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Steady compressible Navier–Stokes–Fourier system I
Ω ⊂ R3, bounded, smooth (C 2)
I Balance of mass

div(%u) = 0 (1)

%: Ω 7→ R . . . density of the fluid
u: Ω 7→ R3 . . . velocity field

I Balance of momentum

div(%u⊗ u)− div S +∇p = %f (2)

S . . . viscous part of the stress tensor (symmetric tensor)
f: Ω 7→ R3 . . . specific volume force (given)
p. . . pressure (scalar quantity)

I Balance of total energy

div
(
%Eu

)
+ div(q + pu) = %f · u + div

(
Su
)

(3)

E = 1
2 |u|

2 + e. . . specific total energy
e . . . specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)
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Steady compressible Navier–Stokes–Fourier system II

I Boundary conditions at ∂Ω for velocity: either homogeneous Dirichlet

u = 0 (4)

or Navier (partial slip)

u · n = 0, (Sn)τττ + λuτττ = 0, λ ≥ 0. (5)

I Boundary conditions at ∂Ω for temperature:

ϑ = ϑD , (6)

ϑD ≥ ϑ0, bounded, sufficiently smooth, assumed to be extended with the
same properties to the whole Ω.

I Total mass ∫
Ω

% dx = M > 0 (7)
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Thermodynamics I

We will work with basic quantities: density % and temperature ϑ

We assume: e = e(%, ϑ), p = p(%, ϑ)

Gibbs’ relation

1
ϑ

(
De(%, ϑ) + p(%, ϑ)D

(1
%

))
= Ds(%, ϑ) (8)

with s(%, ϑ) the specific entropy.

The specific entropy fulfills formally the entropy balance

div(%su) + div
( q
ϑ

)
= σ =

S : ∇u
ϑ

− q · ∇ϑ
ϑ2 (9)

Second law of thermodynamics

σ =
S : ∇u
ϑ

− q · ∇ϑ
ϑ2 ≥ 0 (10)
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Thermodynamics II

Another possibility is to work with internal energy balance (heat equation)

Balance of internal energy

div
(
%eu
)

+ div q + p div u = S : ∇u

The troublemaker is the nonlinear term on the rhs. Anyway, this equation plays
an important role in the construction of weak solutions.



Weak solution I

I Weak formulation of the continuity equation
Both %, u extended by zero outside Ω∫

R3
%u · ∇ψ dx = 0 ∀ψ ∈ C 1

0 (R3) (11)

I Renormalized continuity equation

∫
R3

b(%)u ·∇ψ dx +

∫
R3

(
%b′(%)−b(%)

)
div uψ dx = 0 ∀ψ ∈ C 1

0 (R3) (12)

for all b ∈ C 1([0,∞)) with b′(z) = 0 for z ≥ K > 0.

I Weak formulation of the momentum equation

∫
Ω

(
− %(u⊗ u) : ∇ϕϕϕ− p(%, ϑ) divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

+λ

∫
∂Ω

u ·ϕϕϕ dS =

∫
Ω

%f ·ϕϕϕ dx ∀ϕϕϕ ∈ C 1
0 (Ω;R3)(∈ C 1

0,n(Ω;R3))

(13)
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Weak solution II
Weak formulation of the total energy balance∫

Ω

−
(1
2
%|u|2 + %e(%, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
%f · uψ + p(%, ϑ)u · ∇ψ

)
dx

+

∫
Ω

((
− S(ϑ,∇u)u

)
· ∇ψ + q · ∇ψ

)
dx

−
∫
∂Ω

q · n dS−λ
∫
∂Ω

|u|2ψ dS ∀ψ ∈ C 1(Ω)

(14)

Weak formulation of the entropy inequality

∫
Ω

(S(ϑ,∇u) : ∇u
ϑ

− ∇q · ∇ϑ
ϑ2

)
ψ dx −

∫
∂Ω

q · n
ϑ

ψ dS

≤
∫

Ω

(−q · ∇ψ
ϑ

− %s(%, ϑ)u · ∇ψ
)

dx ∀ nonnegative ψ ∈ C 1(Ω)

(15)

This formulation works fine for given heat flux on the boundary, but not for
given temperature on the boundary.
Problem: boundary integrals with the heat flux!
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Weak solution III

One possible remedy: consider test functions with compact support.

