t1 ≤ ξ2 ≤ · · · ≤ tm−1 ≤ ξm ≤ tm = b

be a tagged partition of interval [a, b]. We define

Y k =
k∏
i=1

(I +A(ξi)∆ti), k = 0, . . . ,m.

Then
Y k − Y k−1 = Y k−1A(ξk)∆tk, k = 1, . . . ,m. (3.3.1)

Since Y 0 = I and Y m = P (A,D), adding the equalities (3.3.1) for k = 1, . . . ,m
yields

P (A,D)− I =
m∑
k=1

Y k−1A(ξk)∆tk.

The function A is bounded: ‖A(x)‖ ≤M for some M ∈ R. We estimate∥∥∥∥∥Y (b)− I −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ ≤ ‖Y (b)− P (A,D)‖+

+

∥∥∥∥∥P (A,D)− I −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ ≤ ‖Y (b)− P (A,D)‖+

+

∥∥∥∥∥
m∑
k=1

(Y k−1 − Y (tk−1))A(ξk)∆tk

∥∥∥∥∥+

∥∥∥∥∥
m∑
k=1

(Y (tk−1)− Y (ξk))A(ξk)∆tk

∥∥∥∥∥+

+

∥∥∥∥∥
m∑
k=1

Y (ξk)A(ξk)∆tk −
∫ b

a

Y (t)A(t) dt

∥∥∥∥∥ . (3.3.2)
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Using the inequalities∥∥∥∥∥
m∑
k=1

(Y k−1 − Y (tk−1))A(ξk)∆tk

∥∥∥∥∥ ≤M
m∑
k=1

‖Y k−1 − Y (tk−1)‖∆tk ≤

≤M
m∑
k=1

eM(b−a)∆tk

 m∑
j=1

(osc(A, [tj−1, tj ])∆tj + (M∆tj)
2eM∆tj )

 ≤
≤MeM(b−a)(b− a)

 m∑
j=1

osc(A, [tj−1, tj ])∆tj +M2ν(D)eMν(D)


(we have used Lemma 3.1.9) and∥∥∥∥∥

m∑
k=1

(Y (tk−1)− Y (ξk))A(ξk)∆tk

∥∥∥∥∥ ≤M
m∑
k=1

osc(Y, [tk−1, tk])∆tk,

we see that all terms on the right-hand side of (3.3.2) can be made arbitrarily small
if the partition D is sufficiently fine.

Corollary 3.3.3.1 If A : [a, b]→ Rn×n is continuous, then the function

Y (x) = (I +A(t) dt)
x∏
a

provides a solution of the differential equation

Y ′(x) = Y (x)A(x), x ∈ [a, b]

and satisfies the initial condition Y (a) = I.

Remark 3.3.4. The function Y is therefore the fundamental matrix of the system

y′i(x) =
n∑
j=1

aji(x)yj(x), i = 1, . . . , n.

Schlesinger uses the notation DxY (x) = A(x), where

DxY = Y −1Y ′,

i.e. Dx is exactly Volterra’s right derivative of a matrix function.

3.4 Product integral inequalities

In this section we summarize various inequalities that will be useful later.
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Lemma 3.4.1.1 If A : [a, b]→ Rn×n is a Riemann integrable function, then∥∥∥∥∥(I +A(x) dx)
b∏
a

∥∥∥∥∥ ≤ exp

(∫ b

a

‖A(x)‖ dx

)
.

Proof. Lemma 3.1.3 implies that∥∥∥∥∥
m∏
i=1

(I +A(ξi)∆ti)

∥∥∥∥∥ ≤ exp

(
m∑
i=1

‖A(ξi)‖∆ti
)

for every tagged partition D of interval [a, b]; the proof is completed by passing to
the limit ν(D)→ 0.

Lemma 3.4.2.2 Let m ∈ N, Ak, Bk ∈ Rn×n for every k = 1, . . . ,m. Then∥∥∥∥∥
m∏
k=1

(I +Bk)−
m∏
k=1

(I +Ak)

∥∥∥∥∥ ≤ exp

(
m∑
k=1

‖Ak‖
)(

exp

(
m∑
k=1

‖Bk −Ak‖
)
− 1

)
.

Proof. Define

Y k =
k∏
i=1

(I +Ai), Zk =
k∏
i=1

(I +Bi), k = 0, . . . ,m

(where the empty product for k = 0 equals the identity matrix). Then

Y k − Y k−1 = Y k−1Ak,

Zk − Zk−1 = Zk−1Bk,

for k = 1, . . . ,m. This implies

Zk − Y k = (Zk−1 − Y k−1)(I +Bk) + Ek, (3.4.1)

where
Ek = Y k−1(Bk −Ak).

Applying the equality (3.4.1) m times on the difference Zm − Y m we obtain

Zm − Y m =
m−1∑
k=1

Ek(I +Bk+1) · · · (I +Bm) + Em.

1 [LS1], p. 51
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We also estimate

‖Ek‖ ≤ exp

(
k−1∑
i=1

‖Ai‖
)
‖Bk −Ak‖

(the empty sum for k = 0 equals zero),

‖Zm−Y m‖ ≤
m−1∑
k=1

exp

(
k−1∑
i=1

‖Ai‖
)
‖Bk−Ak‖ · exp

(
m∑

i=k+1

(‖Bi −Ai‖+ ‖Ai‖)
)

+

+ exp

(
m−1∑
i=1

‖Ai‖
)
‖Bm −Am‖ =

=
m−1∑
k=1

exp

∑
i 6=k

‖Ai‖

 ‖Bk −Ak‖ · exp

(
m∑

i=k+1

‖Bi −Ai‖
)

+

+ exp

(
m−1∑
i=1

‖Ai‖
)
‖Bm −Am‖ ≤

≤
m∑
k=1

exp

(
m∑
i=1

‖Ai‖
)
‖Bk −Ak‖ · exp

(
m∑

i=k+1

‖Bi −Ai‖
)
.

Since
‖Bk −Ak‖ ≤ exp (‖Bk −Ak‖)− 1,

we conclude that ∥∥∥∥∥
m∏
k=1

(I +Bk)−
m∏
k=1

(I +Ak)

∥∥∥∥∥ = ‖Zm − Y m‖ ≤

≤ exp

(
m∑
i=1

‖Ai‖
)

m∑
k=1

(
(exp (‖Bk −Ak‖)− 1) exp

(
m∑

i=k+1

‖Bi −Ai‖
))

=

= exp

(
m∑
i=1

‖Ai‖
)

m∑
k=1

(
exp

(
m∑
i=k

‖Bi −Ai‖
)
− exp

(
m∑

i=k+1

‖Bi −Ai‖
))

=

= exp

(
m∑
i=1

‖Ai‖
)(

exp

(
m∑
i=1

‖Bi −Ai‖
)
− 1

)
.

Corollary 3.4.3.1 If A, B : [a, b]→ Rn×n are Riemann integrable functions, then∥∥∥∥∥(I +B(x) dx)
b∏
a

−(I +A(x) dx)
b∏
a

∥∥∥∥∥ ≤
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≤ exp

(∫ b

a

‖A(x)‖ dx

)(
exp

(∫ b

a

‖B(x)−A(x)‖dx

)
− 1

)
.

Proof. The previous lemma ensures that for every tagged partition D of interval
[a, b] we have

‖P (B,D)− P (A,D)‖ =

∥∥∥∥∥
m∏
k=1

(I +B(ξk)∆tk)−
m∏
k=1

(I +A(ξk)∆tk)

∥∥∥∥∥ ≤
≤ exp

(
m∑
k=1

‖A(ξk)‖∆tk
)(

exp

(
m∑
k=1

‖B(ξk)−A(ξk)‖∆tk
)
− 1

)
.

The proof is completed by passing to the limit ν(D)→ 0.

Remark 3.4.4. Lemma 3.4.2 is not present in Schlesinger’s work, he proves directly
the Corollary 3.4.3; our presentation is perhaps more readable.

3.5 Lebesgue product integral

The most valuable contribution of Schlesinger’s paper is his generalized definition
of product integral which is applicable to all matrix functions with bounded and
measurable (i.e. bounded Lebesgue integrable) entries.

From a historical point of view, such a generalization certainly wasn’t a straightfor-
ward one. Recall the original Lebesgue’s definition: To compute the integral

∫ b
a
f

of a bounded measurable function f : [a, b]→ [m,M ], we choose a partition

D : m = m0 < m1 < · · · < mp = M,

then form the sets

E0 = {x ∈ [a, b]; f(x) = m},
Ej = {x ∈ [a, b]; mj−1 < f(x) ≤ mj}, j = 1, . . . , p,

and compute the lower and upper sums

s(f,D) = m0µ0 +
p∑
j=1

mj−1µj , S(f,D) = m0µ0 +
p∑
j=1

mjµj , (3.5.1)

where µj = µ(Ej) is the Lebesgue measure of the set Ej . Since

S(f,D)− s(f,D) =
p∑
j=1

(mj −mj−1)µj ≤ ν(D)(b− a),
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the sums in (3.5.1) approach a common limit as ν(D)→ 0 and we define∫ b

a

f(x) dx = lim
ν(D)→0

s(f,D) = lim
ν(D)→0

S(f,D).

Similar procedure cannot be used to define product integral of a matrix function
A : [a, b] → Rn×n, because Rn×n is not an ordered set. Schlesinger was instead
inspired by an equivalent definition of Lebesgue integral which is due to Friedrich
Riesz (see [FR, KZ]): A bounded function f : [a, b]→ R is integrable, if and only if
there exists a uniformly bounded sequence of step (i.e. piecewise-constant) functions
{fn}∞n=1 such that fn → f almost everywhere on [a, b]; in this case,∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

To proceed to the definition of product integral we first recall that (see Theorem
3.2.2)

(I +A(x) dx)
b∏
a

= lim
ν(D)→0

m∏
k=1

eA(ξk)∆tk

for every Riemann integrable function A : [a, b]→ Rn×n. The product on the right
side might be interpreted as

m∏
k=1

eA(ξk)∆tk = (I +AD(t) dt)
b∏
a

,

where AD is a step function defined by

AD(t) = A(ξk), t ∈ (tk−1, tk)

(the values A(tk), k = 0, . . . ,m, might be chosen arbitrarily). If {Dk}∞k=1 is a
sequence of tagged partitions of [a, b] such that limk→∞ ν(Dk) = 0, it is easily
proved that

lim
k→∞

ADk(t) = A(t) (3.5.2)

at every point t ∈ [a, b] at which A is continuous. Since Riemann integrable func-
tions are continuous almost everywhere, the Equation (3.5.2) holds a.e. on [a, b].
We are therefore led to the following generalized definition of product integral:

(I +A(x) dx)
b∏
a

= lim
k→∞

(I +Ak(x) dx)
b∏
a

,

where {Ak}∞k=1 is a suitably chosen sequence of matrix step functions that converge
to A almost everywhere.

Definition 3.5.1. A function A : [a, b] → Rn×n is called a step function if there
exist numbers

a = t0 < t1 < · · · < tm = b
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such that A is a constant function on every interval (tk−1, tk), k = 1, . . . ,m.

Clearly, a matrix function A = {aij}ni,j=1 is a step function if and only if all the
entries aij are step functions.

Definition 3.5.2. A sequence of functions Ak : [a, b] → Rn×n, k ∈ N, is called
uniformly bounded if there exists a number M ∈ R such that ‖Ak(x)‖ ≤ M for
every k ∈ N and every x ∈ [a, b].

Definition 3.5.3. A function A : [a, b] → Rn×n is called measurable if all the
entries aij are measurable functions.

Lemma 3.5.4. Let Ak : [a, b] → Rn×n, k ∈ N, be a uniformly bounded sequence
of measurable functions such that

lim
k→∞

Ak(x) = A(x)

a.e. on [a, b]. Then Ak → A in the norm of the space L1, i.e.

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0.

Proof. Choose ε > 0. As ‖Ak(x)‖ ≤ M for every k ∈ N and every x ∈ [a, b], we
can estimate∫ b

a

‖Ak(x)−A(x)‖ dx ≤ ε(b− a) + 2Mµ({x; ‖Ak(x)−A(x)‖ ≥ ε}).

The convergence Ak → A a.e. implies convergence in measure1, i.e. for every ε > 0
we have

lim
k→∞

µ({x; ‖A(x)−Ak(x)‖ ≥ ε}) = 0.

Therefore

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx ≤ ε(b− a)

for every ε > 0.

Theorem 3.5.5.2 Let Ak : [a, b]→ Rn×n, k ∈ N, be a sequence of step functions
such that

lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0.

Then the limit

lim
k→∞

(I +Ak(x) dx)
b∏
a

1 [IR], Proposition 8.3.3, p. 256
2 [LS1], p. 55–56
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exists and is independent on the choice of the sequence {Ak}∞k=1.

Proof. We verify that (I + Ak(x) dx)
∏b
a is a Cauchy sequence. According to

Corollary 3.4.3 we have∥∥∥∥∥(I +Al(x) dx)
b∏
a

−(I +Am(x) dx)
b∏
a

∥∥∥∥∥ ≤
≤ exp

(∫ b

a

‖Am(x)‖ dx

)(
exp

(∫ b

a

‖Al(x)−Am(x)‖ dx

)
− 1

)
.

The assumption of our theorem implies that the sequence of numbers
∫ b
a
‖Am(x)‖dx

is bounded and that

lim
l,m→∞

∫ b

a

‖Al(x)−Am(x)‖ dx = 0,

which proves the existence of the limit. To verify the uniqueness consider two
sequences of step functions {Ak}, {Bk} that satisfy the assumption of the theorem.
We construct a sequence {Ck}, where C2k−1 = Ak and C2k = Bk. Then Ck → A
a.e. and

lim
k→∞

∫ b

a

‖Ck(x)−A(x)‖dx = 0,

which means that limk→∞(I + Ck(x) dx)
∏b
a exists. Every subsequence of {Ck}

must have the same limit, therefore

lim
k→∞

(I +Ak(x) dx)
b∏
a

= lim
k→∞

(I +Bk(x) dx)
b∏
a

.

Definition 3.5.6. Consider function A : [a, b] → Rn×n. Assume there exists a
uniformly bounded sequence of step functions Ak : [a, b]→ Rn×n such that

lim
k→∞

Ak(x) = A(x)

a.e. on [a, b]. Then the function A is called product integrable and we define

(I +A(x) dx)
b∏
a

= lim
k→∞

(I +Ak(x) dx)
b∏
a

.

We use the symbol L∗([a, b],Rn×n) to denote the set of all product integrable
functions.

Remark 3.5.7. The correctness of the previous definition is guaranteed by Lemma
3.5.4 and Theorem 3.5.5. Every function A ∈ L∗([a, b],Rn×n) is clearly bounded
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and measurable (step functions are measurable and the limit of measurable func-
tions is again measurable). Assume on the contrary that A : [a, b] → Rn×n is a
measurable function on [a, b] such that

‖aij(x)‖ ≤M, x ∈ [a, b], i, j = 1, . . . , n.

There exists1 a sequence of step functions {Ak}∞k=1 which converge to A in the
L1 norm. This sequence contains2 a subsequence {Bk}∞k=1 of matrix functions
Bk = {bkij}ni,j=1 such that Bk → A a.e. on [a, b]. Without loss of generality we
can assume that the sequence {Bk}∞k=1 is uniformly bounded (otherwise consider
the functions min(max(−M, bkij),M)). We have thus found a uniformly bounded
sequence of step functions which converge to A a.e. on [a, b]. This means that

L∗([a, b],Rn×n) =
{
A : [a, b]→ Rn×n; A is measurable and bounded

}
.

Schlesinger remarks that it is possible to further extend the definition of product
integral to encompass all matrix functions with Lebesgue integrable (not necessarily
bounded) entries, but he doesn’t give any details. We return to this question at
the end of the chapter.

3.6 Properties of Lebesgue product integral

After having defined the Lebesgue product integral in [LS1], Schlesinger carefully
studies its properties. Interesting results may be found also in [LS2].

Lemma 3.6.1. Assume that {Ak}∞k=1 is a uniformly bounded sequence of functions
from L∗([a, b],Rn×n), and that Ak → A a. e. on [a, b]. Then∫ b

a

‖A(x)‖ dx = lim
k→∞

∫ b

a

‖Ak(x)‖dx.

Proof. According to the Lebesgue’s dominated convergence theorem,

lim
k→∞

∫ b

a

‖Ak(x)‖ dx =
∫ b

a

lim
k→∞

‖Ak(x)‖ dx =
∫ b

a

‖A(x)‖ dx

(we have used continuity of the norm).

Corollary 3.6.2. Inequalities 3.4.1 and 3.4.3 are satisfied for all step functions.
As a consequence of the previous lemma we see they are valid even for functions
from L∗([a, b],Rn×n).

The next statement represents a dominated convergence theorem for the Lebesgue
product integral.

