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Another advantage of a mathematical statement is that it is so definite
that it might be definitely wrong. . . Some verbal statements have not
this merit.

F.L.Richardson (1881-1953)
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Chapter 1

Introduction

Despite the concerted effort of generations of excellent mathematicians, the
fundamental problems in partial differential equations related to continuum
fluid mechanics remain largely open. Solvability of the Navier–Stokes sys-
tem describing the motion of an incompressible viscous fluid is one in the
sample of millenium problems proposed by Clay Institute, see [7]. In con-
trast with these apparent theoretical difficulties, the Navier–Stokes system
became a well established model serving as a reliable basis of investigation in
continuum fluid mechanics, including the problems involving turbulence phe-
nomena. An alternative approach to problems in fluid mechanics is based
on the concept of weak solutions. As a matter of fact, the balance laws,
expressed in classical fluid mechanics in the form of partial differential equa-
tions, have their origin in integral identities that seem to be much closer
to the modern weak formulation of these problems. Leray [13] constructed
the weak solutions to the incompressible Navier–Stokes system as early as
in 1930, and his “turbulent solutions” are still the only ones available for
investigating large data and/or problems on large time intervals. Recently,
the real breakthrough is the work of Lions [14] who generalized Leray’s the-
ory to the case of barotropic compressible viscous fluids (see also Vaigant
and Kazhikhov [19]). The quantities playing a crucial role in the descrip-
tion of density oscillations as the effective viscous flux were identified and
used in combination with a renormalized version of the equation of continu-
ity to obtain first large data/large time existence results in the framework of
compressible viscous fluids.

The main goal of this lecture series is to present the mathematical theory
of compressible barotropic fluids in the framework of Lions [14], together with
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8 CHAPTER 1. INTRODUCTION

the extensions developed in [8]. After an introductory part we first focus on
the crucial question of stability of a family of weak solutions that is the
core of the abstract theory, with implications to numerical analysis and the
associated real world applications. For the sake of clarity of presentation, we
discuss first the case, where the pressure term has sufficient growth for large
value of the density yielding sufficiently strong energy bounds. We also start
with the simplest geometry of the physical space, here represented by a cube,
on the boundary of which the fluid satisfies the slip boundary conditions.
As is well-known, such a situation may be reduced to studying the purely
spatially periodic case, where the additional difficulties connected with the
presence of boundary conditions is entirely eliminated. Next part of this
lecture series will be devoted to the detailed existence proof with (nowadays)
optimal restriction on the pressure function. We will also consider the case
of homogeneous Dirichlet boundary conditions.



Chapter 2

Mathematical model

As the main goal of this lecture series is the mathematical theory, we avoid
a detailed derivation of the mathematical model of a compressible viscous
fluid. Remaining on the platform of continuum fluid mechanics, we suppose
that the motion of a compressible barotropic fluid is described by means of
two basic fields :

the mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .% = %(t, x),

the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u = u(t, x),

functions of the time t ∈ R and the spatial position x ∈ R3.

2.1 Mass conservation

Let us recall the classical argument leading to the mathematical formulation
of the physical principle of mass conservation, see e.g. Chorin and Marsden
[3]. Consider a volume B ⊂ R3 containing a fluid of density %. The change
of the total mass of the fluid contained in B during a time interval [t1, t2],
t1 < t2 is given as ∫

B

%(t2, x) dx−
∫
B

%(t1, x) dx.

One of the basic laws of physics incorporated in continuum mechanics as
the principle of mass conservation asserts that mass is neither created nor
destroyed. Accordingly, the change of the fluid mass in B is only because of
the mass flux through the boundary ∂B, here represented by %u · n, where

9



10 CHAPTER 2. MATHEMATICAL MODEL

n denotes the outer normal vector to ∂B:∫
B

%(t2, x) dx−
∫
B

%(t1, x) dx = −
∫ t2

t1

∫
∂B

%(t, x)u(t, x) ·n(x) dSx dt. (2.1)

One should remember formula (2.1) since it contains all relevant piece
of information provided by physics. The following discussion is based on
mathematical arguments based on the (unjustified) hypotheses of smoothness
of all fields in question. To begin, apply Gauss–Green theorem to rewrite
(2.1) in the form:∫

B

%(t2, x) dx−
∫
B

%(t1, x) dx = −
∫ t2

t1

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt.