Problem: We are not able to deduce a priori estimates!

Solution is based on the same idea used by Chaudhuri and Feireisl for the
evolutionary case, to consider so-called ballistic energy inequality.

Chaudhuri, N., Feireisl, E.: Navier–Stokes–Fourier system with Dirichlet
boundary conditions. ArXiv:2106.05315 (2021).

Use as test function ψ = 1 in weak formulation of the energy equality and
ψ = ϑ̃ in weak formulation of the entropy inequality, where ϑ̃ is an arbitrary
extension of the boundary data which is sufficiently regular and strictly positive
in Ω.

Weak formulation of the ballistic energy inequality∫
Ω

( ϑ̃
ϑ
S : ∇u− q · ∇ϑ ϑ̃

ϑ2

)
dx+λ

∫
∂Ω

|u|2 dS

≤
∫

Ω

(
%f · u− %s(%, ϑ)u · ∇ϑ̃− q

ϑ
· ∇ϑ̃

)
dx .

(16)
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Weak solution IV

Definition
The triple (%, u, ϑ) is called a renormalized weak solution to our system (1)–(7)
if % ≥ 0, ϑ > 0 a.e. in Ω, u = 0 (or u · n = 0), ϑ = ϑD on ∂Ω,

∫
Ω
% dx = M,

and the weak and renormalized formulation of the continuity equation, weak
formulation of the total energy balance with compactly supported test
functions, weak formulation of the entropy inequality balance with compactly
supported test functions and the ballistic energy inequality for any ϑ̃ specified
above hold true.

Problem with integrability for some interesting cases:

Definition
The triple (%, u, ϑ) is called a renormalized variational entropy solution to our
system (1)–(7), if % ≥ 0, ϑ > 0 a.e. in Ω, u = 0 (or u · n = 0), ϑ = ϑD on ∂Ω,∫

Ω
% dx = M, and the weak and renormalized formulation of the continuity

equation, weak formulation of the entropy inequality balance with compactly
supported test functions and the ballistic energy inequality for any ϑ̃ specified
above hold true.

Both definitions are reasonable in the sense that any smooth weak or entropy
variational solutions are actually classical solutions to (1)–(7) (weak-strong
compatibility).
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Constitutive relations I

I Newtonian fluid

S = S(ϑ,∇u) = µ(ϑ)
[
∇u + (∇u)T − 2

d
div uI

]
+ ξ(ϑ) div uI (17)

µ(·): R+ → R+,
ξ(·): R+ → R+

0 : viscosity coefficients
I Fourier’s law

q = q(ϑ,∇ϑ) = −κ(ϑ)∇ϑ (18)

κ(·): R+ → R+. . . heat conductivity

I Pressure law

p = p(%, ϑ) = (γ − 1)%e(%, ϑ), γ > 1 (19)

If p ∈ C 1((0,∞)2), then it is of the form

p(%, ϑ) = ϑ
γ

γ−1 P
( ρ

ϑ
1

γ−1

)
(20)

with P ∈ C 1((0,∞)).
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Constitutive relations II

We assume

P(·) ∈ C 1([0,∞)) ∩ C 2((0,∞)),
P(0) = 0, P ′(0) = p0 > 0, P ′(Z) > 0, Z > 0,

lim
Z→∞

P(Z)

Zγ
= p∞ > 0,

0 <
γP(Z)− ZP ′(Z)

Z
≤ c5 <∞, Z > 0.

(21)

We have for K > 0 a fixed constant

c6%ϑ ≤ p(%, ϑ) ≤ c7%ϑ, for % ≤ Kϑ
1

γ−1 ,

c8%
γ ≤ p(%, ϑ) ≤ c9

{
ϑ

γ
γ−1 , for % ≤ Kϑ

1
γ−1 ,

%γ , for % > Kϑ
1

γ−1 .

(22)

∂p(%, ϑ)

∂%
> 0 in (0,∞)2,

p = d%γ + pm(%, ϑ), d > 0, with
∂pm(%, ϑ)

∂%
> 0 in (0,∞)2.