1 [RG], Corollary 3.29, p. 47
2 [IR], Theorem 8.4.14, p. 267, and Theorem 8.3.6, p. 257
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Theorem 3.6.3.1 Assume that {Ak}∞k=1 is a uniformly bounded sequence of func-
tions from L∗([a, b],Rn×n) such that Ak → A a. e. on [a, b]. Then

(I +A(x) dx)
b∏
a

= lim
k→∞

(I +Ak(x) dx)
b∏
a

.

Proof. The function A is measurable and bounded, therefore A ∈ L∗([a, b],Rn×n).
To complete the proof we use Corollary 3.4.3 in the form∥∥∥∥∥(I +A(x) dx)

b∏
a

−(I +Ak(x) dx)
b∏
a

∥∥∥∥∥ ≤
exp

(∫ b

a

‖A(x)‖ dx

)(
exp

(∫ b

a

‖Ak(x)−A(x)‖ dx

)
− 1

)
and Lemma 3.5.4.

Remark 3.6.4. The previous theorem holds also for Riemann product integral
in case we add an extra assumption that the limit function A is Riemann product
integrable.

Definition 3.6.5. If M is a measurable subset of [a, b] and A ∈ L∗([a, b],Rn×n),
we define

(I +A(x) dx)
∏
M

= (I + χM (x)A(x) dx)
b∏
a

(where χM is the characteristic function of the set M).

The previous definition is correct, because the product χMA is obviously a mea-
surable bounded function.

Remark 3.6.6. The following theorem is proved in the theory of Lebesgue inte-
gral2: For every f ∈ L1([a, b]) and every ε > 0 there exists δ > 0 such that∥∥∥∥∫

M

f(x) dx

∥∥∥∥ < ε

whenever M is a measurable subset of [a, b] and µ(M) < δ. Schlesinger proceeds
to prove an analoguous theorem for the product integral (he speaks about “total
continuity”).

Theorem 3.6.7.3 For every A ∈ L∗([a, b],Rn×n) and every ε > 0 there exists
δ > 0 such that ∥∥∥∥∥(I +A(x) dx)

∏
M

−I
∥∥∥∥∥ < ε

1 [LS1], p. 57–58
2 [RG], theorem 3.26, p. 46
3 [LS1], p. 59
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whenever M is a measurable subset of [a, b] and µ(M) < δ.

Proof. Substituting B = 0 to Corollary 3.4.3 we obtain∥∥∥∥∥(I +A(x) dx)
∏
M

−I
∥∥∥∥∥ ≤ exp

(∫
M

‖A(x)‖dx

)(
exp

(∫
M

‖A(x)‖ dx

)
− 1

)
,

which completes the proof (see Remark 3.6.6).

Schlesinger now turns his attention to the indefinite product integral. Recall that
if f ∈ L1([a, b]), then the indefinite integral

F (x) =
∫ x

a

f(t) dt, x ∈ [a, b]

is an absolutely continuous function and F ′(x) = f(x) a. e. on [a, b]. Before looking
at a product analogy of this theorem we state the following lemma.

Lemma 3.6.8. If A ∈ L∗([a, b],Rn×n), then

lim
h→0

1
h

∫ x+h

x

‖A(t)−A(x)‖ dt = 0

for almost all x ∈ (a, b).

Proof. If f ∈ L1([a, b]), then1

lim
h→0

1
h

∫ h

0
|f(x+ t)− f(x)|dt = 0

for almost all x ∈ (a, b) (every such x is called the Lebesgue point of f). Applying
this equality to the entries of A we obtain

lim
h→0

1
h

∫ x+h

x

‖A(t)−A(x)‖ dt = lim
h→0

1
h

∫ h

0
‖A(x+ t)−A(x)‖ dt = 0

for almost all x ∈ (a, b).

Theorem 3.6.9.2 If A ∈ L∗([a, b],Rn×n), then the indefinite integral

Y (x) = (I +A(t) dt)
x∏
a

.

satisfies Y −1(x)Y ′(x) = A(x) for almost all x ∈ [a, b].

Proof. According to the definition of derivative,

Y −1(x)Y ′(x) = lim
h→0

Y −1(x)Y (x+ h)− I
h

.

1 [IR], Theorem 6.3.2, p. 194
2 [LS1], p. 60–61
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We now prove that

lim
h→0+

Y −1(x)Y (x+ h)− I
h

= lim
h→0+

1
h

(
(I +A(t) dt)

x+h∏
x

−I
)

= A(x) (3.6.1)

for almost all x ∈ [a, b]; the procedure is similar for the limit from left. We estimate∥∥∥∥∥ 1
h

(
(I +A(t) dt)

x+h∏
x

−I
)
−A(x)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
h

(
(I +A(t) dt)

x+h∏
x

−eA(x)h

)∥∥∥∥∥+

+

∥∥∥∥∥ 1
h

∞∑
k=2

Ak(x)hk

k!

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
h

(
(I +A(t) dt)

x+h∏
x

−eA(x)h

)∥∥∥∥∥+ ‖A(x)‖2|h|e‖A(x)‖h

(3.6.2)
Since ‖A(x)‖ ≤M for some M ∈ R, the Corollary 3.4.3 yields∥∥∥∥∥ 1
h

(
(I +A(t) dt)

x+h∏
x

−eA(x)h

)∥∥∥∥∥ =

∥∥∥∥∥ 1
h

(
(I +A(t) dt)

x+h∏
x

−(I +A(x) dt)
x+h∏
x

)∥∥∥∥∥ ≤
≤ 1
|h| exp

(∫ x+h

x

‖A(x)‖dt

)(
exp

(∫ x+h

x

‖A(t)−A(x)‖ dt

)
− 1

)
=

= exp(‖A(x)‖h)
1
|h|

∞∑
k=1

1
k!

(∫ x+h

x

‖A(t)−A(x)‖ dt

)k
≤

≤ exp(Mh)

(
1
|h|

∫ x+h

x

‖A(t)−A(x)‖dt+ (2M)2h exp(2Mh)

)
. (3.6.3)

Equations (3.6.2), (3.6.3), and Lemma 3.6.8 imply Equation (3.6.1).

Remark 3.6.10. In the previous theorem we have tacitly assumed that the matrix

Y (x) = (I +A(t) dt)
x∏
a

is regular for every x ∈ [a, b]. Schlesinger proved it only for A ∈ R([a, b],Rn×n)
(see Corollary 3.2.6), but the proof is easily adjusted to A ∈ L∗([a, b],Rn×n):
If {Ak}∞k=1 is a uniformly bounded sequence of step functions such that Ak → A
a. e. on [a, b], then (using 3.2.4 and Lebesgue’s dominated convergence theorem)

det(I +A(t) dt)
b∏
a

= det lim
k→∞

(I +Ak(t) dt)
b∏
a

= lim
k→∞

det(I +Ak(t) dt)
b∏
a

=

= lim
k→∞

exp

(∫ b

a

TrAk(t) dt

)
= exp

(∫ b

a

TrA(t) dt

)
> 0.
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Theorem 3.6.11.1 If A ∈ L∗([a, b],Rn×n), then

(I +A(x) dx)
b∏
a

= I +
∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

A(x1) · · ·A(xk) dx1 · · · dxk

(where the integrals on the right side are taken in the sense of Lebesgue).

Proof. Let {Ak}∞k=1 be a uniformly bounded sequence of step functions such that
Ak → A a. e. on [a, b]. Every function Ak is associated with a partition

Dk : a = tk0 < tk1 < · · · < tkm(k) = b

such that
Ak(x) = Akj , x ∈ (tkj−1, t

k
j ).

According to the definition of Lebesgue product integral,

(I +A(x) dx)
b∏
a

= lim
k→∞

(I +Ak(x) dx)
b∏
a

= lim
k→∞

m(k)∏
j=1

exp(Akj∆tkj ).

Schlesinger proves2 first that the product integral might be also calculated as

(I +A(x) dx)
b∏
a

= lim
k→∞

m(k)∏
i=1

(I +Aki ∆tki ), (3.6.4)

provided that
lim
k→∞

ν(Dk) = 0 (3.6.5)

(which can be assumed without loss of generality); note that if (3.6.5) is not satis-
fied, (3.6.4) need not hold (consider A = Ak = I and the partitions a = tk0 < tk1 = b
for every k ∈ N). Schlesinger’s proof of (3.6.4) seems too complicated and even
faulty; we instead argue similarly as in the proof of Theorem 3.2.2: Take a positive
number M such ‖Ak(x)‖ ≤M for every k ∈ N and x ∈ [a, b]. Then∥∥exp(Akj∆tkj )− I −Akj∆tkj

∥∥ ≤ (M∆tkj )2eM∆tkj

for every k ∈ N and j = 1, . . . ,m(k). According to Lemma 3.2.1,∥∥∥∥∥∥
m(k)∏
j=1

exp(Akj∆tkj )−
m(k)∏
j=1

(I +Akj∆tkj )

∥∥∥∥∥∥ =

=

∥∥∥∥∥∥
m(k)∑
j=1

j−1∏
l=1

(I +Akl ∆tkl ) · (exp(Akj∆tkj )− I −Akj∆tkj ) ·
m(k)∏
l=j+1

exp(Akl ∆tkl )

∥∥∥∥∥∥ ≤
1 [LS2], p. 487
2 [LS2], p. 485–486
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≤ eM(b−a)
m(k)∑
j=1

∥∥exp(Akj∆tkj )− I −Akj∆tkj
∥∥ ≤ eM(b−a)M2

m(k)∑
j=1

(∆tkj )2eM∆tkj ≤

≤ eM(b−a)M2ν(Dk)eMν(Dk)
m(k)∑
j=1

∆tkj = eM(b−a)M2ν(Dk)eMν(Dk)(b− a).

This completes the proof of (3.6.4). Schlesinger now states that

m(k)∏
i=1

(I +Aki ∆tki ) = I +
m(k)∑
s=1

∑
1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis

and concludes the proof saying that

lim
k→∞

∑
1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis =

=
∫ b

a

∫ xs

a

· · ·
∫ x2

a

A(x1) · · ·A(xs) dx1 · · · dxs

The last step perhaps deserves a better explanation: Denote

Xs = {(x1, . . . , xs) ∈ Rs; a ≤ x1 < x2 < · · · < xs ≤ b},

and
Xs
k =

⋃
1≤i1<···<is≤m(k)

[ti1−1, ti1 ]× [ti2−1, ti2 ]× · · · × [tis−1, tis ],

where s and k are arbitrary positive integers. If χs and χsk denote the characteristic
functions of Xs and Xs

k, then χsk → χs for k →∞. Consequently

lim
k→∞

∑
1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis =

= lim
k→∞

∫ b

a

∫ b

a

· · ·
∫ b

a

Ak(x1) · · ·Ak(xs)χ
s
k(x1, . . . , xs) dx1 · · · dxs =

=
∫ b

a

∫ b

a

· · ·
∫ b

a

A(x1) · · ·A(xs)χ
s(x1, . . . , xs) dx1 · · · dxs =

=
∫ b

a

∫ xs

a

· · ·
∫ x2

a

A(x1) · · ·A(xs) dx1 · · · dxs

(we have used the dominated convergence theorem).

Remark 3.6.12. The deficiency in the previous proof is that Schlesinger didn’t
justify the equality

lim
k→∞

I +
m(k)∑
s=1

∑
1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis

 =
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I +
∞∑
s=1

lim
k→∞

 ∑
1≤i1<···<is≤m(k)

Aki1 · · ·Akis∆tki1 · · ·∆tkis

 .

We have already encountered a similar inaccuracy when discussing Volterra’s proof
of the Peano series expansion theorem for product integral; see also Masani’s proof
of Theorem 5.5.10.

Remark 3.6.13. Recall that, according to Theorem 2.3.5, the right derivative of
a matrix function satisfies

(CD−1)
d

dx
= D

(
C

d
dx
− D

d
dx

)
D−1.

Consider two continuous matrix functions A,B defined on [a, b]. Using the previous
formula and also the convention that

(I +A(t) dt)
x∏
y

=

(
(I +A(t) dt)

y∏
x

)−1

for y > x, we infer the equality(
(I +B(t) dt)

x∏
b

(I +A(t) dt)
b∏
x

)
d

dx
=

= (I +A(t) dt)
x∏
b

(B(x)−A(x))(I +A(t) dt)
b∏
x

for every x ∈ [a, b]. Denoting S(x) = (I +A(t) dt)
∏x
b we obtain(

(I +B(t) dt)
x∏
b

(I +A(t) dt)
b∏
x

)
d

dx
= S(x)(B(x)−A(x))S−1(x),

and consequently (since the left hand side is equal to I for x = b)

(I +B(t) dt)
x∏
b

(I +A(t) dt)
b∏
x

= (I + S(t)(B(t)−A(t))S−1(t) dt)
x∏
b

.

Substituting x = a and inverting both sides of the equation yields

(I +A(t) dt)
a∏
b

(I +B(t) dt)
b∏
a

= (I + S(t)(B(t)−A(t))S−1(t) dt)
b∏
a

. (3.6.6)

A similar theorem (concerning the left product integral) was already present in
Volterra’s work1. Schlesinger proves2 that the statement remains true even if A,
B ∈ L∗([a, b],Rn×n). The proof is rather technical and we don’t reproduce it here.

1 [VH], p. 85–86
2 [LS2], p. 488–489
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Theorem 3.6.14.1 Let A : [a, b]× [c, d]→ Rn×n be such that the integral

P (t) = (I +A(x, t) dx)
b∏
a

exists for every t ∈ [c, d] and that∥∥∥∥∂A∂t (x, t)

∥∥∥∥ ≤M, x ∈ [a, b], t ∈ [c, d],

for some M ∈ R. Then

P
d
dt

= P−1(t)P ′(t) =
∫ b

a

S(x, t)
∂A

∂t
(x, t)S−1(x, t) dx,

where S(x, t) = (I +A(u, t) du)
∏x
b .

Proof. The definition of derivative gives

P−1(t)P ′(t) = lim
h→0

1
h

(
(I +A(x, t) dx)

a∏
b

(I +A(x, t+ h) dx)
b∏
a

−I
)
.

Using Equation (3.6.6) we convert the above limit to

lim
h→0

1
h

(
(I + S(x, t)(A(x, t+ h)−A(x, t))S−1(x, t) dx)

b∏
a

−I
)
.

Expanding the product integral to Peano series (see Theorem 3.6.11) we obtain

lim
h→0

1
h

∞∑
k=1

∫ b

a

∫ xk

a

· · ·
∫ x2

a

∆(x1, t, h) · · ·∆(xk, t, h) dx1 · · · dxk, (3.6.7)

where
∆(x, t, h) = S(x, t)(A(x, t+ h)−A(x, t))S−1(x, t).

As the Peano series converges uniformly (the Weierstrass M-test, see Theorem
2.4.5), we can interchange the order of limit and summation. According to the
mean value theorem there is a ξ(h) ∈ [t, t+ h] such that∥∥∥∥A(x, t+ h)−A(x, t)

h

∥∥∥∥ =

∥∥∥∥∂A∂t (x, ξ(h))

∥∥∥∥ ≤M.

The dominated convergence theorem therefore implies

lim
h→0

1
h

∫ b

a

∆(x1, t, h) dx1 =
∫ b

a

lim
h→0

∆(x1, t, h)
h

dx1 =

1 [LS2], p. 490–491
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=
∫ b

a

S(x1, t)
∂A

∂t
(x1, t)S

−1(x1, t) dx1,

and for k ≥ 2

lim
h→0

1
h

∫ b

a

∫ xk

a

· · ·
∫ x2

a

∆(x1, t, h) · · ·∆(xk, t, h) dx1 · · · dxk =

=
∫ b

a

∫ xk

a

· · ·
∫ x2

a

lim
h→0

(
hk−1 ∆(x1, t, h)

h
· · · ∆(xk, t, h)

h

)
dx1 · · · dxk = 0,

which completes the proof.

The following statement generalizes Theorem 2.5.12; Schlesinger replaces Volterra’s
assumption A ∈ C([a, b],Rn×n) by a weaker condition A ∈ L∗([a, b],Rn×n).

Theorem 3.6.15.1 If A ∈ L∗([a, b],Rn×n) and C ∈ Rn×n is a regular matrix,
then

(I + C−1A(x)C dx)
b∏
a

= C−1(I +A(x) dx)
b∏
a

C.

Proof. Since (C−1AC)k = C−1AkC for every k ∈ N, we have

exp(C−1AC) = C−1 exp(A)C.

If A is a step function, then

(I + C−1A(x)C dx)
b∏
a

=
m∏
i=1

eC
−1A(ξi)C∆ti =

= C−1
m∏
i=1

eA(ξi)∆tiC = C−1(I +A(x) dx)
b∏
a

C.

In the general case when A ∈ L∗([a, b],Rn×n), we rewrite the above equation with
simple functions Ak in place of A, and then pass to the limit k →∞.