Furthermore, fixing t1 = t and performing the limit t2 → t we may use
the mean value theorem to obtain∫

B

∂t%(t, x) dx = lim
t2→t

1

t2 − t

(∫
B

%(t2, x) dx−
∫
B

%(t, x) dx
)

(2.2)

= − lim
t2→t

1

t2 − t

∫ t2

t

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt

= −
∫
B

divx

(
%(t, x)u(t, x)

)
dx.

Finally, as relation (2.2) should hold for any volume element B, we may
infer that

∂t%(t, x) + divx

(
%(t, x)u(t, x)

)
= 0. (2.3)

Relation (2.3) is a first order partial differential equation called equation of
continuity.

2.2 Balance of momentum

Using arguments similar to the preceding part, we derive balance of momen-
tum in the form

∂t

(
%(t, x)u(t, x)

)
+divx

(
%(t, x)u(t, x)⊗u(t, x)

)
= divxT(t, x)+%(t, x)f(t, x),

(2.4)
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or, equivalently (cf. (2.3)),

%(t, x)
[
∂tu(t, x) + u(t, x) · ∇xu(t, x)

]
= divxT(t, x) + %(t, x)f(t, x),

where the tensor T is the Cauchy stress and f denotes the (specific) external
force acting on the fluid.

We adopt the standard mathematical definition of fluids in the form of
Stokes’ law

T = S− pI,
where S is the viscous stress and p is a scalar function termed pressure. In
addition, we suppose that the viscous stress is a linear function of the velocity
gradient, specifically S obeys Newton’s rheological law

S = S(∇xu) = µ

(
∇xu+∇t

xu−
2

3
divxuI

)
+ ηdivxuI, (2.5)

with the shear viscosity coefficient µ and the bulk viscosity coefficient η, here
assumed constant, µ > 0, η ≥ 0.

In order to close the system, we suppose the fluid is barotropic, mean-
ing the pressure p is an explicitly given function of the density p = p(%).
Accordingly, for λ = η − 2

3
µ

divxT = µ∆u+ (λ+ µ)∇xdivxu−∇xp(%), µ > 0, λ ≥ −2

3
µ, (2.6)

and equations (2.3), (2.4) can be written in a concise form as

Navier–Stokes system

∂t%+ divx(%u) = 0, (2.7)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = µ∆u+ (λ+ µ)∇xdivxu+ %f . (2.8)

The system of equations (2.7), (2.8) should be compared with a “more
famous” incompressible Navier–Stokes system, where the density is constant,
say % ≡ 1, while (2.7), (2.8) “reduces” to

divxu = 0, (2.9)
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∂tu+ divx(u⊗ u) +∇xp = µ∆u+ f . (2.10)

Unlike in (2.8), the pressure p in (2.10) is an unknown function determined
(implicitly) by the fluid motion! The pressure in the incompressible Navier–
Stokes system has non-local character and may depend on the far field be-
havior of the fluid system.

2.3 Spatial domain and boundary conditions

In the real world applications, the fluid is confined to a bounded spatial do-
main Ω ⊂ R3. The presence of the physical boundary ∂Ω and the associated
problem of fluid-structure interaction represent a source of substantial diffi-
culties in the mathematical analysis of fluids in motion. In order to avoid
technicalities, we suppose in Part II of the lecture series that the motion is
space-periodic, specifically,

%(t, x) = %(t, x+ ai), u(t, x) = u(t, x+ ai) for all t, x, (2.11)

where the period vectors a1 = (a1, 0, 0), a
2 = (0, a2, 0), a

3 = (0, 0, a3) are
given. Equivalently, we may assume that Ω is a flat torus,

Ω = [0, a1]|{0,a1} × [0, a2]|{0,a2} × [0, a3]|{0,a3}.

The space-periodic boundary conditions have a nice physical interpreta-
tion in fluid mechanics, see Ebin [5]. Indeed, if we restrict ourselves to the
classes of functions defined on the torus Ω and satisfying the extra geometric
restrictions:

%(t, x) = %(t,−x), ui(t, ·, xi, ·) = −ui(t, ·,−xi, ·), i = 1, 2, 3,

ui(t, ·, xj, ·) = ui(t, ·,−xj, ·) for i 6= j,

and, similarly,

fi(t, ·, xi, ·) = −fi(t, ·,−xi, ·), fi(t, ·, xj, ·) = fi(t, ·,−xj, ·) for i 6= j,

we can check that

• equations (2.7), (2.8) are invariant with respect to the above transfor-
mations;
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• the velocity field u satisfies the so-called complete slip conditions

u · n = 0, [Sn]× n = 0 (2.12)

on the boundary of the spatial block [0, a1]× [0, a2]× [0, a3].