(23)
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Constitutive relations III

The specific internal energy

1
γ − 1

p∞%
γ−1 ≤ e(%, ϑ) ≤ c10(%γ−1 + ϑ),

∂e(%, ϑ)

∂%
% ≤ c11(%γ−1 + ϑ)

 in (0,∞)2. (24)
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Constitutive relations IV

Therefore, for a fixed % > 0 we know that limϑ→0+ s(%, ϑ) exists. We assume
that limit is finite. Then we may always choose the additive constant in the
definition of the specific entropy in such a way that for any % ≥ 0

lim
ϑ→0+

s(%, ϑ) = 0. (27)

Then
|s(%, ϑ)| ≤ c12(1 + | ln %|+ [lnϑ]+) in (0,∞)2. (28)
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Constitutive relations V

I Heat conductivity
κ(ϑ) ∼ (1 + ϑ)m (29)

m ∈ R+

I Viscosity coefficients

C1(1 + ϑ) ≤ µ(ϑ) ≤ C2(1 + ϑ)
0 ≤ ξ(ϑ) ≤ C2(1 + ϑ)

(30)

µ(·) globally Lipschitz continuous, ξ(·) continuous
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Main result

Theorem
Let Ω ⊂ Rd be a C 2 bounded domain and ϑD ∈W 2,q(Ω) for some q > d .
a) Dirichlet condition for the velocity: Let γ > 5

3 and m > max{ 2
3 ,

2
3(γ−1)

} or
γ ∈

( 4
3 ,

5
3 ] and m > max{ 2

3 ,
2(3γ−2)
9(3γ−4)

} Then there exists a variational entropy
solution to our problem, where u ∈W 1,2

0 (Ω;R3), ϑ ∈ L3m(Ω) ∩W 1,r (Ω) for
some 1 < r ≤ 2 and % ∈ Lγ+Θ(Ω) for some Θ > 0. If, additionally, γ > 5

3 and
m > 1, then the solution is also the weak solution.

b) Navier condition for the velocity: Let γ > 1 and m > max{ 2
3 ,

2
3(γ−1)

}. Let
λ > 0 or λ ≥ 0 and Ω is not axially symmetric. Then there exists a variational
entropy solution to our problem, where u ∈W 1,2

0,n (Ω;R3),
ϑ ∈ L3m(Ω) ∩W 1,r (Ω) for some 1 < r ≤ 2 and % ∈ Lγ+Θ(Ω) for some Θ > 0.
If, additionally, γ > 5

4 , m > 1, m > 6γ
15γ−16 if γ ∈

( 5
4 ,

4
3 ] and m > 18−6γ

9γ−7 if
γ ∈

( 4
3 ,

5
3

)
, then the solution is also the weak solution.
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A priori estimates I

We take the ballistic energy inequality and choose a particular function ϑ̃ := ϑL

such that
∆ϑL = 0 in Ω

ϑL = ϑD on ∂Ω.

We have
ϑL ∈W 2,q(Ω) ↪→ C 1(Ω)

θ ≤ ϑL ≤ θ in Ω.

Then ∫
Ω

( ϑ̃
ϑ
S(ϑ,∇u) : ∇u− q(ϑ,∇ϑ) · ∇ϑ ϑ̃

ϑ2

)
dx

≥ θ
∫

Ω

(S(ϑ,∇u) : ∇u
ϑ

+
κ(θ)|∇ϑ|2

ϑ2

)
dx

≥ C
(
‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ

m
2 ‖21,2

)
− C(ϑD).
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A priori estimates II

Therefore

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2

≤ C

∫
Ω

(
%f · u− %s(%, ϑ)u · ∇ϑL +

κ(ϑ)∇ϑ · ∇ϑL

ϑ

)
dx + C(ϑD).

(31)

We have∫
Ω

κ(ϑ)∇ϑ · ∇ϑL

ϑ
dx =

∫
Ω

∇K(ϑ) · ∇ϑL dx

= −
∫

Ω

K(ϑ)∆ϑL dx +

∫
∂Ω

K(ϑ)
∂ϑL

∂n
dσ =

∫
∂Ω

K(ϑD)
∂ϑL

∂n
dσ,

where K ′(z) = κ(z)
z
.
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A priori estimates III

We first consider γ > 5
3 . Then∣∣∣ ∫

Ω

%f·u dx
∣∣∣ ≤ C‖u‖6‖%‖ 6

5
≤ ε‖u‖21,2 + C(ε)‖%‖26

5

≤ ε‖u‖21,2 + C(ε)‖%‖
5q−6
3(q−1)

1 ‖%‖
q

3(q−1)
q ≤ ε‖u‖21,2 + C(ε)M

5q−6
3(q−1) ‖%‖

q
3(q−1)
q .