3.7 Double and contour product integrals
A considerable part of the paper [LS2] is devoted to double and contour product
integrals (in R2 as well as in C). Probably the most remarkable achievement is
Schlesinger’s proof of the “Green’s theorem” for product integral, which is repro-
duced in the following text.

Definition 3.7.1. Let G be the rectangle [a, b]× [c, d] in R2 and A : G→ Rn×n a
matrix function on G. The double product integral of A over G is defined as

(I +A(x, y) dxdy)
∏
G

=

(
I +

(∫ b

a

A(x, y) dx

)
dy

)
d∏
c

,

1 [LS2], p. 489
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provided both integrals on the right hand side exist (in the sense of Lebesgue).

Definition 3.7.2. Let G be the rectangle [a, b]× [c, d] in R2 and P,Q : G→ Rn×n

continuous functions on G. We denote

U(x, y) = (I + P (t, c) dt)
x∏
a

(I +Q(x, t) dt)
y∏
c

,

T (x, y) = (I +Q(a, t) dt)
y∏
c

(I + P (t, y) dt)
x∏
a

for every x ∈ [a, b], y ∈ [c, d]. The contour product integral over the boundary of
rectangle G is defined as the matrix

(I + P (x, y) dx+Q(x, y) dy)
∏
∂G

= U(b, d)T (b, d)−1. (3.7.1)

Remark 3.7.3. Schlesinger refers to the matrices U(b, d) and T (b, d) as to the
“integral over the lower step” and “integral over the upper step” of the rectangle G.
They are clearly a special case of the contour product integral as defined by Volterra
(see definition 2.6.8); the matrix (3.7.1) corresponds to the value of contour product
integral along the (anticlockwise oriented) boundary of G.

Theorem 3.7.4.1 Let G be the rectangle [a, b]× [c, d] in R2 and P,Q : G→ Rn×n

continuous matrix functions on G. Assume that the derivatives

∂P

∂y
,

∂Q

∂x

exist and are continuous on G. Then

(I + P (x, y) dx+Q(x, y) dy)
∏
∂G

=(I + T ·∆∗(P,Q) · T−1 dxdy)
∏
G

,

where

∆∗(P,Q) =
∂Q

∂x
− ∂P

∂y
+ PQ−QP,

T (x, y) = (I +Q(a, t) dt)
y∏
c

(I + P (t, y) dt)
x∏
a

.

Proof. A simple calculation reveals that (compare to Lemma 2.6.4)

T ·∆∗(P,Q) · T−1 =
∂

∂x

(
T

(
Q− T d

dy

)
T−1

)
.

1 [LS2], p. 496–497
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Taking the product integral over G we obtain

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏
G

=

=

(
I +

[
T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1

]b
a

dy

)
d∏
c

. (3.7.2)

According to the rules for differentiating a product of functions (see Theorem 2.3.2),

T
d
dy

= (I + P (t, y) dt)
a∏
x

Q(a, y)(I + P (t, y) dt)
x∏
a

+

(
(I + P (t, y) dt)

x∏
a

)
d
dy
.

Theorem 3.6.14 on differentiating the product integral with respect to a parameter
yields

lim
x→a

(
(I + P (t, y) dt)

x∏
a

)
d
dy

= 0,

and consequently

lim
x→a

T
d
dy

= Q(a, y). (3.7.3)

The equalities (3.7.2) and (3.7.3) imply

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏
G

=

=

(
I + lim

x→b

(
T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1

)
dy

) d∏
c

=

= lim
x→b

(
I + T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1dy

) d∏
c

(3.7.4)

(we have used Theorem 3.6.3 on interchanging the order of limit and integral). For
every x ∈ [a, b] we have

T (x, y)
d
dy

=
(
T (x, d)−1T (x, y)

) d
dy

and also

T (x, d)−1T (x, y) =

(
I + T (x, u)

d
du

du

) y∏
d

=

(
I +

(
T (x, d)−1T (x, u)

) d
du

du

) y∏
d

.

Using Theorem 3.6.15 and Equation (3.6.6) we arrive at(
I + T (x, y)

(
Q(x, y)− T (x, y)

d
dy

)
T (x, y)−1dy

) d∏
c

= T (x, d)·
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·
(
I + T (x, d)−1T (x, y)

(
Q(x, y)−

(
T (x, d)−1T (x, y)

) d
dy

)
T (x, y)−1T (x, d) dy

) d∏
c

·

·T (x, d)−1 = T (x, d)

(
I +

(
T (x, d)−1T (x, y)

) d
dy

dy

) c∏
d

·

·(I +Q(x, y) dy)
d∏
c

T (x, d)−1 = T (x, d)T (x, d)−1T (x, c)(I +Q(x, y) dy)
d∏
c

·

·T (x, d)−1 = T (x, c)(I +Q(x, y) dy)
d∏
c

T (x, d)−1.

Finally, Equation (3.7.4) gives

(I + T ·∆∗(P,Q) · T−1 dxdy)
∏
G

= lim
x→b

(
T (x, c)(I +Q(x, y) dy)

d∏
c

T (x, d)−1

)
=

= T (b, c)(I +Q(b, y) dy)
d∏
c

T (b, d)−1 = (I + P (x, y) dx+Q(x, y) dy)
∏
∂G

.

Remark 3.7.5. The previous theorem represents an analogy of Green’s theorem
for the product integral; we have already encountered a similar statement when
discussing Volterra’s work. Volterra’s analogy of the curl operator was

∆(P,Q) =
∂Q

∂x
− ∂P

∂y
+QP − PQ,

while Schlesinger’s curl has the form

∆∗(P,Q) =
∂Q

∂x
− ∂P

∂y
+ PQ−QP.

The reason is that Volterra stated his theorem for the left product integral, while
Schlesinger was concerned with the right product integral (see Theorem 2.6.15 and
Remark 2.6.7). Whereas Volterra worked with a simply connected domain G (see
definition 2.6.12), Schlesinger considers only rectangles.

Consider functions P , Q that satisfy assumptions of Theorem 3.7.4 and such that

∆∗(P,Q) = 0 (3.7.5)

everywhere in G. Then

(I + P (x, y) dx+Q(x, y) dy)
∏
∂G

= I,
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which in consequence means that the values of contour product integral over the
lower step and over the upper step are the same. Schlesinger then denotes the
common value of the matrices U(x, y) and T (x, y) (see definition 3.7.2) by the
symbol

(I + P (x, y) dx+Q(x, y) dy)
(b,d)∏
(a,c)

.

Clearly (I + P (u, v) du+Q(u, v) dv)
(x,y)∏
(a,c)

 d
dx

= T (x, y)
d

dx
= P (x, y),

(I + P (u, v) du+Q(u, v) dv)
(x,y)∏
(a,c)

 d
dy

= U(x, y)
d
dy

= Q(x, y).

Schlesinger now proceeds to define product integral along a contour and shows
that (in a simply connected domain) the condition (3.7.5) implies that the value
of product integral depends only on the endpoints of the contour. His method is
almost the same as Volterra’s and we don’t repeat it here.

At the end of paper [LS2] Schlesinger treats matrix functions of a complex variable.
He defines the contour product integral in complex domain and recapitulates the
results proved earlier by Volterra (theorems 2.7.4, 2.7.7, and 2.7.6).

3.8 Generalization of Schlesinger’s definition

Thanks to the definition proposed by Ludwig Schlesinger it is possible to extend
the class of product integrable functions and to work with bounded measurable
functions instead of Riemann integrable functions. At this place we remind the
notation

L∗([a, b],Rn×n) =
{
A : [a, b]→ Rn×n; A is measurable and bounded

}
.

Schlesinger was aware that his definition might be extended to all matrix functions
with Lebesgue integrable (not necessarily bounded) entries, i. e. to the class

L([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (L)

∫ b

a

‖A(t)‖ dt <∞
}
,

where the symbol (L) emphasizes that we are dealing with the Lebesgue integral.
Clearly L∗ ⊂ L. If {Ak}∞k=1 is a uniformly bounded sequence of functions which
converge to A almost everywhere, then according to lemma 3.5.4

lim
k→∞

‖Ak −A‖1 = lim
k→∞

∫ b

a

‖Ak(x)−A(x)‖dx = 0,
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i.e. Ak converge to A also in the norm of space L([a, b],Rn×n). Taking account of
Theorem 3.5.5 it is natural to state the following definition.

Definition 3.8.1. A function A : [a, b] → Rn×n is called product integrable if
there exists a sequence of step functions {Ak}∞k=1 such that

lim
k→∞

‖Ak −A‖1 = 0.

We define

(I +A(t) dt)
b∏
a

= lim
k→∞

(I +Ak(t) dt)
b∏
a

.

Remark 3.8.2. The correctness of the previous definition is ensured by theorem
3.5.5. Since step functions belong to the space L([a, b],Rn×n), which is complete,
every product integrable function also belongs to this space. Moreover, step func-
tions form a dense subset in this space1, and therefore (I + A(t) dt)

∏b
a exists iff

A ∈ L([a, b],Rn×n), i. e. iff the integral (L)
∫ b
a
A(t) dt exists.

Interested readers are referred to the book [DF] for more details about the theory
of product integral based on definition 3.8.1. As an interesting example we present
the proof of theorem on differentiating the product integral with respect to the
upper bound of integration. We start with a preliminary lemma (which follows also
from Theorem 3.3.2, but we don’t want to use it as we are seeking another way to
prove it).

Lemma 3.8.3. If A : [a, b]→ Rn×n is a step function, then

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Proof. There exist a partition a = t0 < t1 < · · · < tm = b and matrices
A1, . . . , Am ∈ Rn×n such that

A(x) = Ak, x ∈ (tk−1, tk).

Then

Y (x) = (I +A(t) dt)
x∏
a

= eA1(t2−t1) · · · eAk−1(tk−1−tk−2)eAk(x−tk−1)

for every x ∈ [tk−1, tk]. The function Y is continuous on [a, b] and differentiable
except a finite number of points; we have

Y ′(x) = Y (x)A(x) (3.8.1)

1 [RG], Corollary 3.29, p. 47
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for x ∈ [a, b]\{t0, t1, . . . , tm}. This implies

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b].

Theorem 3.8.4.1 Consider function A ∈ L([a, b],Rn×n). For every x ∈ [a, b] the
integral

Y (x) = (I +A(t) dt)
x∏
a

(3.8.2)

exists and the function Y satisfies the equation

Y (x) = I +
∫ x

a

Y (t)A(t) dt, x ∈ [a, b]. (3.8.3)

Proof. Let Ak : [a, b]→ Rn×n, k ∈ N be a sequence of step functions such that

lim
k→∞

‖Ak −A‖1 = lim
k→∞

∫ b

a

‖Ak(t)−A(t)‖ dt = 0. (3.8.4)

Then clearly

lim
k→∞

∫ x

a

‖Ak(t)−A(t)‖ dt = 0, x ∈ [a, b],

i. e. the definition (3.8.2) is correct. Denote

Yk(x) = (I +Ak(t) dt)
x∏
a

.

Because Ak are step functions, Lemma 3.8.3 implies

Yk(x) = I +
∫ x

a

Yk(t)Ak(t) dt, x ∈ [a, b]. (3.8.5)

According to Corollary 3.4.3,

‖Yl(x)− Ym(x)‖ ≤ exp

(∫ b

a

‖Al(t)‖ dt

)(
exp

(∫ b

a

‖Al(t)−Am(t)‖ dt

)
− 1

)
=

= exp ‖Al‖1 (exp ‖Al(t)−Am(t)‖1 − 1) .

From Equation (3.8.4) we see that {Ak}∞k=1 is a bounded and Cauchy sequence
with respect to the norm ‖ · ‖1. The previous inequality therefore implies that Yk
converge uniformly to Y , i. e.

‖Yk − Y ‖∞ = sup
x∈[a,b]

‖Yk(x)− Y (x)‖ → 0 pro k →∞.

1 [DF], p. 54–55
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We now estimate∥∥∥∥∫ x

a

Yk(t)Ak(t) dt−
∫ x

a

Y (t)A(t) dt

∥∥∥∥ ≤ ‖YkAk − Y A‖1 ≤
≤ ‖(Yk − Y )Ak‖1 + ‖Y (Ak −A)‖1 ≤ ‖Ak‖1‖Yk − Y ‖∞ + ‖(Ak −A)‖1‖Y ‖∞,

and consequently

lim
k→∞

∫ x

a

Yk(t)Ak(t) dt =
∫ x

a

Y (t)A(t) dt.

The equality (3.8.3) is obtained by passing to the limit in equation (3.8.5).

Corollary 3.8.5. If A ∈ L([a, b],Rn×n), then the function

Y (x) = (I +A(t) dt)
x∏
a

, x ∈ [a, b],

is absolutely continuous on [a, b] and

Y (x)−1 · Y ′(x) = A(x)

almost everywhere on [a, b].

Remark 3.8.6. In our proof of the previous theorem we have employed Schlesin-
ger’s estimate from Corollary 3.4.3, whose proof is somewhat laborious. The authors
of [DF] instead make use of a different inequality, which is easier to demonstrate.
Let A, B : [a, b]→ Rn×n be two step functions. Denoting

Y (x) = (I +A(t) dt)
x∏
a

, Z(x) = (I +B(t) dt)
x∏
a

,

we see that the function Y Z−1 is continuous on [a, b] and differentiable except a
finite number of points. Using Equation (3.8.1) we calculate

(Y Z−1)′ = Y ′Z−1 + Y (Z−1)′ = Y Y −1Y ′Z−1 − Y Z−1Z ′Z−1 = Y (A−B)Z−1,

and consequently

Y (x)Z−1(x) = I +
∫ x

a

(Y Z−1)′(t) dt = I +
∫ x

a

Y (t)(A(t)−B(t))Z−1(t) dt.

Multiplying this equation by Z from right and substituting x = b we obtain∥∥∥∥∥(I +A(t) dt)
b∏
a

−(I +B(t) dt)
b∏
a

∥∥∥∥∥ = ‖Y (b)− Z(b)‖ ≤

≤
∫ b

a

‖Y (t)‖ · ‖A(t)−B(t)‖ · ‖Z−1(t)‖ dt · ‖Z(b)‖ ≤ e2‖B‖1e‖A‖1‖A−B‖1

(we have used Lemma 3.4.1 to estimate ‖Y (t)‖, ‖Z−1(t)‖ and ‖Z(b)‖). The meaning
of the last inequality is similar to the meaning of inequality from Corollary 3.4.3:
“If two step functions A, B are close with respect to the norm ‖·‖1, then the values
of their product integrals are also close to each other.”
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Chapter 4

Operator-valued functions

In the previous chapters we have encountered various definitions of product integral
of a matrix function A : [a, b] → Rn×n. It is known that every n × n matrix
represents a linear transformation on the space Rn, and that the composition of
two linear transformations corresponds to multiplication of their matrices.

It is thus natural to ask whether it is possible to define the product integral of a
function A defined on [a, b] whose values are operators on a certain (possibly infinite-
dimensional) vector space X. This pioneering idea (although in a less general scope)
can be already found in the second part of the book [VH] written by Bohuslav
Hostinský. He studies certain special linear operators on the space of continuous
functions (he calls them “linear functional transformations”) and calculates their
product integrals as well as their left and right derivatives. Hostinský imagines a
function as a vector with infinitely many coordinates; the linear operator on Rn

given by

yi =
n∑
j=1

aijxj

then goes over to the operator on continuous functions given by

y(t) =
∫ q

p

A(t, u)x(u) du.

This idea was not a new one – already Volterra noted1 that integral equations can be
treated as limiting cases of systems of linear algebraic equations. His observation
was also later used by Ivar Fredholm, who obtained the solution of an integral
equation as a limit of the solutions of linear algebraic equations.

Bohuslav Hostinský was born on the 5th December 1884 in Prague. He stud-
ied mathematics and physics at the philosophical faculty of Charles University in
Prague and obtained his doctoral degree in 1907 (his dissertation thesis was devoted
to geometry). He spent a short time as a high school teacher and visited Paris in
1908–09 (he cooperated especially with Gaston Darboux). Since 1912 he gave lec-
tures as privatdozent at the philosophical faculty in Prague and was promoted to
professor of theoretical physics at the faculty of natural sciences in Brno in 1920;
he held this position until his death on the 12th April 1951.

1 [Kl], Chapter 45
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Bohuslav Hostinský1

Hostinský initially devoted himself to pure mathematics, especially to differential
geometry. However, his interest gradually moved to theoretical physics, in particu-
lar to the kinetic theory of gases (being influenced mainly by Borel, Ehrenfest and
Poincaré). Of course, this discipline requires a good knowledge of probability the-
ory; Hostinský is considered one of the pioneers of the theory of Markov processes
and their application in physics. Apart from that he also worked on differential
and integral equations and is known for his critical attitude towards the theory of
relativity. A good overview of the life and work of Bohuslav Hostinský is given in
[Ber].