We remark that the most commonly used boundary conditions for viscous
fluids confined to a general spatial domain Ω (not necessarily a flat torus)
are the no-slip

u|∂Ω = 0. (2.13)

We will focus on this type of the boundary condition in Part III of this
lecture series. As a matter of fact, the problem of the choice of correct
boundary conditions in the real world applications is rather complex, some
parts of the boundaries may consist of a different fluid in motion, or the
fluid domain is not a priori known (free boundary problems). The interested
reader may consult Priezjev and Troian [17] for relevant discussion.

2.4 Initial conditions

Given the initial state at a reference time t0, say t0 = 0, the time evolution
of the fluid is determined as a solution of the Navier–Stokes system (2.7),
(2.8). It is convenient to introduce the initial density

%(0, x) = %0(x), x ∈ Ω, (2.14)

together with the initial distribution of the momentum,

(%u)(0, x) = (%u)0(x), x ∈ Ω, (2.15)

as, strictly speaking, the momentum balance (2.8) is an evolutionary equation
for %u rather than u. Such a difference will become clear in the so-called weak
formulation of the problem discussed in the forthcoming section.
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Chapter 3

Weak solutions

A vast class of non-linear evolutionary problems arising in mathematical
fluid mechanics is not known to admit classical (differentiable, smooth) solu-
tions for all choices of data and on an arbitrary time interval. On the other
hand, most of the real world problems call for solutions defined in-the-large
approached in the numerical simulations. In order to perform a rigorous
analysis, we have to introduce a concept of generalized or weak solutions,
for which derivatives are interpreted in the sense of distributions. The dis-
sipation represented by viscosity should provide a strong regularizing effect.
Another motivation, at least in the case of the compressible Navier–Stokes
system (2.7), (2.8), is the possibility to study the fluid dynamics emanating
from irregular initial state, for instance, the density %0 may not be continuous.
As shown by Hoff [11], the singularities incorporated initially will “survive”
in the system at any time; thus the weak solutions are necessary in order to
describe the dynamics.

3.1 Equation of continuity – weak formula-

tion

We consider equation (2.7) on the space-time cylinder (0, T ) × Ω, where
Ω is the flat torus introduced in Section 2.3. Multiplying (2.7) on ϕ ∈
C∞
c ((0, T ) × Ω), integrating the resulting expression over (0, T ) × Ω, and

performing by parts integration, we obtain∫ T

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt = 0. (3.1)

15



16 CHAPTER 3. WEAK SOLUTIONS

Definition 3.1 We say that a pair of functions %, u is a weak solution
to equation (2.7) in the space-time cylinder (0, T )×Ω if %, %u are locally
integrable in (0, T )× Ω and the integral identity (3.1) holds for any test
function ϕ ∈ C∞

c ((0, T )× Ω).

3.1.1 Weak-strong compatibility

It is easy to see that any classical (smooth) solution of equation (2.7) is also a
weak solution. Similarly, any weak solution that is continuously differentiable
satisfies (2.7) pointwise. Such a property is called weak-strong compatibility.

3.1.2 Weak continuity

Up to now, we have left apart the problem of satisfaction of the initial con-
dition (2.14). Obviously, some kind of weak continuity is needed for (2.14)
to make sense. To this end, we make extra hypotheses, namely,

% ∈ L1(0, T ;L1
loc(Ω)), %u ∈ L1(0, T ;L1

loc(Ω;R
3)). (3.2)

Taking

ϕ(t, x) = ψ(t)φ(x), ψ ∈ C∞
c (0, T ), φ ∈ C∞

c (Ω)

as a test function in (3.1) we may infer, by virtue of (3.2), that the function

t 7→
∫
Ω

%(t, x)φ(x) dx is absolutely continuous in [0, T ] (3.3)

for any φ ∈ C∞
c (Ω). In particular, the initial condition (2.14) may be satisfied

in the sense that

lim
t→0+

∫
Ω

%(t, x)φ(x) dx =

∫
Ω

%0(x)φ(x) dx for any φ ∈ C∞
c (Ω).

To this aim, take

ϕε(t, x) = ψε(t)ϕ(t, x), ϕ ∈ C∞
c ([0, T ]× Ω),
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where ψε ∈ C∞
c (0, τ),

0 ≤ ψε ≤ 1, ψε ↗ 1[0,τ ] as ε→ 0.