By properties of the entropy∣∣∣ ∫
Ω

%s(%, ϑ)u·∇ϑL dx
∣∣∣ ≤ C

∫
Ω

(
%+ %[ln %]+ + %[lnϑ]+ + 1

)
|u| dx

≤ ε‖u‖21,2 + ε(‖ϑ
m
2 ‖21,2 + ‖ϑD‖21,2) + C(ε, δ)‖%‖

q
3(q−1)

+δ

q + C(ε)

with δ > 0, arbitrarily small.

Whence, for arbitrary q > 6
5 and δ > 0

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2 ≤ C(q, δ, ϑD)

(
1 + ‖%‖

q
3(q−1)

+δ

q

)
. (32)
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A priori estimates IV

Using as test function in the momentum balance the function
ϕϕϕ := B

(
%Θ − 1

|Ω|

∫
Ω
%Θ dx

)
for some Θ > 0, where B is the standard Bogovskii

operator, we end up with∫
Ω

p(%, ϑ)%Θ dx =
1
|Ω|

∫
Ω

%Θ dx
∫

Ω

p(%, ϑ) dx +

∫
Ω

S(ϑ,∇u) : ∇ϕϕϕ dx

−
∫

Ω

%(u⊗ u) : ∇ϕϕϕ dx −
∫

Ω

%f ·ϕϕϕ dx .
(33)

Then

‖%‖γ+Θ
γ+Θ ≤ C(δ)

(
1 + ‖%‖

1+Θ+ γ+Θ
3(γ+Θ−1)

+δ

γ+Θ + ‖%‖
Θ+ γ+Θ

6(γ+Θ−1)
+δ+ γ+Θ

3m(γ+Θ−1)

γ+Θ

)
with Θ = min{2γ − 3, γ 3m−2

3m+2 }.

We get the estimate (r ≤ min
{
2, 3m

m+1

}
)

‖u‖1,2 + ‖ lnϑ‖1,2 + ‖ϑ
m
2 ‖1,2 + ‖ϑ‖1,r + ‖%‖γ+Θ ≤ C (34)

provided

γ >
5
3
, m > max

{2
3
,

2(γ − 1)

6γ2 − 11γ + 3

}
.
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A priori estimates V

If γ ≤ 5
3 , we cannot get the estimates of the density by the Bogovskii operator.

We follow the ideas from the papers

A. Novotný, M. Pokorný: Weak and variational solutions to steady
equations for compressible heat conducting fluids, SIAM Journal on
Mathematical Analysis 43 (2011), 1158–1188.

(for the Dirichlet boundary conditions for the velocity)

D. Jesslé, A. Novotný, M. Pokorný: Steady Navier–Stokes–Fourier system
with slip boundary conditions, Mathematical Models & Methods in
Applied Sciences 24 (2014), 751–781.

(for the Navier boundary conditions for the velocity). The main idea is based
on using as test function

ϕi (x) ∼ (x − y)i
|x − y |α .
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A priori estimates VI

After some complicated estimates, in particular near the boundary, we end up
with

sup
y∈Ω

∫
BR0 (y)∩Ω

p(%, ϑ)

|x − y |α dx

≤ C
(
1 + ‖p(%, ϑ)‖1 + ‖u‖1,2(1 + ‖ϑ‖3m) + ‖%|u|2‖1

)
,

(35)

for the Dirichlet boundary conditions for the velocity, and

sup
y∈Ω

∫
BR0 (y)∩Ω

( p(%, ϑ)

|x − y |α +
%|u|2

|x − y |α
)

dx

≤ C
(
1 + ‖p(%, ϑ)‖1 + ‖u‖1,2(1 + ‖ϑ‖3m) + ‖%|u|2‖1

)
,

(36)

for the Navier boundary conditions for the velocity. We may combine these
estimates with