4.1 Integral operators
In the following discussion we focus our attention to the space C([p, q]) of continuous
functions defined on [p, q]. Every mapping T : C([p, q]) → C([p, q]) is called an
operator on C([p, q]); we will often write Tf instead of T (f). The operator is called
linear if

T (af1 + bf2) = aT (f1) + bT (f2)

for each pair of functions f1, f2 ∈ C([p, q]) and each pair of numbers a, b ∈ R. The
inverse operator of T , which is denoted by T−1, satisfies

T−1(T (f)) = T (T−1(f)) = f (4.1.1)

for every function f ∈ C([p, q]); note that the inverse operator need not always
exist. The last equation can be shortened to

T−1 · T = T · T−1 = I,

1 Photo provided by Tomáš Hostinský
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where · denotes the composition of operators and I is the identity operator, which
satisfies If = f for every function f .

Bohuslav Hostinský was concerned especially with integral operators of the first
kind

Tf(x) =
∫ q

p

K(x, y)f(y) dy

and with the operators of the second kind

Tf(x) = f(x) +
∫ q

p

K(x, y)f(y) dy,

where the function K (the so-called kernel) is continuous on [p, q] × [p, q]. Thus
if f ∈ C([p, q]), then also Tf ∈ C([p, q]). These operators play an important role
in the theory of integral equations and have been studied by Vito Volterra, Ivar
Fredholm, David Hilbert and others since the end of the 19th century (see [Kl],
Chapter 45).

Hostinský starts1 with a recapitulation of the basic properties of the integral oper-
ators. If K(x, y) = 0 for y > x, we obtain either the Volterra operator of the first
kind

Tf(x) =
∫ x

p

K(x, y)f(y) dy,

or the Volterra operator of the second kind

Tf(x) = f(x) +
∫ x

p

K(x, y)f(y) dy.

Composition of two integral operators of the second kind

T1f(x) = f(x) +
∫ q

p

K1(x, y)f(y) dy,

T2f(x) = f(x) +
∫ q

p

K2(x, y)f(y) dy,

produces another operator of the second kind

(T2 · T1)f(x) = f(x) +
∫ q

p

J(x, y)f(y) dy,

whose kernel is

J(x, y) = K1(x, y) +K2(x, y) +
∫ q

p

K2(x, z)K1(z, y) dz. (4.1.2)

1 [VH], p. 182–186
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An important question is the existence of inverse operators (which corresponds to
solvability of the corresponding integral equations). The Volterra operator of the
second kind always has an inverse operator

T−1f(x) = f(x) +
∫ x

p

N(x, y)f(y) dy,

which is again a Volterra operator of the second kind whose kernel N(x, y) (usually
called the resolvent kernel) can be found using the method of successive approx-
imations. Several sufficient conditions are known for the existence of the inverse
operator to the Fredholm operator of the second kind; we do not dwell into the
details and only mention that the inverse operator is again a Fredholm operator of
the second kind

T−1f(x) = f(x) +
∫ q

p

N(x, y)f(y) dy,

with a kernel N(x, y). Equations (4.1.1) and (4.1.2) imply that the kernel satisfies

K(x, y) +N(x, y) = −
∫ q

p

K(x, t)N(t, y) dt = −
∫ q

p

N(x, t)K(t, y) dt. (4.1.3)

Generally, the operators of the first kind need not have an inverse operator.

4.2 Product integral of an operator-valued function

We now assume that the integral operator kernel depends on a parameter u ∈ [a, b]:

T (u)f(x) = f(x) +
∫ q

p

K(x, y, u)f(y) dy

Thus T is a function defined on [a, b] whose values are operators on (C([p, q])).
Hostinský now proceeds1 to calculate its left derivative. He doesn’t state any def-
inition, but his calculation follows Volterra’s definition of the left derivative of a
matrix function. Assume that K is continuous on [p, q]× [p, q]× [a, b] and that the
derivative

∂K

∂u
(x, y, u)

exists and is continuous for every u ∈ [a, b] and x, y ∈ [p, q]. We choose a partic-
ular u ∈ [a, b] and assume that the inverse operator T−1(u) exists. According to
Equation (4.1.2), the kernel of the operator T (u+ ∆u) · T−1(u) is

J(x, y, u,∆u) = K(x, y, u+ ∆u) +N(x, y, u) +
∫ q

p

K(x, t, u+ ∆u)N(t, y, u) dt =

= K(x, y, u+ ∆u)−K(x, y, u) +K(x, y, u) +N(x, y, u)+

1 [VH], p. 186–188
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+
∫ q

p

K(x, t, u+ ∆u)N(t, y, u) dt =

= K(x, y, u+ ∆u)−K(x, y, u) +
∫ q

p

(K(x, t, u+ ∆u)−K(x, t, u))N(t, y, u) dt

(we have used Equation (4.1.3)). Denote

M(x, y, u) = lim
∆u→0

J(x, y, u,∆u)
∆u

=

=
∂K

∂u
(x, y, u) +

∫ q

p

∂K

∂u
(x, t, u)N(t, y, u) dt. (4.2.1)

According to Bohuslav Hostinský, the left derivative of T at u is an operator of the
second kind whose kernel is M(x, y, u). By a similar method he deduces that the
right derivative of T at u is an operator of the second kind with the kernel

M∗(x, y, u) =
∂K

∂u
(x, y, u) +

∫ q

p

N(x, t, u)
∂K

∂u
(t, y, u) dt.

These statements are somewhat confusing, because the left derivative should be the
operator

lim
∆u→0

T (u+ ∆u) · T−1(u)− I
∆u

,

which is an operator of the first kind with kernel M(x, y, u). Similarly, the right
derivative should be rather

lim
∆u→0

T−1(u) · T (u+ ∆u)− I
∆u

,

i.e. an operator of the first kind with kernel M∗(x, y, u).

The next problem tackled by Hostinský is the calculation of the left integral of the
operator-valued function

T (u)f(x) = f(x) +
∫ q

p

K(x, y, u)f(y) dy.

We again assume that the function K is continuous on [p, q] × [p, q] × [a, b]. As in
the case of derivatives, Hostinský provides no definition and starts1 directly with
the calculation, which is again somewhat strange: He chooses a tagged partition
D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti], and forms the operator

T (ξm)∆tm · · ·T (ξ1)∆t1,

1 [VH], p. 188–191
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where ∆ti = ti − ti−1. He now claims it is an operator of the second kind, which
is not true. The correct procedure that he probably has in mind is to take the
operator-valued function

S(u)f(x) =
∫ q

p

K(x, y, u)f(y) dy

and to form the operator

P (S,D) = (I + S(ξm)∆tm) · · · (I + S(ξ1)∆t1),

which is an operator of the second kind with the kernel

m∑
s=1

∑
1≤i1<···<is≤m

∫ q

p

· · ·
∫ q

p

K(x, z1, ξis) · · ·K(zs−1, y, ξi1)∆tis · · ·∆ti1 dz1 · · · dzs−1

(we have used Equation (4.1.2)). Passing to the limit for ν(D) → 0 we calculate
that the left product integral of the function S is an operator of the second kind
with the kernel

L(x, y, a, b) = (4.2.2)

=
∞∑
s=1

∫ q

p

· · ·
∫ q

p

∫ b

a

∫ ts

a

· · ·
∫ t2

a

K(x, z1, ts) · · ·K(zs−1, y, t1) dt1 · · · dts dz1 · · · dzs−1.

In a similar way can calculate the right product integral of S, which is obtained as
the limit of operators

P ∗(S,D) = (I + S(ξ1)∆t1) · · · (I + S(ξm)∆tm)

for ν(D)→ 0; the result is an operator of the second kind with the kernel

R(x, y, a, b) = (4.2.3)

=
∞∑
s=1

∫ q

p

· · ·
∫ q

p

∫ b

a

∫ ts

a

· · ·
∫ t2

a

K(x, z1, t1) · · ·K(zs−1, y, ts) dt1 · · · dts dz1 · · · dzs−1.

In analogy with product integrals of matrix functions we use the symbols

b∏
a

(I + S(t) dt) and (I + S(t) dt)
b∏
a

to denote the left and right product integrals, respectively. Let us briefly summarize
their properties:

If the operator-valued function S is defined on [a, c] and b ∈ [a, c], then1

c∏
a

(I + S(t) dt) =
c∏
b

(I + S(t) dt) ·
b∏
a

(I + S(t) dt).

1 [VH], p. 193
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The left side of the last equality represents an operator of the second kind whose
kernel is L(x, y, a, c), while the right side is a composition of two second-kind oper-
ators with kernels L(x, y, a, b) and L(x, y, b, c). Thus according to Equation (4.1.2)
we have

L(x, y, a, c) = L(x, y, a, b) + L(x, y, b, c) +
∫ q

p

L(x, z, b, c)L(z, y, a, b) dz. (4.2.4)

Similarly, the right integral satisfies

(I + S(t) dt)
c∏
a

= (I + S(t) dt)
b∏
a

· (I + S(t) dt)
c∏
b

,

and we consequently

R(x, y, a, c) = R(x, y, a, b) +R(x, y, b, c) +
∫ q

p

R(x, z, a, b)R(z, y, b, c) dz. (4.2.5)

Hostinský next demonstrates1 that the derivative and the integral are reverse op-
erations; this means that if we consider the left (right) integral as a function of its
upper bound, then its left (right) derivative is the original function.
If f is an arbitrary continuous function, then

lim
c→b

∫ c

b

f = f(b).

Using this result and the definition of L we conclude

lim
c→b

L(x, y, b, c)
c− b = K(x, y, b)

(the series in the definition of L is uniformly convergent and we can interchange
the order of limit and summation). Consequently, Equation (4.2.4) gives

∂L(x, y, a, b)
∂b

= lim
c→b

L(x, y, a, c)− L(x, y, a, b)
c− b =

= lim
c→b

1
c− b

(
L(x, y, b, c) +

∫ q

p

L(x, z, b, c)L(z, y, a, b) dz

)
=

= K(x, y, b) +
∫ q

p

K(x, z, b)L(z, y, a, b) dz.

If NL(x, y, a, b) is the resolvent kernel corresponding to L(x, y, a, b), then, according
to Equation (4.2.1), the left derivative of the left integral of function S is an operator
of the first kind with kernel

∂L

∂b
(x, y, a, b) +

∫ q

p

∂L

∂b
(x, t, a, b)NL(t, y, a, b) dt =

1 [VH], p. 199–200
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= K(x, y, b) +
∫ q

p

K(x, z, b)L(z, y, a, b) dz+

+
∫ q

p

(
K(x, t, b) +

∫ q

p

K(x, z, b)L(z, t, a, b) dz

)
NL(t, y, a, b) dt = K(x, y, b)

(we have applied Equation (4.1.3) to functions L and NL), which completes the
proof.

Finally let us note that in case when S is a constant function, i.e. if the kernel K
does not depend on u, we obtain

L(x, y, a, b) = R(x, y, a, b) =
∞∑
s=1

(b− a)s

s!
Ks(x, y), (4.2.6)

where

Ks(x, y) =
∫ q

p

· · ·
∫ q

p

K(x, z1)K(z1, z2) · · ·K(zs−1, y) dz1 · · · dzs−1.

Remark 4.2.1. There exists a close relationship between the formulas derived by
Hostinský and those obtained by Volterra. Recall that if A : [a, b] → Rn×n is a
continuous matrix function, then

b∏
a

(I +A(t) dt) = I + L(a, b),

where L(a, b) is a matrix with components

Lij(a, b) =
∞∑
s=1

 n∑
z1,...,zs−1=1

∫ b

a

∫ ts

a

· · ·
∫ t2

a

ai,z1(ts) · · · azs−1,j(t1) dt1 · · · dts

 .

This resembles Equation (4.2.2) – the only difference is that in (4.2.2) we integrate
over interval [p, q] instead of taking a sum over {1, . . . , n}. Similarly, the right
integral of a matrix function satisfies

(I +A(t) dt)
b∏
a

= I +R(a, b),

where

Rij(a, b) =
∞∑
s=1

 n∑
z1,...,zs−1=1

∫ b

a

∫ ts

a

· · ·
∫ t2

a

ai,z1(t1) · · · azs−1,j(ts) dt1 · · · dts

 ,

which is an analogy of Equation (4.2.3).
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Also the formula

c∏
a

(I +A(t) dt) =
c∏
b

(I +A(t) dt)
b∏
a

(I +A(t) dt)

implies
I + L(a, c) = (I + L(b, c))(I + L(a, b)),

i.e. the components satisfy

Lij(a, c) = Lij(a, b) + Lij(b, c) +
n∑
z=1

Li,z(b, c)Lz,j(a, b).

In a similar way we obtain that the components of the right integral satisfy

Rij(a, c) = Rij(a, b) +Rij(b, c) +
n∑
z=1

Ri,z(a, b)Rz,j(b, c).

These relations resemble Equations (4.2.4) and (4.2.5).

Remark 4.2.2. Product integration of operator-valued functions can be used to
solve certain integro-differential equations. Hostinský considers1 the equation

∂f

∂t
(x, t) =

∫ q

p

K(x, y)f(y, t) dt,

whose kernel is independent of t; as he remarks, its solution was found by Volterra
(without using product integration) in 1914. More generally, we can consider the
integro-differential equation

∂f

∂t
(x, t) =

∫ q

p

K(x, y, t)f(y, t) dt

with the initial condition

f(x, t0) = f0(x), x ∈ [p, q].

This equation can be rewritten using the operator notation to

∂f

∂t
(t) = S(t)f(t),

where S(t) is an integral operator of the first kind for every t. Thus, for small ∆t
we have

f(t+ ∆t) = f(t) + ∆tS(t)f(t) = (I + S(t)∆t)f(t).

1 [VH, p. 192]
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Arguing similarly as in the case of matrix functions, we conclude that

f(t) =
t∏
t0

(I + S(u) du)f0,

i.e.

f(x, t) = f0(x) +
∫ q

p

L(x, y, t0, t)f0(y) dt.

However, the effort of Bohuslav Hostinský is not primarily directed towards integro-
differential equations. He shows that the right product integral kernel R(x, y, a, b)
can be used to obtain the solution of a certain differential equation known from the
work of Jacques Hadamard.
The last chapter of [VH] is devoted to integral operators of the first kind. By an
appropriate choice of the kernel, Hostinský is able to produce infinitesimal operators
of the first kind, i.e. operators that differ infinitesimally from the identity operator
(thus the kernel is something like the Dirac δ-function). The composition of such
infinitesimal operators leads to an operator whose kernel K provides a solution of
the equation

K(x, y, u, v) =
∫ q

p

K(x, z, u, w)K(z, y, w, v) dz.

This equation is known as the Chapman or Chapman-Kolmogorov equation and
is often encountered in the theory of stochastic processes (see also Section 1.4 and
Equation (1.4.7), which represents a discrete version of the Chapman equation).
The topic is rather special and we don’t discuss it here.

4.3 General definition of product integral

Although Hostinský is interested only in integral operators on the space C([p, q]),
it is possible to work more generally with linear operators on an arbitrary Banach
space X. Before proceeding to the corresponding definitions we recall that the
norm of a linear operator T on the space X is defined as

‖T‖ = sup{‖T (x)‖; ‖x‖ = 1}.

Let L(X) denote the space of all bounded linear operators on X, i.e. operators
whose norm is finite; L(X) is a normed vector space.

Definition 4.3.1. Let X be a Banach space, A : [a, b]→ L(X), t ∈ [a, b]. Assume
that A(t)−1 exists. We define the left and right derivatives of A at t as

d
dt
A(t) = lim

h→0

A(t+ h)A(t)−1 − I
h

,

A(t)
d
dt

= lim
h→0

A(t)−1A(t+ h)− I
h

,
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provided the limits exist. Of course, at the endpoints of [a, b] we require only the
existence of the corresponding one-sided limits.

To every function A : [a, b]→ L(X) and every tagged partition

D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti],

we assign the operators

P (A,D) =
1∏

i=m

(I +A(ξi)∆ti) = (I +A(ξm)∆tm) · · · (I +A(ξ1)∆t1),

P ∗(A,D) =
m∏
i=1

(I +A(ξi)∆ti) = (I +A(ξ1)∆t1) · · · (I +A(ξm)∆tm).

Definition 4.3.2. Consider function A : [a, b]→ L(X). The left and right product
integrals of A are the operators

b∏
a

(I +A(t) dt) = lim
ν(D)→0

P (A,D),

(I +A(t) dt)
b∏
a

= lim
ν(D)→0

P ∗(A,D),

provided the limits exist.