Taking ϕε as a test function in (3.1) and letting ε → 0, we conclude,
making use of (3.3), that∫

Ω

%(τ, x)ϕ(τ, x) dx−
∫
Ω

%0(x)ϕ(0, x) dx (3.4)

=

∫ τ

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞
c ([0, T ]× Ω).

Formula (3.4) can be alternatively used as a definition of weak solution
to problem (2.7), (2.14). It is interesting to compare (3.4) with the original
integral formulation of the principle of mass conservation stated in (2.1). To
this end, we take

ϕε(t, x) = φε(x),

with φε ∈ C∞
c (B) such that

0 ≤ φε ≤ 1, φε ↗ 1B as ε→ 0.

It is easy to see that∫
Ω

%(τ, x)ϕε(τ, x) dx−
∫
Ω

%0(x)ϕε(0, x) dx→
∫
B

%(τ, x) dx−
∫
B

%0(x) dx

as ε→ 0, which coincides with the expression on the left-hand side of (2.1).
Consequently, the right-hand side of (3.4) must posses a limit and we set∫ τ

0

∫
Ω

%(t, x)u(t, x) · ∇xφε(x) dx dt→ −
∫ τ

0

∫
∂B

%(t, x)u(t, x) · n dSx dt.

In other words, the weak solutions possess a normal trace on the boundary
of the cylinder (0, τ)×B that satisfies (2.1), see Chen and Frid [2] for more
elaborate treatment of the normal traces of solutions to conservation laws.

3.1.3 Total mass conservation

Taking ϕ = 1 for t ∈ [0, τ ] in (3.4) we obtain∫
Ω

%(τ, x) dx =

∫
Ω

%0(x) dx =M0 for any τ ≥ 0, (3.5)

meaning, the total mass M0 of the fluid is a constant of motion.
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3.2 Balance of momentum — weak formula-

tion

Similarly to the preceding part, we introduce a weak formulation of the bal-
ance of momentum (2.8):

Definition 3.2 The functions %, u represent a weak solution to the mo-
mentum equation (2.8) in the set (0, T )× Ω if the integral identity∫ T

0

∫
Ω

(
(%u)(t, x) · ∂tϕϕϕ(t, x) + (%u⊗ u)(t, x) : ∇xϕϕϕ(t, x) (3.6)

+p(%)(t, x)divxϕϕϕ(t, x)
)
dx dt

=

∫ T

0

∫
Ω

(
µ∇xu(t, x) : ∇xϕϕϕ(t, x)

+(λ+ µ)divxu(t, x)divxϕϕϕ(t, x)− %(t, x)f(t, x) ·ϕϕϕ(t, x)
)
dx dt

is satisfied for any test function ϕϕϕ ∈ C∞
c ((0, T )× Ω;R3).

Of course, we have tacitly assumed that all quantities appearing in (3.6)
are at least locally integrable in (0, T ) × Ω. In particular, as (3.6) contains
explicitly ∇xu, we have to assume integrability of this term. As we shall see
in the following section, one can expect, given the available a priori bounds,
∇xu to be square integrable, specifically,

u ∈ L2(0, T ;W 1,2(Ω;R3)).

If Ω ⊂ R3 is a (bounded) domain with a non-void boundary, we can
enforce several kinds of boundary conditions by means of the properties of
the test functions. Thus, for instance, the no-slip boundary conditions

u|∂Ω = 0, (3.7)

require the integral identity (3.6) to be satisfied for any compactly supported
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test function ϕϕϕ, while

u ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

where W 1,2
0 (Ω;R3) is the Sobolev space obtained as the closure of C∞

c (Ω;R3)
in the W 1,2-norm. On the other hand, for the periodic boundary conditions,
we can allow test functions ϕϕϕ ∈ C∞

c ((0, T ) × Ω;R3) and the velocity u ∈
L2(0, T ;W 1,2

per(Ω;R
3)).

Remark 3.1 We may get the weak-strong compatibility as in the case of
continuity equation.
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Chapter 4

A priori bounds

A priori bounds are natural constraints imposed on the set of (hypothetical)
smooth solutions by the data as well as by the differential equations satis-
fied. A priori bounds determine the function spaces framework the (weak)
solutions are looked for. By definition, they are formal, derived under the
principal hypothesis of smoothness of all quantities in question.

4.1 Total mass conservation

The fluid density % satisfies the equation of continuity that may be written
in the form

∂t%+ u · ∇x% = −%divxu. (4.1)

This is a transport equation with the characteristic field defined

d

dt
X(t, x0) = u(t,X), X(0, x0) = x0.