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2 ≤ C(δ, ϑD)

(
1 + ‖%u‖1+δ

1+δ

)
(37)

with δ > 0, arbitrarily small. This yields after many several technical
computations

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2 + ‖%‖sγ + ‖%|u|2‖s ≤ C (38)

for some s > 1; we also need to check when s > 6
5 .
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)
,

(35)

for the Dirichlet boundary conditions for the velocity, and

sup
y∈Ω

∫
BR0 (y)∩Ω

( p(%, ϑ)

|x − y |α +
%|u|2

|x − y |α
)

dx

≤ C
(
1 + ‖p(%, ϑ)‖1 + ‖u‖1,2(1 + ‖ϑ‖3m) + ‖%|u|2‖1

)
,

(36)

for the Navier boundary conditions for the velocity. We may combine these
estimates with

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2 ≤ C(δ, ϑD)

(
1 + ‖%u‖1+δ

1+δ

)
(37)

with δ > 0, arbitrarily small. This yields after many several technical
computations

‖u‖21,2 + ‖ lnϑ‖21,2 + ‖ϑ
m
2 ‖21,2 + ‖%‖sγ + ‖%|u|2‖s ≤ C (38)

for some s > 1; we also need to check when s > 6
5 .
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Weak compactness I

Let {fn}∞n=1 ⊂ L∞(Ω;R3) be a sequence of functions such that ‖fn‖∞ ≤ C and
fn → f (strongly) in L1(Ω;R3). Assume that (%n, un, ϑn) is a sequence of
solutions to our problems generated by the sequence of the right-hand sides fn
which fulfils the bound

‖un‖1,2 + ‖ lnϑn‖1,2 + ‖ϑ
m
2
n ‖1,2 + ‖ϑn‖1,r + ‖%n‖γ+Θ < C

with γ, m, r and Θ satisfying the restrictions deduced above.

Then
un ⇀ u weakly in W 1,2

0 (Ω;R3),

un → u strongly in Lq(Ω;R3), ∀1 ≤ q < 6,

ϑn ⇀ ϑ weakly in W 1,r (Ω) ∩ L3m(Ω),

ϑn → ϑ strongly in Lq(Ω), ∀1 ≤ q < 3m,

lnϑn → lnϑ strongly in Lq(Ω), ∀1 ≤ q < 6,

%n ⇀ % weakly in Lγ+Θ(Ω),

un → u strongly in Lq(∂Ω;R3), ∀1 ≤ q < 4.
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Weak compactness II

%nun ⇀ %u in some Lq(Ω;R3); therefore∫
Ω

%u · ∇ψ dx = 0 ∀ψ ∈ C 1
0 (R3). (39)

Moreover, if γ + Θ ≥ 2 (not true for small m and γ), the pair is also a
renormalized solution to the continuity equation.

∫
Ω

(
− %(u⊗ u) : ∇ϕϕϕ− p(%, ϑ) divϕϕϕ+ S(ϑ,∇u) : ∇ϕϕϕ

)
dx

=

∫
Ω

%f ·ϕϕϕ dx ∀ϕϕϕ ∈ C 1
0 (Ω;R3),

(40)

where p(%, ϑ) denotes the weak limit of p(%n, ϑn) in L1(Ω) (or, equivalently, of
p(%n, ϑ) due to the strong convergence of the temperature).
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Weak compactness III

Passing to the limit in the entropy inequality we get, using the weak lower
semicontinuity for the first two terms∫

Ω

(S(ϑ,∇u) : ∇u
ϑ

+
κ(ϑ)|∇ϑ|2

ϑ2

)
ψ dx ≤

∫
Ω

(κ(ϑ)∇ϑ · ∇ψ
ϑ

−%s(%, ϑ)u·∇ψ
)

dx

(41)
for all ψ ∈ C 1

0 (Ω), non-negative in Ω.