Example 4.3.3. Recall that for every A ∈ L(X) we define the exponential eA ∈
L(X) by

eA =
∞∑
n=0

An

n!
,

where A0 = I is the identity operator, A1 = A and An+1 = An ·A for every n ∈ N.
It can be proved (see Theorem 5.5.11) that

b∏
a

(I +A dt) = (I +Adt)
b∏
a

= eA(b−a)

(the special case for integral operators with a constant kernel follows also from
Equation (4.2.6)).

We state the next theorem without proof; a more general version will be proved in
Chapter 5 (see Theorem 5.6.2).

Theorem 4.3.4. Let A : [a, b] → L(X) be a continuous function. Then the
functions

Y (t) =
t∏
a

(I +A(u) du),
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Z(t) = (I +A(u) du)
t∏
a

satisfy
d
dt
Y (t) = A(t), Z(t)

d
dt

= A(t)

for every t ∈ [a, b].

Definition 4.3.2 represents a straightforward generalization of the Riemann product
integral as defined by Volterra. In the following chapter we provide an even more
general definition applicable to functions A : [a, b] → X, where X is a Banach
algebra. It is also possible to proceed in a different way and try to generalize the
Lebesgue product integral from Chapter 3; the following paragraphs outline this
possibility.

Definition 4.3.5. A function A : [a, b] → L(X) is called a step function if there
exists a partition a = t0 < t1 < · · · < tm = b and operators A1, . . . , Am ∈ L(X)
such that A(t) = Ai for t ∈ (ti−1, ti), i = 1, . . . ,m. For such a step function we
define

b∏
a

(I +A(t) dt) =
1∏

i=m

eAi(ti−ti−1),

(I +A(t) dt)
b∏
a

=
m∏
i=1

eAi(ti−ti−1).

Definition 4.3.6. A function A : [a, b] → L(X) is called product integrable if
there exists a sequence of step functions An : [a, b]→ L(X), n ∈ N such that

lim
n→∞

(L)
∫ b

a

‖An(t)−A(t)‖dt = 0

(where (L) denotes the Lebesgue integral of a real function). We then define

b∏
a

(I +A(t) dt) = lim
n→∞

b∏
a

(I +An(t) dt),

(I +A(t) dt)
b∏
a

= lim
n→∞

(I +An(t) dt)
b∏
a

.

The method from Chapter 3 can be again used to show that the value of product
integral does not depend on the choice of a particular sequence of step functions
{An}∞n=1. The above defined integral is called the Lebesgue product integral or the
Bochner product integral; the class of integrable functions is larger as compared
to Definition 4.3.2. More information about this type of product integral can be
found in [DF, Sch1].
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Chapter 5

Product integration in Banach algebras

A final treatment of Riemann product integration is given in the article [Mas] by
Pesi Rustom Masani; it was published in 1947. Consider a matrix-valued function
f : [a, b] → Rn×n and recall that Volterra defined the product integral of f as the
limit of products

P (f,D) =
1∏

k=m

(I + f(ξk)∆xk)

corresponding to tagged partitions D of interval [a, b]. This definition is also ap-
plicable to operator-valued functions f : [a, b]→ L(X), where L(X) is the space of
all bounded linear operators on a Banach space X. It is just sufficient to replace
multiplication by composition of operators in the definition of P (f,D); the role of
identity matrix is now played by the identity operator I.

Masani’s intent was to define the product integral of a function f : [a, b] → X
for the most general space X possible. Let X be a normed vector space equipped
with the operation of multiplication. Assuming there is a vector 1 ∈ X such that
1 · x = x · 1 = x for every x ∈ X and ‖1‖ = 1, we let

P (f,D) =
1∏

k=m

(1 + f(ξk)∆xk),

where D is an arbitrary tagged partition of [a, b]. We would like to define the
product integral as the limit

b∏
a

(1 + f(t) dt) = lim
ν(D)→0

P (f,D).

To obtain a reasonable theory it is necessary that the space X is complete, i.e. it
is a Banach space.

Before giving an overview of Masani’s result let’s start with a short biography (see
also [PRM, IMS]). Pesi Rustom Masani was born in Bombay, 1919. He obtained
his doctoral degree at Harvard in 1946; the thesis concerned product integration
in Banach algebras and it was supervised by Garrett Birkhoff 1. During the years
1948–58 Masani held the chairs of professor of mathematics and science researcher
in Bombay and then he returned to the United States. In the 1970’s he accepted
the position at the University of Pittsburgh. Masani was active in mathematics
even after his retirement in 1989. He died in Pittsburgh on the 15th October 1999.

1 G. Birkhoff also devoted himself to product integration, see [GB].
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Pesi R. Masani1

Masani contributed to the development of integration theory, functional analysis,
theory of probability and mathematical statistics. The appendix in [DF] written by
Masani also concerns product integration. He collaborated with Norbert Wiener
and edited his collected works after Wiener’s death. Masani was also interested in
history, philosophy, theology and politics.

5.1 Riemann-Graves integral

We begin with a brief recapitulation of facts concerning integration of vector-valued
functions (see also [Mas]). The notion of Graves integral is a direct generalization
of Riemann integral and was presented by Lawrence M. Graves in 1927.

Let X be a Banach space, f : [a, b] → X. To every tagged partition D : a = t0 <
t1 < · · · < tm = b of interval [a, b] with tags ξi ∈ [ti−1, ti], i = 1, . . . ,m we assign
the sum

S(f,D) =
m∑
i=1

f(ξi)∆ti,

where ∆ti = ti − ti−1. We recall that if T (D) ∈ X is a vector dependent on the
choice of a tagged partition D, then

lim
ν(D)→0

T (D) = T

means that to every ε > 0 there is δ > 0 such that ‖T (D) − T‖ < ε for every
partition D of [a, b] such that ν(D) < δ.

Definition 5.1.1. A function f : [a, b]→ X is called integrable if

lim
ν(D)→0

S(f,D) = Sf

1 Photo from http://www.york.ac.uk/depts/maths/histstat/people/
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for some Sf ∈ X. We speak of Riemann-Graves integral of function f on [a, b] and

denote Sf =
∫ b
a
f(t) dt.

The following theorem provides additional two equivalent characterizations of inte-
grable functions; recall that the notation D′ ≺ D means that the partition D′ is a
refinement of partition D (see Definition 3.1.8).

Theorem 5.1.2. Let f : [a, b]→ X. The following statements are equivalent:

1) f is integrable and
∫ b
a
f(t) dt = Sf .

2) Every sequence of partitions {Dn}∞n=1 of [a, b] such that ν(Dn) → 0 satisfies
limn→∞ S(f,Dn) = Sf .
3) For every ε > 0 there is a partition Dε of [a, b] such that ‖S(f,D)− Sf‖ < ε for
every D ≺ Dε.

The proof proceeds in the same way as in the case when f is a real function. The
rest of this section summarizes the basic results concerning the Riemann-Graves
integral; again, the proofs can be carried out in the classical way.

Theorem 5.1.3. Let f : [a, b]→ X. Then the following statements are equivalent:

1) f is integrable.
2) For every ε > 0 there exists δ > 0 such that ‖S(f,D1)−S(f,D2)‖ < ε whenever
D1 and D2 are tagged partitions of [a, b] satisfying ν(D1) < δ, ν(D2) < δ.

Theorem 5.1.4. If f : [a, b]→ X is an integrable function, then it is bounded and∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥ ≤ (b− a) sup
t∈[a,b]

‖f(t)‖.

Theorem 5.1.5. Let f : [a, b]→ X. If the integral
∫ b
a
f(t) dt exists and if [c, d] ⊂

[a, b], then the integral
∫ d
c
f(t) dt exists as well.

Theorem 5.1.6. Let f : [a, c] → X, a < b < c. Suppose that the integrals∫ b
a
f(t) dt and

∫ c
b
f(t) dt exists. Then the integral

∫ c
a
f(t) dt also exists and∫ c

a

f(t) dt =
∫ b

a

f(t) dt+
∫ c

b

f(t) dt.

The following two statements generalize the fundamental theorem of calculus to the
case of vector-valued functions f : [a, b]→ X. The derivative of such a function is
of course defined as

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

provided the limit exists (in the case when x0 is one of the boundary points of
[a, b] we require only existence of the corresponding one-sided limit). Since X is a
normed space, the last equation means that

lim
x→x0

∥∥∥∥f(x)− f(x0)
x− x0

− f ′(x0)

∥∥∥∥ = 0.
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Theorem 5.1.7. Let f : [a, b]→ X be integrable and put F (x) =
∫ x
a
f(t) dt. If f

is continuous at x0 ∈ [a, b], then F ′(x0) = f(x0).

Theorem 5.1.8. Let F : [a, b]→ X and F ′(t) = f(t) for every t ∈ [a, b]. If f is an
integrable function, then ∫ b

a

f(t) dt = F (b)− F (a).

Theorem 5.1.9. Let f, g : [a, b]→ X be integrable functions, α, β ∈ R. Then∫ b

a

(αf(t) + βg(t)) dt = α

∫ b

a

f(t) dt+ β

∫ b

a

g(t) dt.

The set of all integrable functions is thus a vector space; it is interesting to note that
if the space X is equipped with the operation of multiplication (i.e. it is a Banach
algebra, see the next section), then a product of two integrable functions need not
be an integrable function. Another surprising fact concerning the Riemann-Graves
integral is that every bounded function which is almost everywhere continuous is
also integrable, but the converse statement is no longer true (it holds only in finite-
dimensional spaces X).

5.2 Definition of product integral

Masani turns his attention to the product analogy of the Riemann-Graves integral.
In the sequel we assume that X is a Banach algebra (Masani uses the term normed
ring), i.e. that

1) X is a Banach space,
2) X is an associative algebra with a unit vector 1 ∈ X, ‖1‖ = 1,
3) ‖x · y‖ ≤ ‖x‖‖y‖ for every x, y ∈ X.

The second condition means that for every pair x, y ∈ X the product x · y ∈ X is
defined, that the multiplication is associative and that there exists a vector 1 ∈ X
such that 1 · x = x · 1 = x for every x ∈ X and ‖1‖ = 1; we use the same symbol
1 to denote the unit vector of X as well as the number 1 ∈ R; the meaning should
be always clear from the context.

Let f : [a, b]→ X. To every partition D of [a, b] we assign the product

P (f,D) =
1∏

i=m

(1 + f(ξi)∆ti) = (1 + f(ξm)∆tm) · · · (1 + f(ξ1)∆t1).

Definition 5.2.1. A function f : [a, b]→ X is called product integrable if there is
a vector Pf ∈ X such that for every ε > 0 there exists a partition Dε of [a, b] such
that

‖P (f,D)− Pf‖ < ε
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whenever D ≺ Dε. The vector Pf is called the (left) product integral of f and we
use the notation

∏b
a(1 + f(t) dt) = Pf .

Remark 5.2.2. Masani also defines the right product integral as the limit of the
products

P ∗(f,D) =
m∏
i=1

(1 + f(ξi)∆ti) = (1 + f(ξ1)∆t1) · · · (1 + f(ξm)∆tm),

which are obtained by reversing the order of factors in P (f,D). Masani uses the
symbols ∫ b

a

︷︷
(1 + f(t) dt),

∫ b

a

︸︸
(1 + f(t) dt)

to denote left and right product integrals. As he remarks, it is sufficient to study ei-
ther the left integral or the right integral, respectively. This is because the following
principle of duality holds:

To every Banach algebra X there is a dual algebra X∗ which is identical with X
except the operation of multiplication: We define the product x · y in X∗ as the
vector y · x, where the last multiplication is carried out in X. Every statement C
about Banach algebra X has a corresponding dual statement C∗, which is obtained
by reversing the order of all products in C. Consequently, every occurence of the
term “left product integral” must be replaced by “right product integral” and vice
versa. A dual statement C∗ is true in X∗ if and only if C is true in X. In case C
is true in every Banach algebra, the same can be said of C∗.

Theorem 5.2.3.1 Let f : [a, b] → X be a bounded function. The following
statements are equivalent:

1) f is product integrable and
∏b
a(1 + f(t) dt) = Pf .

2) Every sequence of partitions {Dn}∞n=1 of interval [a, b] such that ν(Dn) → 0
satisfies limn→∞ P (f,Dn) = Pf .
3) limν(D)→0 P (f,D) = Pf .

Proof. The equivalence of statements 2) and 3) is proved in the same way as in
the case of ordinary integral. Assume that 3) holds, i.e. to every ε > 0 there exists
δ > 0 such that ‖P (f,D) − Pf‖ < ε for every partition D of interval [a, b] which
satisfies ν(D) < δ. Let Dε be such a partition. Then for every D ≺ Dε we have
ν(D) ≤ ν(Dε) < δ, and therefore ‖P (f,D) − Pf‖ < ε; thus we have proved the
implication 3) ⇒ 1). Masani gives only a brief indication of the proof of 1) ⇒ 3),
details are left to the reader; boundedness of f is important here.

The following theorem represents a “Cauchy condition” for the existence of product
integral.

Theorem 5.2.4. Let f : [a, b] → X be bounded. The following statements are
equivalent:

1 [Mas], p. 157–159
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1) f is product integrable.
2) To every ε > 0 there is a partition Dε such that ‖P (f,D) − P (f,Dε)‖ < ε
whenever D ≺ Dε.
3) To every ε > 0 there exists δ > 0 such that ‖P (f,D1)−P (f,D2)‖ < ε whenever
D1, D2 are partitions of [a, b] satisfying ν(D1) < δ, ν(D2) < δ.

Proof. The equivalence of statements 1) and 2) is proved in the same way as in the
case of ordinary integral. The statement 3) is clearly equivalent to the statement
3) of the previous theorem.

5.3 Useful inequalities

We now present five inequalities which will be useful later. Masani didn’t prove the
first three; we have however met the first two in Chapter 3 – see the Lemmas 3.1.3
and 3.4.2. Although we have proved them only for matrices, the proofs are valid
even for elements of an arbitrary Banach algebra X.

Lemma 5.3.1.1 Let xk ∈ X for k = 1, . . . ,m. Then∥∥∥∥∥
m∏
k=1

(1 + xk)

∥∥∥∥∥ ≤ exp

(
m∑
k=1

‖xk‖
)
.

Lemma 5.3.2.2 Let xk, yk ∈ X for k = 1, . . . ,m. Then∥∥∥∥∥
m∏
k=1

(1 + xk)−
m∏
k=1

(1 + yk)

∥∥∥∥∥ ≤ exp

(
m∑
k=1

‖xk‖
)(

exp
m∑
k=1

‖xk − yk‖ − 1

)
.

Lemma 5.3.3.3 Let xk ∈ X for k = 1, . . . ,m. Then∥∥∥∥∥
m∏
k=1

(1 + xk)− 1

∥∥∥∥∥ ≤ exp

(
m∑
k=1

‖xk‖
)
− 1.

Proof. Elementary calculation yields∥∥∥∥∥
m∏
k=1

(1 + xk)− 1

∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

 ∑
1≤i1<···<ij≤m

xi1 · · ·xij

∥∥∥∥∥∥ ≤
≤

m∑
j=1

 ∑
1≤i1<···<ij≤m

‖xi1‖ · · · ‖xij‖

 ≤ m∑
j=1

1
j!

 m∑
i1,...,ij=1

‖xi1‖ · · · ‖xij‖

 =

1 [Mas], p. 153
2 [Mas], p. 154
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=
m∑
j=1

1
j!

(‖x1‖+ · · ·+ ‖xm‖)j ≤ exp

(
m∑
k=1

‖xk‖
)
− 1.

Lemma 5.3.4.1 Let xk ∈ X for k = 1, . . . ,m. Then∥∥∥∥∥
m∏
k=1

(1 + xk)−
(

1 +
m∑
k=1

xk

)∥∥∥∥∥ ≤
(

exp
m∑
k=1

‖xk‖ − 1

)
m∑
k=1

‖xk‖.

Proof. The statement is a simple consequence of the inequality

m∏
k=1

(1 + xk)−
(

1 +
m∑
k=1

xk

)
=

m∑
k=1

xk

 m∏
j=k+1

(1 + xj)− 1


and Lemma 5.3.3.

Lemma 5.3.5.2 Let m,n ∈ N, u, v, xj , yk ∈ X, ‖xj‖, ‖yk‖ ≤ 1/2 for every j =
1, . . . ,m and k = 1, . . . , n. Then∥∥∥∥∥∥

m∏
j=1

(1 + xj) · (u− v) ·
n∏
k=1

(1 + yk)

∥∥∥∥∥∥ ≥ exp

−2

 m∑
j=1

‖xj‖+
n∑
k=1

‖yk‖

‖u− v‖.
Proof. Define f(t) = e2t − te2t − 1. Then

f ′(t) = e2t(1− 2t) ≥ 0, t ∈ [0, 1/2],

and therefore
e2t − te2t − 1 = f(t) ≥ f(0) = 0, t ∈ [0, 1/2].

We get
1− t ≥ e−2t, t ∈ [0, 1/2].