Accordingly, (4.1) can be written as

d

dt
%(t,X(t, ·)) = −%(t,X(t, ·))divxu(t,X(t, ·)).

Consequently, we obtain

21
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inf
x∈Ω

%(0, x) exp
(
−t‖divxu‖L∞((0,T )×Ω)

)
(4.2)

≤ %(t, x) ≤

≤ sup
x∈Ω

%(0, x) exp
(
t‖divxu‖L∞((0,T )×Ω)

)
for any t ∈ [0, T ].

Unfortunately, the bounds established in (4.2) depend on ‖divxu‖L∞ on
which we have no information. Thus we may infer only that

%(t, x) ≥ 0, (4.3)

provided %(0, x) ≥ 0 in Ω.
Relation (4.3) combined with the total mass conservation (3.5) yields

‖%(t, ·)‖L1(Ω) = ‖%0‖L1(Ω), %(0, ·) = %0. (4.4)

4.2 Energy balance

Taking the scalar product of the momentum equation (2.4) with u we deduce
the kinetic energy balance equation

∂t

(
1

2
%|u|2

)
+divx

(
1

2
%|u|2u

)
+divx(p(%)u)−p(%)divxu−divx(Su)+S : ∇xu

(4.5)
= %f · u.

Our goal is to integrate (4.5) by parts in order to deduce a priori bounds.
Imposing the no-slip boundary condition (2.13) or the space-periodic bound-
ary condition (2.11) we get

d

dt

∫
Ω

(
1

2
%|u|2

)
dx−

∫
Ω

p(%)divxu dx+

∫
Ω

S : ∇xu dx =

∫
Ω

%f · u dx,

where, in accordance with (2.6),∫
Ω

S : ∇xu dx = µ

∫
Ω

|∇xu|2 dx+ (λ+ µ)

∫
Ω

|divxu|2 dx ≥ c

∫
Ω

|∇xu|2 dx,

(4.6)
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c > 0, provided µ > 0 and λ+ 2/3µ ≥ 0.

Seeing that ∫
Ω

%f · u dx ≤
∫
Ω

|f |√%√%|u| dx

≤ 1

2
‖f‖L∞((0,T )×Ω;R3)

(∫
Ω

% dx+

∫
Ω

%|u|2 dx

)
,

we focus on the integral ∫
Ω

p(%)divxu dx.

Multiplying the equation of continuity (4.1) by b′(%) we obtain the renor-
malized equation of continuity

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0. (4.7)

Consequently, in particular, the choice

b(%) = P (%) ≡ %

∫ ϱ

1

p(z)

z2
dz

leads to

b′(%)%− b(%) = p(%).

Thus

−
∫
Ω

p(%)divxu dx =
d

dt

∫
Ω

P (%) dx,

and we deduce the total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + P (%)

)
dx+

∫
Ω

S : ∇xu dx =

∫
Ω

%f · u dx. (4.8)

We conclude with
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Energy estimates:

sup
t∈[0,T ]

‖√%u(t, ·)‖L2(Ω;R3) ≤ c(E0, T, f), (4.9)

sup
t∈[0,T ]

∫
Ω

P (%)(t, ·) dx ≤ c(E0, T, f), (4.10)

∫ T

0

‖u(t, ·)‖2W 1,2(Ω;R3) dt ≤ c(E0, T, f), (4.11)

where E0 denotes the initial energy

E0 =

∫
Ω

(
1

2
%0|u0|2 + P (%0)

)
dx.

Note that in case of the Dirichlet boundary conditions we have ‖u‖1,2 ≤
C‖∇xu‖2 while for the space periodic conditions, due to the fact that we
control the total mass, we also control

∫
Ω
%|u| dx which yields ‖u‖1,2 ≤

C(‖∇xu‖2 + ‖%u‖1).