Similarly, for the ballistic energy inequality∫
Ω

( ϑ̃
ϑ
S(ϑ,∇u) : ∇u + κ(ϑ)|∇ϑ|2 ϑ̃

ϑ2

)
dx+λ

∫
∂Ω

|u|2 dS

≤
∫

Ω

(
%f · u− %s(%, ϑ)u · ∇ϑ̃+

κ(ϑ)∇ϑ
ϑ

· ∇ϑ̃
)

dx
(42)

for any ϑ̃ ∈ C 1(Ω), positive, ϑ̃|∂Ω = ϑD .
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Weak compactness IV

If γ + Θ ≥ 2 (or s > 6
5 ) and m > 1, we can pass to the limit in the total energy

balance

−
∫

Ω

(1
2
%|u|2 + %e(%, ϑ) + p(%, ϑ)

)
u · ∇ψ dx

=

∫
Ω

(
%f · uψ −

(
S(ϑ, u)u + κ(ϑ)∇ϑ

)
· ∇ψ

)
dx ∀ψ ∈ C 1

0 (Ω).

(43)

To conclude, we need to show the strong convergence of the density. For this,
we need the renormalized continuity equation for the limit density and velocity.
If γ + Θ ≥ 2, we may use the approach due to P.L. Lions. We may follow

A. Novotný, M.P.: Steady compressible Navier–Stokes–Fourier system for
monoatomic gas and its generalizations, Journal of Differential Equations
251 (2011), 270–315.
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Strong convergence of density I

Assume first that the density is bounded in L2(Ω). We use test functions in the
momentum equation for n ∈ N the function ϕϕϕ := ∇∆−1(1Ω%

σ
n ) and for the

limit problem ϕϕϕ := ∇∆−1(1Ω%σ), where 0 < σ < min{1,Θ}.

p(%, ϑ)%σ −
(4
3
µ(ϑ) + ξ(ϑ)

)
%σ div u = p(%, ϑ) %σ −

(4
3
µ(ϑ) + ξ(ϑ)

)
%σ div u

a.e. in Ω.

Pass to the limit in the renormalized continuity equation∫
R3
%σu · ∇ψ dx + (1− σ)

∫
R3
%σ div uψ dx = 0

for any ψ ∈ C 1
0 (R3).

We renormalize the equation above and combine it with the effective viscous
flux identity.∫
R3
%σ

1
σ u·∇ψ dx+

1− σ
σ

∫
R3

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)%σ−p(%, ϑ) %σ

)
%σ

1
σ
−1
ψ dx = 0

for any ψ ∈ C 1
0 (R3).
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Strong convergence of density II

We take ψ ≡ 1 in Ω∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
p(%, ϑ)%σ − p(%, ϑ) %σ

)
%σ

1
σ
−1
ψ dx = 0.

We use properties of the pressure function to get∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

d
(
%γ+σ − %γ %σ

)
%σ

1
σ
−1
ψ dx

+

∫
Ω

1
4
3µ(ϑ) + ξ(ϑ)

(
pm(%, ϑ)%σ − pm(%, ϑ) %σ

)
%σ

1
σ
−1
ψ dx = 0.

Both functions % 7→ %γ and % 7→ pm(%, ϑ) are increasing and the temperature
converges strongly, thus both integrals above are non-negative and thus zero.(

pm(%, ϑ)%σ − pm(%, ϑ) %σ
)
%σ

1
σ
−1

= 0

a.e. in Ω.
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Strong convergence of density III

%n → 0 strongly in Lq({x ∈ Ω : %σ = 0}) for any 1 ≤ q < γ + Θ.

Due to the monotonicity of the power function %γ+σ = %γ %σ which implies
%γ = %σ

γ
σ .

This yields that %σn → %σ in Lq(Ω), 1 ≤ q < γ+Θ
σ

; whence also %n → % in
Lq(Ω), 1 < q < γ + Θ.

If the density is not bounded in L2(Ω), we do not know whether the
renormalized continuity equation is fulfilled. To this aim, following the idea of
E. Feireisl from the evolutionary case, we additionally estimate the oscillation
defect measure

oscq[%n → %](Q) = sup
k>1

(
lim sup
n→∞

∫
Q

|Tk(%n)− Tk(%)|q dx
)
, (44)

where Tk(·) is a suitable cut-off function. if we get the estimate for q > 2, it is
possible to verify that if the sequence of densities and velocities satisfies the
renormalized continuity equation, then the same holds also for the limit
functions. The rest is similar as above, with certain small modifications.
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