Now let x,w ∈ X, ‖x‖ ≤ 1/2. Then

‖w‖ ≤ ‖w + x · w‖+ ‖x · w‖ ≤ ‖(1 + x) · w‖+ ‖x‖ · ‖w‖,

which implies

‖(1 + x) · w‖ ≥ ‖w‖(1− ‖x‖) ≥ ‖w‖ exp(−2‖x‖). (5.3.1)

For y ∈ X, ‖y‖ ≤ 1/2 we obtain in a similar way

‖w‖ ≤ ‖w + w · y‖+ ‖w · y‖ ≤ ‖w · (1 + y)‖+ ‖y‖ · ‖w‖,
1 [Mas], p. 153
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‖w · (1 + y)‖ ≥ ‖w‖(1− ‖y‖) ≥ ‖w‖ exp(−2‖y‖). (5.3.2)

To complete the proof it is sufficient to use m times the Inequality (5.3.1) and n
times the Inequality (5.3.2).

5.4 Properties of product integral

This section summarizes the basic properties of product integrable functions. We
first prove that every product integrable function is necessarily bounded.

Lemma 5.4.1.1 To every ∆ : [a, b] → (0,∞) there exists a tagged partition
D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti], such that ti − ti−1 ≤ ∆(ξi).

Proof. The system of intervals {(t−∆(t)/2, t+ ∆(t)/2), t ∈ [a, b]} forms an open
covering of [a, b] and the result follows from the Heine–Borel theorem. It is also a
simple consequence of Cousin’s lemma (see [Sch2], p. 55 or [RG], Lemma 9.2).

Theorem 5.4.2.2 Every product integrable function f is bounded and∥∥∥∥∥
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ ≤ exp

(
(b− a) sup

t∈[a,b]
‖f(t)‖

)
.

Proof. Assume that f is not bounded. Choose N ∈ N and δ > 0. Define

∆(x) =

{
min(δ, (2‖f(x)‖)−1) if ‖f(x)‖ > 0,
δ if f(x) = 0.

According to Lemma 5.4.1 there exists a tagged partition D : a = t0 < t1 < · · · <
tm = b, ξi ∈ [ti−1, ti], such that

ti − ti−1 ≤ ∆(ξi). (5.4.1)

Clearly ν(D) ≤ δ. Since f is not bounded, we can find a sequence of points
{xn}∞n=1 from [a, b] such that xn → x ∈ [a, b] and ‖f(xn)‖ ≥ n. There must be a
point y ∈ {xn}∞n=1, which lies in the same interval [tj−1, tj ] as the point x and such
that

‖f(y)− f(x)‖ ≥ ‖f(y)‖ − ‖f(x)‖ ≥ N ·
(

exp(−m) · min
1≤i≤m

(ti − ti−1)

)−1

.

Let D1 and D2 be tagged partitions that are obtained from D by replacing the tag
ξj by x and y, respectively. Then, according to Lemma 5.3.5 and Inequality (5.4.1),

‖P (f,D1)−P (f,D2)‖ ≥ exp

−2
∑
i6=j

‖f(ξi)‖(ti − ti−1)

‖f(x)−f(y)‖(tj−tj−1) ≥

1 [Mas], p. 162
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≥ exp(−m)‖f(x)− f(y)‖(tj − tj−1) ≥ N.
Since ν(D1) = ν(D2) = ν(D) ≤ δ, the number δ can be arbitrarily small and N
arbitrarily large, we arrive at a contradiction with Theorem 5.2.4. The second part
of the theorem is easily proved using Lemma 5.3.1, which guarantees that

‖P (f,D)‖ ≤ exp

(
m∑
i=1

‖f(ξi)‖(ti − ti−1)

)
≤ exp

(
(b− a) sup

t∈[a,b]
‖f(t)‖

)

for every tagged partition D of [a, b].

Theorem 5.4.3.1 Assume that
∏b
a(1 + f(t) dt) exists. If [c, d] ⊂ [a, b], then∏d

c(1 + f(t) dt) exists as well.

Proof. Denote M = supt∈[a,b] ‖f(t)‖ < ∞. Let D1, D2 be tagged partitions of
[c, d], DA a tagged partition of [a, c] satisfying ν(DA) < 1/(2M) and DB a tagged
partition of [d, b] satisfying ν(DB) < 1/(2M). Letting

D∗1 = DA ∪D1 ∪DB , D∗2 = DA ∪D2 ∪DB ,

we obtain (using Lemma 5.3.5)

‖P (f,D∗1)− P (f,D∗2)‖ = ‖P (f,DB) (P (f,D1)− P (f,D2))P (f,DA)‖ ≥

≥ exp

(
−2

∑
DA∪DB

f(ξi)(ti − ti−1)

)
‖P (f,D1)− P (f,D2)‖ ≥

≥ exp(−2M(b− a))‖P (f,D1)− P (f,D2)‖,
therefore

‖P (f,D1)− P (f,D2)‖ ≤ exp(2M(b− a))‖P (f,D∗1)− P (f,D∗2)‖.

Because f is product integrable, to every ε > 0 there is a tagged partition D∗ε of
interval [a, b] such that

‖P (f,D∗)− P (f,D∗ε)‖ < ε

exp(2M(b− a))

whenever D∗ ≺ D∗ε . Without loss of generality assume that D∗ε = DA ∪Dε ∪DB ,
where DA is a partition of [a, c] satisfying ν(DA) < 1/(2M), Dε is a partition of
[c, d] and DB is a partition of [d, b] satisfying ν(DB) < 1/(2M). If D ≺ Dε, we
construct the partition D∗ = DA ∪D ∪DB . Then

‖P (f,D)− P (f,Dε)‖ ≤ exp(2M(b− a))‖P (f,D∗)− P (f,D∗ε)‖ < ε.

1 [Mas], p. 163–165
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Theorem 5.4.4.1 If a < b < c and the integrals
∏b
a(1+f(t) dt) and

∏c
b(1+f(t) dt)

exist, then the integral
∏c
a(1 + f(t) dt) exists as well and

c∏
a

(1 + f(t) dt) =
c∏
b

(1 + f(t) dt) ·
b∏
a

(1 + f(t) dt).

Proof. Masani’s proof is somewhat incomplete; we present a modified version.
The assumptions imply the existence of a tagged partition D1

ε of [a, b] and a tagged
partition D2

ε of [b, c] such that∥∥∥∥∥P (f,D1)−
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ < ε,

∥∥∥∥∥P (f,D2)−
c∏
b

(1 + f(t) dt)

∥∥∥∥∥ < ε

whenever D1 ≺ D1
ε and D2 ≺ D2

ε . Let Dε = D1
ε ∪D2

ε . Then every tagged partition
D ≺ Dε can be written as D = D1 ∪D2, where D1 ≺ D1

ε and D2 ≺ D2
ε . We have

P (f,D) = P (f,D2) · P (f,D1) and∥∥∥∥∥P (f,D)−
c∏
b

(1 + f(t) dt) ·
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ ≤
≤
∥∥∥∥∥P (f,D2)

(
P (f,D1)−

b∏
a

(1 + f(t) dt)

)∥∥∥∥∥+

+

∥∥∥∥∥
(
P (f,D2)−

c∏
b

(1 + f(t) dt)

)
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ ≤
≤
(∥∥∥∥∥

c∏
b

(1 + f(t) dt)

∥∥∥∥∥+ ε

)
ε+ ε

∥∥∥∥∥
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ ,
which completes the proof.

Statements similar to Theorem 5.4.4 have already appeared in the work of Volterra
and Schlesinger. Their versions are however less general: They assume that f is
Riemann integrable on [a, c], which implies the existence of product integral on
[a, c] and the rest of the proof is trivial. Masani on the other hand proves that the
existence of product integral on [a, b] and on [b, c] implies the existence of product
integral on [a, c]. The same remark also applies to Theorem 5.4.3. In the following
section we prove that the product integral exists if and only if the function is

1 [Mas], p. 165

120



(Riemann-Graves) integrable; the proof of this fact is nevertheless based on the use
of Theorem 5.4.3.

Lemma 5.4.5. Every x ∈ X such that ‖x− 1‖ < 1 has an inverse element and

x−1 =
∞∑
n=0

(1− x)n.

Proof. The condition ‖x − 1‖ < 1 implies that the infinite series given above is
absolutely convergent; let x−1 be defined as the sum of that series. If

sk =
k∑

n=0

(1− x)n,

then sk+1 = 1 + (1− x) · sk = 1 + sk · (1− x).
Passing to the limit k →∞ we obtain

x−1 = 1 + (1− x) · x−1 = 1 + x−1 · (1− x),

i.e. x−1 · x = x · x−1 = 1.

Theorem 5.4.6.1 If f : [a, b] → X is a product integrable function, then
∏b
a(1 +

f(t) dt) is an invertible element of the Banach algebra X.

Proof. Denote M = supt∈[a,b] ‖f(t)‖ < ∞. Choose δ > 0 such that exp(Mδ) < 2
and a partition D : a = t0 < t1 < · · · < tm = b such that ν(D) ≤ δ. Then

b∏
a

(1 + f(t) dt) =
1∏

i=m

ti∏
ti−1

(1 + f(t) dt) (5.4.2)

Lemma 5.3.3 implies that for every i = 1, . . . ,m∥∥∥∥∥∥
ti∏
ti−1

(1 + f(t) dt)− 1

∥∥∥∥∥∥ ≤ exp(M(ti − ti−1))− 1 < 1,

i.e.
∏ti
ti−1

(1 + f(t) dt) is (according to Lemma 5.4.5) an invertible element of the
algebra X. As a consequence of (5.4.2) we obtain

(
b∏
a

(1 + f(t) dt)

)−1

=
m∏
i=1

 ti∏
ti−1

(1 + f(t) dt)

−1

.
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5.5 Integrable and product integrable functions

Masani now proceeds to prove an important theorem which states that the classes
of integrable and product integrable functions coincide. The fact that the existence
of Riemann integral implies the existence of product integral was already known to
Volterra; the reverse implication appears for the first time in Masani’s paper.

Lemma 5.5.1. Let f : [a, b] → X be a bounded function. For every ε > 0 there
exists δ > 0 such that if [c, d] ⊆ [a, b], d− c < δ and D is a tagged partition of [c, d],
then

‖P (f,D)− (1 + S(f,D))‖ ≤ ε(d− c).

Proof. Denote M = supt∈[a,b] ‖f(t)‖. Choose δ > 0 such that

(exp(Mδ)− 1) < ε/M.

Then according to Lemma 5.3.4

‖P (f,D)− (1 + S(f,D))‖ ≤ (exp(M(d− c))− 1)M(d− c) ≤ ε(d− c).

Definition 5.5.2. Let Y ⊆ X. The diameter of the set Y is the number

diam Y = sup{‖y1 − y2‖; y1, y2 ∈ Y }.

The convex closure of Y is the set

conv Y =

{
k∑
i=1

αiyi; k ∈ N, yi ∈ Y, αi ≥ 0,
k∑
i=1

αi = 1

}
.

Theorem 5.5.3.1 If Y ⊆ X, then

diam conv Y = diam Y.

Proof. The proof is not difficult, although it’s not included in Masani’s paper.
Since Y ⊆ conv Y , it is sufficient to prove that

diam conv Y ≤ diam Y.

Let y1, y2 ∈ conv Y ,

y1 =
l∑
i=1

αiy
1
i , y2 =

m∑
j=1

βjy
2
j ,

1 [Mas], p. 159
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where y1
i , y

2
j ∈ Y , i = 1, . . . , l, j = 1, . . . ,m,

l∑
i=1

αi =
m∑
j=1

βj = 1.

Then

‖y1−y2‖ =

∥∥∥∥∥∥
m∑
j=1

βj

(
l∑
i=1

αiy
1
i

)
−

l∑
i=1

αi

 m∑
j=1

βjy
2
j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
l∑
i=1

m∑
j=1

αiβj(y
1
i − y2

j )

∥∥∥∥∥∥ ≤
≤

l∑
i=1

m∑
j=1

αiβj‖y1
i − y2

j ‖ ≤
l∑
i=1

m∑
j=1

αiβj diam Y = diam Y.

Lemma 5.5.4.1 Let f : [a, b] → X be a product integrable function. Then for
every ε > 0 there is a partition D : a = t0 < t1 < · · · < tm−1 < tm = b such that∥∥∥∥∥

1∏
i=m

(1 + f(ξi)∆ti)−
1∏

k=m

(1 + f(ηi)∆ti)

∥∥∥∥∥ < ε

for every choice of ξi, ηi ∈ [ti−1, ti], i = 1, . . . ,m.

Proof. Follows from Theorem 5.2.4.

Remark 5.5.5. Masani notes that the reverse implication is not valid; his coun-
terexample is

f(x) =


0 if x = 0,
1/x if x ∈ (0, 1/2),
−2 if x ∈ [1/2, 1].

Taking the partition t0 = 0 < t1 = 1/2 < t2 = 1 we obtain

1∏
i=2

(1 + f(ξi)∆ti) = 0

for every choice of ξi ∈ [ti−1, ti], but f is not product integrable (because it is not
bounded).

Lemma 5.5.6.2 Consider function f : [a, b] → X. Assume that for every ε > 0
there is a partition Dε : a = t0 < t1 < · · · < tn−1 < tn = b such that∥∥∥∥∥

n∑
i=1

f(ξi)∆ti −
n∑
i=1

f(ηi)∆ti

∥∥∥∥∥ < ε

1 [Mas], p. 160–161
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for every choice of ξi, ηi ∈ [ti−1, ti]. Then f is an integrable function.

Proof. If we introduce the notation

n∑
i=1

f([ti−1, ti])∆ti =

{
n∑
i=1

f(ξi)∆ti; ξi ∈ [ti−1, ti]

}
,

then the assumption of the lemma might be written as

diam

(
n∑
i=1

f([ti−1, ti])∆ti

)
< ε.

To prove that f is integrable it is sufficient to verify that for every partition D ≺ Dε

which consists of division points

ti−1 = ti0 < ti1 < · · · < tim(i) = ti, i = 1, . . . , n

and for every choice of ξij ∈ [tij−1, t
i
j ], ηi ∈ [ti−1, ti] we have

‖P (f,D)− P (f,Dε)‖ =

∥∥∥∥∥∥
n∑
i=1

m(i)∑
j=1

f(ξij)∆t
i
j −

n∑
i=1

f(ηi)∆ti

∥∥∥∥∥∥ < ε.

But

n∑
i=1

m(i)∑
j=1

f(ξij)∆t
i
j =

n∑
i=1

m(i)∑
j=1

∆tij
∆ti

f(ξij)∆ti ∈ conv

(
n∑
i=1

f([ti−1, ti])∆ti

)
,

and the proof is completed by using Theorem 5.5.3.

Theorem 5.5.7.1 Every product integrable function f : [a, b]→ X is integrable.

Proof. We verify that the assumption of Theorem 5.5.6 is fulfilled. According to
Lemma 5.5.1 it is possible to choose numbers a = s0 < s1 < · · · < sn−1 < sn = b
in such a way that

‖P (f,Dk)− (1 + S(f,Dk))‖ ≤ ε

3
(sk − sk−1)

(b− a)

for every tagged partition Dk of interval [sk−1, sk]. Since f is product integrable
on [sk−1, sk], there exists (according to Lemma 5.5.4) a partition

sk−1 = tk0 < tk1 < · · · < tkm(k) = sk

such that∥∥∥∥∥∥
1∏

i=m(k)

(1 + f(ξki )∆tki )−
1∏

i=m(k)

(1 + f(ηki )∆tki )

∥∥∥∥∥∥ < ε

3
(sk − sk−1)

(b− a)
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for every choice of ξki , η
k
i ∈ [tki−1, t

k
i ]. For such ξki , η

k
i we have∥∥∥∥∥∥

m(k)∑
i=1

f(ξki )∆tki −
m(k)∑
k=1

f(ηki )∆tki

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
1 +

m(k)∑
i=1

f(ξki )∆tki

− 1∏
i=m(k)

(1 + f(ξki )∆tki )

∥∥∥∥∥∥+

+

∥∥∥∥∥∥
1∏

i=m(k)

(1 + f(ξki )∆tki )−
1∏

i=m(k)

(1 + f(ηki )∆tki )

∥∥∥∥∥∥+

+

∥∥∥∥∥∥
1∏

i=m(k)

(1 + f(ηki )∆tki )−

1 +
m(k)∑
k=1

f(ηki )∆tki

∥∥∥∥∥∥ < ε(sk − sk−1)
(b− a)

.

Adding these inequalities for k = 1, . . . , n and using the triangle inequality leads to∥∥∥∥∥∥
n∑
k=1

m(k)∑
i=1

f(ξki )∆tki −
n∑
k=1

m(k)∑
k=1

f(ηki )∆tki

∥∥∥∥∥∥ < ε.

This means that the partition D can be chosen as

a = t10 < t11 < · · · < t1m(1) = t20 < · · · < tn−1
m(n−1) = tn0 < tn1 < · · · < tnm(n) = b.

We now follow Masani’s proof of the reverse implication which says that every
integrable function is also product integrable and that the product integral might
be expressed using the Peano series. As we know, the history of the theorem can
be traced back to Volterra (in the case X = Rn×n). Masani was probably the first
one to give a rigorous proof.

We will be working with tagged partitions D : a = t0 < t1 < · · · < tm(D) = b,
ξi ∈ [ti−1, ti]. For every n ≤ m(D) we define

Tn(f,D) =
∑

m(D)≥i1>i2>···>in≥1

f(ξi1) · · · f(ξin)∆ti1 · · ·∆tin

and
T (f,D) = T1(f,D) + · · ·+ Tm(D)(f,D).

We state the following lemma without proof; see Remark 2.4.4 for the proof in the
finite-dimensional case (the difficulty in the general case is hidden in the fact that
the product of two integrable functions need not be integrable).

Lemma 5.5.8.1 Let f : [a, b] → X be an integrable function, n ∈ N. Then the
limit Tn(f) = limν(D)→0 Tn(f,D) exists and

Tn(f) =
∫ b

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1.

1 [Mas], p. 174–176
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Masani refers to the following lemma as to the extension of Tannery’s theorem.

Lemma 5.5.9.1 Consider function f : [a, b] → X and assume that the following
conditions are satisfied:

1) There exists Tn(f) = limν(D)→0 Tn(f,D) for every n ∈ N.
2) Mn = supD ‖Tn(f,D)‖ <∞ for every n ∈ N, where the supremum is taken over
all partitions D of interval [a, b] which consist of at least n division points.
3) The series

∑∞
n=1Mn is convergent.

Then

T (f) = lim
ν(D)→0

T (f,D) =
∞∑
n=1

Tn(f).

Proof. The series T (f) =
∑∞
n=1 Tn(f) is convergent, because ‖Tn(f)‖ ≤ Mn for

every n ∈ N. We will prove that T (f) = limν(D)→0 T (f,D). Choose ε > 0. There
exists a number n(ε) ∈ N such that

∞∑
k=n(ε)+1

Mk < ε/3.

According to the first assumption, there exists a δ > 0 such that

‖Tk(f,D)− Tk(f)‖ < ε

3n(ε)
, k = 1, . . . , n(ε),

for every tagged partition D of [a, b] that satisfies ν(D) < δ. Without loss of
generality we assume that δ is so small that D consists of at least n(ε) division
points, i.e. T1(f,D), . . ., Tn(ε)(f,D) are well defined. Now for every tagged partition
D that satisfies ν(D) < δ we estimate

‖T (f,D)− T (f)‖ =

∥∥∥∥∥∥
m(D)∑
k=1

Tk(f,D)−
∞∑
k=1

Tk(f)

∥∥∥∥∥∥ ≤
n(ε)∑
k=1

‖Tk(f,D)− Tk(f)‖+

+
m(D)∑

k=n(ε)+1

‖Tk(f,D)‖+
∞∑

k=n(ε)+1

‖Tk(f)‖ < n(ε)
ε

3n(ε)
+ 2

∞∑
k=n(ε)+1

Mk < ε.

Theorem 5.5.10.2 Let f : [a, b] → X be an integrable function. Then f is also
product integrable and

b∏
a

(1 + f(t) dt) = 1 +
∞∑
n=1

Tn(f).

1 [Mas], p. 189–191
2 [Mas], p. 176–177
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Proof. Denote M = supt∈[a,b] ‖f(t)‖ <∞. For every partition D of interval [a, b]
we have

P (f,D) = 1 + T (f,D),

b∏
a

(1 + f(t) dt) = 1 + lim
ν(D)→0

T (f,D),

‖Tn(f,D)‖ ≤ (b− a)nMn

n!
,

∞∑
n=1

(b− a)nMn

n!
= exp(M(b− a))− 1 <∞.

The statement of the theorem is therefore a consequence of the preceding two
lemmas.

We have proved that a function is product integrable if and only if it is integrable.
Thus, in the rest of this chapter we use the terms “integrable” and “product inte-
grable” as synonyms.

Theorem 5.5.11.1 Let f : [a, b] → X be an integrable function. Suppose that
f(x) · f(y) = f(y) · f(x) for each pair x, y ∈ X. Then

b∏
a

(1 + f(t) dt) = exp

(∫ b

a

f(t) dt

)
.

Proof. A simple consequence of Theorem 5.5.10 and the equality

∫ b

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1 =
1
n!

(∫ b

a

f(t) dt

)n

(see Lemma 2.4.2).

5.6 Additional properties of product integral

This section is devoted to Masani’s versions of the fundamental theorem of calculus,
the uniform convergence theorem, and the change of variables theorem.

Theorem 5.6.1.2 Let f : [a, b]→ X be an integrable function. Denote

Y (x) =
x∏
a

(1 + f(t) dt), x ∈ [a, b].

1 [Mas], p. 179
2 [Mas], p. 178
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Then

Y (x) = 1 +
∫ x

a

f(t)Y (t) dt, x ∈ [a, b]. (5.6.1)

Proof. Using Theorem 5.5.10 we obtain

Y (t) = 1 +
∫ t

a

f(t1) dt1 +
∫ t

a

∫ t1

a

f(t1)f(t2) dt2 dt1 + · · · . (5.6.2)

Since ∥∥∥∥∫ t

a

∫ t1

a

· · ·
∫ tn−1

a

f(t1) · · · f(tn) dtn · · · dt1

∥∥∥∥ ≤ (b− a)nMn

n!
,

the series (5.6.2) is uniformly convergent. Because f is bounded, the series

f(t)Y (t) = f(t) +
∫ t

a

f(t)f(t1) dt1 +
∫ x

a

∫ t1

a

f(t)f(t1)f(t2) dt2 dt1 + · · ·

is also uniformly convergent and might be integrated term by term on [a, x]; per-
forming this step leads to Equation (5.6.1).

Corollary 5.6.2.1 If f : [a, b]→ X is a continuous function, then

Y ′(x)Y (x)−1 = f(x)

for every x ∈ [a, b].

The previous corollary represents an analogy of the formula

d
dx

∫ x

a

f(t) dt = f(x)

(see Theorem 5.1.7). Also the Newton-Leibniz formula∫ b

a

f ′(x) dt = f(b)− f(a)

(see Theorem 5.1.8) has the following product analogy (whose proof we omit).

Theorem 5.6.3.2 Assume that Z : [a, b] → X satisfies Z ′(x)Z(x)−1 = f(x) for
every x ∈ [a, b]. Then

b∏
a

(1 + f(t) dt) = Z(b)Z(a)−1

provided the function f is integrable.

1 [Mas], p. 181
2 [Mas], p. 182
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The next theorem establishes a criterion for interchanging the order of limit and
product integral, i.e. for the formula

lim
n→∞

b∏
a

(1 + fn(t) dt) =
b∏
a

(1 + lim
n→∞

fn(t) dt).

We have already encountered such a criterion in Chapter 3 when discussing the
Lebesgue product integral; Schlesinger’s statement represented in fact a product
analogy of the Lebesgue dominated convergence theorem. Masani’s theorem con-
cerns the Riemann product integral and requires uniform convergence to perform
the interchange of limit and integral.

Theorem 5.6.4.1 Let {fn}∞n=1 be a sequence of integrable functions which con-
verge uniformly to function f on interval [a, b]. Then

b∏
a

(1 + f(t) dt) = lim
n→∞

b∏
a

(1 + fn(t) dt).

Proof. The existence of
∏b
a(1+f(t) dt) follows from the fact that the limit of a uni-

formly convergent sequence of integrable functions is again an integrable function.
For an arbitrary tagged partition D we can use Lemma 5.3.2 to estimate

‖P (f,D)− P (fn, D)‖ ≤ exp(M(b− a)) ·
(

exp

(∑
i

‖f(ξi)− fn(ξi)‖∆ti
)
− 1

)
,

where M = supt∈[a,b] ‖f(t)‖. Choose ε > 0 and find a corresponding ε0 > 0 such
that

exp(M(b− a)) · (exp(ε0(b− a))− 1) < ε/3.

Let n0 ∈ N be such that ‖f(t) − fn(t)‖ < ε0 for every t ∈ [a, b] and n ≥ n0. The
partition D can be chosen so that the inequalities∥∥∥∥∥P (f,D)−

b∏
a

(1 + f(t) dt)

∥∥∥∥∥ < ε/3,

∥∥∥∥∥P (fn, D)−
b∏
a

(1 + fn(t) dt)

∥∥∥∥∥ < ε/3

hold. Then for every n ≥ n0 we have∥∥∥∥∥
b∏
a

(1 + fn(t) dt)−
b∏
a

(1 + f(t) dt)

∥∥∥∥∥ ≤
∥∥∥∥∥
b∏
a

(1 + f(t) dt)− P (f,D)

∥∥∥∥∥+

+

∥∥∥∥∥P (f,D)− P (fn, D)

∥∥∥∥∥+

∥∥∥∥∥P (fn, D)−
b∏
a

(1 + fn(t) dt)

∥∥∥∥∥ < ε.

1 [Mas], p. 171
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Masani also proved a generalized version of the change of variables theorem for the
product integral (compare to Theorem 2.5.10); we state it without proof.

Theorem 5.6.5.1 Let f : [a, b] → X be an integrable function, ϕ : [α, β] → [a, b]
increasing, ϕ(α) = a, ϕ(β) = b. If ϕ′ exists and is integrable on [a, b], then

b∏
a

(1 + f(t) dt) =
β∏
α

(1 + f(ϕ(u))ϕ′(u) du).

1 [Mas], p. 187–188
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Chapter 6

Kurzweil and McShane product integrals

The introduction of Lebesgue integration signified a revolution in mathematical
analysis: Every Riemann integrable function is also Lebesgue integrable, but the
class of functions having Lebesgue integral is considerably larger.

However, there exist functions f which are Newton integrable and

(N)
∫ b

a

f(t) dt = F (b)− F (a),

where F is an antiderivative of f , but the Lebesgue integral (L)
∫ b
a
f(t) dt does not

exist. Consider for example the function

F (x) =

{
x2 sin(1/x2) if x ∈ (0, 1],
0 if x = 0.

This function has a derivative F ′(x) = f(x) for every x ∈ [0, 1] and

f(x) =

{
2x sin(1/x2)− (2/x) cos(1/x2) if x ∈ (0, 1],
0 if x = 0.

The function f is therefore Newton integrable and

(N)
∫ 1

0
f(t) dt = F (1)− F (0).

If we denote

ak =
1√

(k + 1/2)π
, bk =

1√
kπ

for every k ∈ N, then

∫ bk

ak

|f(t)|dt ≥
∣∣∣∣∣
∫ bk

ak

f(t) dt

∣∣∣∣∣ = |F (bk)− F (ak)| = 1
(k + 1/2)π

,

which implies that ∫ 1

0
|f(t)|dt ≥

∞∑
k=1

1
(k + 1/2)π

=∞.

The Lebesgue integral (L)
∫ 1

0 f(t) dt therefore does not exist.

Jaroslav Kurzweil (and later independently Ralph Henstock) introduced a new def-
inition of integral which avoids the above mentioned drawback of the Lebesgue
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integral. The Kurzweil integral (also known as the gauge integral or the Henstock-
Kurzweil integral) encompasses the Newton and Lebesgue (and consequently also
Riemann) integrals. Another benefit is that the definition of Kurzweil integral is ob-
tained by a gentle modification of Riemann’s definition and is considerably simpler
than Lebesgue’s definition.

Jaroslav Kurzweil1 Edward J. McShane2

The definition of integral due to E. J. McShane is similar to Kurzweil’s definition
and in fact represents an equivalent definition of Lebesgue integral.

In this chapter we first summarize the definitions of Kurzweil and McShane in-
tegrals; in the second part we turn our attention to product analogies of these
integrals. The proofs in this chapter are often omitted and may be found in the
original papers (the references are included).

6.1 Kurzweil and McShane integrals

A finite collection of point-interval pairs D = {([ti−1, ti], ξi)}mi=1 is called an M -
partition of interval [a, b] if

a = t0 < t1 < · · · < tm = b,

ξi ∈ [a, b], i = 1, . . . ,m.

A K-partition is a M -partition which moreover satisfies

ξi ∈ [ti−1, ti], i = 1, . . . ,m.

Given a function ∆ : [a, b]→ (0,∞) (the so-called gauge on [a, b]), a partition D is
called ∆-fine if

[ti−1, ti] ⊂ (ξi −∆(ξi), ξi + ∆(ξi)), i = 1, . . . ,m.

1 Photo taken by Š. Schwabik
2 Photo from [McT]
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For a given function f on [a, b] and a M -partition D of [a, b] denote

S(f,D) =
m∑
i=1

f(ξi)(ti − ti−1).

Definition 6.1.1. Let X be a Banach space. A vector Sf ∈ X is called the
Kurzweil (McShane) integral of function f : [a, b]→ X if for every ε > 0 there is a
gauge ∆ : [a, b]→ (0,∞) such that

‖S(f,D)− Sf‖ < ε

for every ∆-fine K-partition (M -partition) D of interval [a, b]. We define

(K)
∫ b

a

f(t) dt = Sf or (M)
∫ b

a

f(t) dt = Sf , respectively.

We state the following theorems without proofs; they can be found (together with
more information about the Kurzweil, McShane and Bochner integrals) in the
book [SY]; other good sources are [Sch2, RG].

Theorem 6.1.2. Let X be a Banach space. Then every McShane integrable
function f : [a, b]→ X is also Kurzweil integrable (but not vice versa) and

(K)
∫ b

a

f(t) dt = (M)
∫ b

a

f(t) dt.

Theorem 6.1.3. Let X be a Banach space. Then every Lebesgue (Bochner)
integrable function f : [a, b]→ X is also McShane integrable and

(M)
∫ b

a

f(t) dt = (L)
∫ b

a

f(t) dt.

The converse statement holds if and only if X is a finite-dimensional space.

6.2 Product integrals and their properties

We now proceed to the definitions of Kurzweil and McShane product integrals. The
definition of Kurzweil product integral appeared for the first time in the paper [JK];
the authors speak about the Perron product integral and use the notation

(PP )
∫ b

a

(I +A(t) dt).

The McShane product integral was studied in [Sch1, SS].
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For the sake of simplicity we confine our exposition only to matrix functions A :
[a, b]→ Rn×n instead of working with operator-valued functions A : [a, b]→ L(X)
or even with functions A : [a, b] → X with values in a Banach algebra X. For an
arbitrary M -partition D of [a, b] and a matrix function A : [a, b]→ Rn×n denote

P (A,D) =
1∏

i=m

(I +A(ξi)(ti − ti−1)).

Definition 6.2.1. Consider function A : [a, b] → Rn×n. A matrix PA ∈ Rn×n is
called the Kurzweil (McShane) product integral of A if for every ε > 0 there is a
gauge ∆ : [a, b]→ (0,∞) such that

‖P (A,D)− PA‖ < ε

for every ∆-fine K-partition (M -partition) D of interval [a, b]. We define

(K)
b∏
a

(I +A(t) dt) = PA, or (M)
b∏
a

(I +A(t) dt) = PA, respectively.

We also denote

KP ([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (K)

b∏
a

(I +A(t) dt) exists

}
,

MP ([a, b],Rn×n) =

{
A : [a, b]→ Rn×n; (M)

b∏
a

(I +A(t) dt) exists

}
.

The right product integrals can be introduced using the products

P ∗(A,D) =
m∏
i=1

(I +A(ξi)(ti − ti−1)),

but we limit our discussion to the left integrals.

Example 6.2.2. Assume that the Riemann product integral (R)
∏b
a(I + A(t) dt)

exists, i.e. for every ε > 0 we can find δ > 0 such that∥∥∥∥∥P (A,D)−
b∏
a

(I +A(t) dt)

∥∥∥∥∥ < ε

for every partition D of [a, b] which such that ν(D) < δ. If we put

∆(x) =
δ

2
, x ∈ [a, b],
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then every ∆-fine K-partition D of [a, b] satisfies ν(D) < δ. This means that the
Kurzweil product integral of A exists and

(K)
b∏
a

(I +A(t) dt) = (R)
b∏
a

(I +A(t) dt).

Example 6.2.3. Consider the function

f(x) =
{−1/x if x ∈ (0, 1],

0 if x = 0.

It can be proved (see [SS]) that

(M)
1∏
0

(1 + f(x) dx) = 0.

It is worth noting that neither the Riemann integral (R)
∏1

0(1 + f(x) dx) nor the
Lebesgue integral (L)

∏1
0(1 + f(x) dx) exist; this follows e.g. from Theorem 6.2.10.

Theorem 6.2.4.1 Consider function A : [a, b] → Rn×n. Then the following
conditions are equivalent:

1) The integral (K)
∏b
a(I +A(t) dt) exists and is invertible.

2) There exists an invertible matrix PA such that for every ε > 0 there is a gauge
∆ : [a, b]→ (0,∞) such that∥∥∥∥∥

1∏
i=m

eA(ξi)(ti−ti−1) − PA
∥∥∥∥∥ < ε

whenever D = {([ti−1, ti], ξi)}mi=1 is a ∆-fine K-partition of [a, b].

If one of these conditions is fulfilled, then

(K)
b∏
a

(I +A(t) dt) = PA.

A similar statement holds also for McShane product integral.

Theorem 6.2.5. Consider function A : [a, b] → R. The integral (K)
∫ b
a
A(t) dt

exists if and only if the integral (K)
∏b
a(1 + A(t) dt) exists and is different from

zero. In this case the following equality holds:

(K)
b∏
a

(1 +A(t) dt) = exp

(
(K)

∫ b

a

A(t) dt

)
.

1 [JK], p. 651, and [SS]
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A similar statement holds also for McShane product integral.

Proof. Assume that (K)
∫ b
a
A(t) dt = SA exists and choose ε > 0. Since the

exponential function is continuous at the point SA, there is a δ > 0 such that∣∣ex − eSA ∣∣ < ε, x ∈ (SA − δ, SA + δ). (6.2.1)

Let ∆ : [a, b]→ (0,∞) be a gauge such that

|S(A,D)− SA| < δ

for every ∆-fine K-partition of interval [a, b]. Each of these partitions satisfies∣∣∣∣∣
1∏

i=m

eA(ξi)(ti−ti−1) − eSA
∣∣∣∣∣ =

∣∣∣eS(A,D) − eSA
∣∣∣ < ε

and using Theorem 6.2.4 we obtain

(K)
b∏
a

(1 +A(t) dt) = exp

(
(K)

∫ b

a

A(t) dt

)
.

The reverse implication is proved in a similar way using the equality

S(A,D) = log

(
1∏

i=m

eA(ξi)(ti−ti−1)

)
.

Remark 6.2.6. The previous theorem no longer holds for matrix functions A :
[a, b]→ Rn×n. Jaroslav Kurzweil and Jǐŕı Jarńık constructed1 two functions A,B :
[−1, 1]→ R2×2 such that

(K)
∫ 1

−1
A(t) dt exists, (K)

1∏
−1

(I +A(t) dt) doesn’t exist,

(K)
∫ 1

−1
B(t) dt doesn’t exist, (K)

1∏
−1

(I +B(t) dt) exists.

Theorem 6.2.7. Every McShane product integrable function is also Kurzweil
product integrable (but not vice versa) and

(K)
b∏
a

(I +A(t) dt) = (M)
b∏
a

(I +A(t) dt).

1 [JK], p. 658
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Proof. The inclusion MP ⊆ KP follows from the fact that every K-partition is
also a M -partition; the equality of the two product integrals is then obvious. We
only have to prove that MP 6= KP . For an arbitrary function f : [a, b]→ R denote

Af (t) = I · f(t),

where I is the identity matrix of order n (Af is therefore a matrix-valued function
on [a, b]). Then evidently

P (A,D) = I · P (f,D)

for every partition D of [a, b] and Af is product integrable (in the Kurzweil or
McShane sense) if and only if f is product integrable. Theorem 6.1.2 guarantees
the existence of a function f : [a, b] → R that is Kurzweil integrable, but not
McShane integrable; then (according to Theorem 6.2.5) the corresponding function
Af : [a, b] → Rn×n is Kurzweil product integrable, but not McShane product
integrable.

Theorem 6.2.8.1 Consider function A : [a, b]→ Rn×n. Suppose that the integral
(M)

∏b
a(I +A(t) dt) exists and is invertible. Then for every x ∈ (a, b) the integral

Y (x) = (M)
x∏
a

(I +A(t) dt)

exists as well and the function Y satisfies

Y ′(x) = A(x)Y (x)

almost everywhere on [a, b].

Remark 6.2.9. In Chapter 3 we have defined the Lebesgue (or Bochner) product
integral (L)

∏b
a(I+A(t) dt); the definition was based on the approximation of A by a

sequence of step functions which converge to A in the norm of space L([a, b],Rn×n).
The following theorem describes the relationship between McShane and Lebesgue
product integrals.

Theorem 6.2.10.2 Consider function A : [a, b]→ Rn×n. The following conditions
are equivalent:

1) A is Lebesgue (Bochner) integrable.
2) The McShane product integral (M)

∏b
a(I +A(t) dt) exists and is invertible.

If one of these conditions is fulfilled, then

(M)
b∏
a

(I +A(t) dt) = (L)
b∏
a

(I +A(t) dt).

1 [JK], p. 652–656 and [SS]
2 [Sch1], p. 329–334 and [SS]
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Remark 6.2.11. We conclude this chapter by comparing the classes of functions
which are integrable according to different definitions presented in the previous
text.

Let R, L, M and K be the classes of all functions A : [a, b] → Rn×n which are
integrable in the sense of Riemann, Lebesgue, McShane and Kurzweil, respectively.
In a similar way let RP and LP denote the classes of Riemann product integrable
and Lebesgue product integrable functions. Instead of working with the classes KP
and MP it is more convenient to concentrate on the classes

KP ∗ =

{
A : [a, b]→ Rn×n; (K)

b∏
a

(I +A(t) dt) exists and is invertible

}
,

MP ∗ =

{
A : [a, b]→ Rn×n; (M)

b∏
a

(I +A(t) dt) exists and is invertible

}
.

The following diagram shows the inclusions between the above mentioned classes.

R ⊂ L = M ⊂ K

RP ⊂ LP =MP ∗ ⊂ KP ∗
= = 6==
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Chapter 7

Complements

This final chapter contains additional remarks on product integration theory. The
topics discussed here complement the previous chapters; however, most proofs are
omitted and the text is intended only to arouse reader’s interest (references to other
works are included).

7.1 Variation of constants
Product integral enables us to express solution of the differential equation

y′(x) = A(x)y(x), x ∈ [a, b],

where A : [a, b]→ Rn×n, y : [a, b]→ Rn. The fundamental matrix of this system is

Z(x) =
x∏
a

(I +A(t) dt) =

 z1
1(x) · · · z1

n(x)
...

. . .
...

zn1 (x) · · · znn(x)


and its columns

zi(x) =

 z1
i (x)
...

zni (x)

 , i = 1, . . . , n (7.1.1)

thus provide a fundamental system of solutions.

We now focus our attention to the inhomogeneous equation

y′(x) = A(x)y(x) + f(x), x ∈ [a, b],

y(a) = y0.
(7.1.2)

A method for solving this system using product integral (based on the well-known
method of variation of constants) was first proposed by G. Rasch in the paper [GR];
it can be also found in the monograph [DF].

We assume that the functions A : [a, b]→ Rn×n and f : [a, b]→ Rn are continuous,
and we try to find the solution of (7.1.2) in the form

y(x) =
n∑
i=1

zi(x)ci(x), (7.1.3)

where ci : [a, b]→ R, i = 1, . . . , n are certain unknown functions. If we denote

c(x) =

 c1(x)
...

cn(x)

 ,

139



then the equations (7.1.1) and (7.1.3) imply

y(x) = Z(x)c(x).

We obtain

y′(x) = Z ′(x)c(x)+Z(x)c′(x) = A(x)Z(x)c(x)+Z(x)c′(x) = A(x)y(x)+Z(x)c′(x),

and using Equation (7.1.2)
f(x) = Z(x)c′(x).

Consequently
c′(x) = Z(x)−1f(x),

c(a) = Z(a)−1y(a) = y0,

which implies

c(x) = y0 +
∫ x

a

Z(t)−1f(t) dt.

The solution of the system (7.1.2) is thus given by the explicit formula

y(x) = Z(x)c(x) = Z(x)y0 + Z(x)
∫ x

a

Z(t)−1f(t) dt =

=
x∏
a

(I +A(t) dt)y0 +
x∏
a

(I +A(t) dt)
∫ x

a

(
a∏
t

(I +A(s) ds)f(t)

)
dt =

=
x∏
a

(I +A(t) dt)y0 +
∫ x

a

(
x∏
t

(I +A(s) ds)f(t)

)
dt.

We summarize the result: The solution of the inhomogeneous system (7.1.2) has
the form

y(x) =
n∑
i=1

zi(x)ci(x),

where z1, . . . , zn : [a, b] → Rn is the fundamental system of solutions of the cor-
responding homogeneous equation, the functions ci : [a, b] → R, i = 1, . . . , n are
continuously differentiable and satisfy

n∑
i=1

c′i(x)zi(x) = f(x), x ∈ [a, b].

7.2 Equivalent definitions of product integral

Consider a tagged partition D : a = t0 < t1 < · · · < tm = b, ξi ∈ [ti−1, ti],
i = 1, . . . ,m. Ludwig Schlesinger proved (see Theorem 3.2.2) that the product
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integral of a Riemann integrable function A : [a, b] → Rn×n can be calculated not
only as

b∏
a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

(I +A(ξk)∆tk)

)
,

but also as
b∏
a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

eA(ξk)∆tk

)
.

The equivalence of these definitions can be intuitively explained using the fact that

eA(ξk)∆tk = 1 +A(ξk)∆tk +O((∆tk)2),

and the terms of order (∆tk)2 and higher do not change the value of the integral. We
have also encountered a similar theorem applicable to the Kurzweil and McShane
integrals (see Theorem 6.2.4).
We now proceed to a more general theorem concerning equivalent definitions of
product integral, which was given in [DF].

Definition 7.2.1. A function

f(z) =
∞∑
k=0

ckz
k (7.2.1)

is called admissible, if the series (7.2.1) has a positive radius of convergence r > 0
and

f(0) = c0 = 1, f ′(0) = c1 = 1.

For example, the functions z 7→ exp z, z 7→ 1 + z and z 7→ (1− z)−1 are admissible.
For every matrix A ∈ Rn×n such that ‖A‖ < r we put

f(A) =
∞∑
k=0

ckA
k.

Theorem 7.2.2.1 If f is an admissible function and A : [a, b]→ Rn×n a continuous
matrix function, then

b∏
a

(I +A(t) dt) = lim
ν(D)→0

(
1∏

k=m

f(A(ξk)∆tk)

)
.

According to the previous theorem, the product integral of a function A can be
defined as the limit

lim
ν(D)→0

(
1∏

k=m

f(A(ξk)∆tk)

)
,

1 [DF], p. 50–53

141



where f is an admissible function. Product integral defined in this way is usually
denoted by the symbol

∏b
a f(A(t) dt), e.g.

b∏
a

(I +A(t) dt),
b∏
a

eA(t) dt,

b∏
a

(I −A(t) dt)−1

etc. The integral
∏b
a e

A(t) dt is taken as a primary definition in the monograph
[DF]. We note that it is possible to prove an analogy of Theorem 7.2.2 even for the
Kurzweil and McShane product integrals (see [JK, Sch1]).

7.3 Riemann-Stieltjes product integral

Consider two functions f, g : [a, b] → R. Then the ordinary Riemann-Stieltjes
integral is defined as the limit

∫ b

a

f(x) dg(x) = lim
ν(D)→0

m∑
i=1

f(ξi)(g(ti)− g(ti−1)), (7.3.1)

where D : a = t0 < t1 < · · · < tm = b is a tagged partition of [a, b] with tags
ξi ∈ [ti−1, ti], i = 1, . . . ,m (provided the limit exists). This integral was introduced
in 1894 by Thomas Jan Stieltjes (see [Kl], Chapters 44 and 47), who was working
with continuous functions f and non-decreasing functions g. Later in 1909 Friedrich
Riesz discovered that the Stieltjes integral can be used to represent continuous linear
functionals on the space C([a, b]). Also, if g(x) = x, we obtain the ordinary Riemann
integral.

Assume that the function g is of bounded variation, i.e. that

sup

{
m∑
i=1

|g(ti)− g(ti−1)|
}
<∞,

where the supremum is taken over all partitions a = t0 < t1 < · · · < tm = b of
interval [a, b]. Then (see e.g. [RG]) the Riemann-Stieltjes integral exists for every
continuous function f .
In particular, if f is continuous and g is a step function defined as

g = g1χ[t0,t1) + g2χ[t1,t2) + · · ·+ gm−1χ[tm−2,tm−1) + gmχ[tm−1,tm],

where a = t0 < t1 < · · · < tm = b, g1, . . . , gm ∈ R and χM denotes the characteris-
tic function of a set M , then

∫ b

a

f(x) dg(x) = f(t1)(g2 − g1) + · · ·+ f(tm−1)(gm − gm−1).
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Now consider a matrix function A : [a, b] → Rn×n. The product analogy of
Riemann-Stieltjes integral can be defined as

b∏
a

(I + dA(t)) = lim
ν(D)→0

1∏
i=m

(I +A(ti)−A(ti−1)) (7.3.2)

(see e.g. [Sch3, GJ, Gil, DN]), or even more generally as

b∏
a

(I + f(t)dA(t)) = lim
ν(D)→0

1∏
i=m

(I + f(ξi)(A(ti)−A(ti−1))),

where f : [a, b] → R (see the entry “Product integral” in [EM]). We now present
some basic statements concerning the Riemann-Stieltjes product integral (7.3.2).

Product integrals of the type (7.3.2) are encountered in survival analysis (when
working with the cumulative hazard A(t) =

∫ t
0 a(s) ds instead of the hazard rate

a(t); see Example 1.4.1) and in the theory of Markov processes (when working with
cumulative intensities Aij(t) =

∫ t
0 aij(s) ds for i 6= j and Aii(t) = −∑j 6=iAij(t)

instead of the transition rates aij(t); see Example 1.4.2).

A sufficient condition for the existence of the limit (7.3.2) is again that the variation
of A is finite. A different sufficient condition (see [DN]) says that the product
integral exists provided A is continuous and its p-variation is finite for some p ∈
(0, 2), i.e.

sup

{
m∑
i=1

‖A(ti)−A(ti−1)‖p
}
<∞,

where the supremum is again taken over all partitions a = t0 < t1 < · · · < tm = b
of interval [a, b].

If A : [a, b]→ Rn×n is a step function defined as

A = A1χ[t0,t1) +A2χ[t1,t2) + · · ·+Am−1χ[tm−2,tm−1) +Amχ[tm−1,tm],

where a = t0 < t1 < · · · < tm = b and A1, . . . , Am ∈ Rn×n, then

b∏
a

(I + dA(t)) = (I +Am −Am−1) · · · (I +A2 −A1). (7.3.3)

Thus, if Ak−1 −Ak = I for some k = 2, . . . ,m, then

b∏
a

(I + dA(t)) = 0,

i.e. the product integral need not be a regular matrix. Equation (7.3.3) also suggests
that the indefinite product integral

Y (x) =
x∏
a

(I + dA(t)), x ∈ [a, b],
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need not be a continuous function.

If A : [a, b]→ Rn×n is a continuously differentiable function, it can be proved that

b∏
a

(I + dA(t)) =
b∏
a

(I +A′(t) dt).

As we have seen in the previous chapters, the Riemann product integral provides
a solution of the differential equation

y′(x) = A(x)y(x),

y(a) = y0,

or the equivalent integral equation

y(x)− y0 =
∫ x

a

A(t)y(t) dt.

Similarly, the Riemann-Stieltjes product integral can be used as a tool for solving
the generalized differential equation

dy(x) = dA(x)y(x),

y(a) = y0,

or the equivalent integral equation

y(x)− y0 =
∫ x

a

dA(t)y(t).

The details are given in the paper [Sch3].

There exists a definition of product integral (see [JK, Sch1, Sch3]) that generalizes
both the Riemann and Riemann-Stieltjes product integrals: Consider a mapping V
that assigns a square matrix of order n to every point-interval pair (ξ, [x, y]), where
[x, y] ⊆ [a, b] and ξ ∈ [x, y]. We define

b∏
a

V (t, dt) = lim
ν(D)→0

1∏
i=m

V (ξi, [ti−1, ti]),

provided the limit exists. The choice

V (ξ, [x, y]) = I +A(ξ)(y − x)

leads to the Riemann product integral, whereas

V (ξ, [x, y]) = I +A(y)−A(x)

gives the Riemann-Stieltjes product integral.

We note that it is also possible to define the Kurzweil-Stieltjes and McShane-
Stieltjes product integrals (see [Sch3]), whose definitions are based on the notion
of ∆-fine M -partitions and K-partitions (see Chapter 6); these integrals generalize
the notion of Riemann-Stieltjes product integral.

144



Bibliography

[All] Allen E. S.: The scientific work of Vito Volterra.
American Mathematical Monthly 48, 516–519, 1941.

[Ber] Beránek J.: Bohuslav Hostinský (1884–1951).
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Prometheus, 1996 (in Czech).
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