4.3 Pressure estimates

A seemingly direct way to pressure estimates is to “compute” the pressure
in the momentum balance (2.8):

p(%) = −∆−1divx∂t(%u)−∆−1divxdivx(%u⊗u)+∆−1divxdivxS+∆−1divx(%f),

where ∆−1 is an “inverse” of the Laplacean. In order to justify this formal
step, we use the so-called Bogovskii operator B ≈ div−1

x .
We multiply equation (2.8) on

B[%] = B
[
b(%)− 1

|Ω|

∫
Ω

b(%) dx

]
and integrate by parts to obtain∫ T

0

∫
Ω

p(%)b(%) dx dt (4.12)
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=
1

|Ω|

∫ T

0

∫
Ω

p(%) dx

∫
Ω

b(%) dx dt+

∫ T

0

∫
Ω

S : ∇xB[%] dx dt

−
∫ T

0

∫
Ω

%(u⊗u) : ∇xB[%] dx−
∫ T

0

∫
Ω

%u·∂tB[%] dx dt−
∫ T

0

∫
Ω

%f ·B[%] dx dt

+

∫
Ω

(%u ·B[%](T, ·)− %0u0 ·B[%0]) dx.

Furthermore, we have

∂tB[%] = −B
[
divx(b(%)u) +

(
b′(%)%− b(%)

)
divxu (4.13)

− 1

|Ω|

∫
Ω

(
b′(%)%− b(%)

)
divxu dx

]
.

We recall the basic properties of the Bogovskii operator:

Bogovskii operator:

divxB[h] = h for any h ∈ Lp(Ω),
∫
Ω

h dx = 0, 1 < p <∞, B[h]|∂Ω = 0,

(4.14)

‖B[h]‖W 1,p
0 (Ω;R3) ≤ c(p)‖h‖Lp(Ω), 1 < p <∞, (4.15)

‖B[h]‖Lq(Ω;R3) ≤ ‖g‖Lq(Ω;R3) (4.16)

for h ∈ Lp(Ω), h = divxg, g · n|∂Ω = 0, 1 < q <∞.

As will be seen in the last part (Chapter 8), we can show that for b(%) = %θ

the right-hand side is possible to estimate provided

θ ≤ min
{γ
2
,
2

3
γ − 1

}
. (4.17)
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Note that for γ ≤ 6 the restriction comes from the second term in (4.17) while
for γ > 6 the first term is more restrictive. In fact, working a bit harder, we
can remove also the limit θ ≤ γ

2
for γ > 6. Furthermore, to remove the term

at t := T we may use a suitable cut-off function in time.



Chapter 5

Complete weak formulation

A complete weak formulation of the (compressible) Navier–Stokes system
takes into account both the renormalized equation of continuity and the
energy inequality. Here and hereafter we assume that Ω ⊂ R3 is either a
bounded domain with Lipschitz boundary or a periodic box. For the sake of
definiteness, we take the pressure in the form

p(%) = a%γ, with a > 0 and γ > 3/2. (5.1)

In Part II we restrict ourselves to the case when γ is “sufficiently” large, Part
III will contain the proof only under restriction (5.1).

5.1 Equation of continuity

Let us introduce a class of (nonlinear) functions b such that

b ∈ C1([0,∞)), b(0) = 0, b′(r) = 0 whenever r ≥Mb. (5.2)

We say that %, u is a (renormalized) solution of the equation of continuity
(2.3), supplemented with the initial condition,

%(0, ·) = %0,

if % ∈ Cweak([0, T ];L
γ(Ω)), % ≥ 0, u ∈ L2(0, T ;W 1,2(Ω;R3)), and the integral

identity

27
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∫ T

0

∫
Ω

(
(%+ b(%)) ∂tϕ+(%+ b(%))u·∇xϕ+(b(%)− b′(%)%) divxuϕ

)
dx dt

(5.3)

= −
∫
Ω

(%0 + b(%0))ϕ(0, ·) dx

is satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω) and any b belonging to the class

specified in (5.2).
In particular, taking b ≡ 0 we deduce the standard weak formulation

of (2.3) in the form (we use the considerations from Section 3 to include
also the term at t := τ ; we avoid this term in (5.3) due to certain technical
complications connected with nonlinearity of b(·))

∫
Ω

(
%(τ, ·)ϕ(τ, ·)− %0ϕ(0, ·)

)
dx (5.4)

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞
c ([0, T ]× Ω).

In case of space-periodic boundary conditions we assume % and u space-
periodic, while for the homogeneous Dirichlet boundary conditions we assume
u ∈ L2(0, T ;W 1,2

0 (R3;R3)). Note that (5.4) actually holds on the whole phys-
ical space R3 provided (in case of the Dirichlet boundary conditions) %, u were
extended to be zero outside Ω. Note also that (5.4) implies that the initial
condition %(0, ·) = %0(·) is fulfilled. In case of the space periodic boundary
conditions we may extend the functions outside Ω due to the periodicity.

5.2 Momentum equation

In addition to the previous assumptions we suppose that

%u ∈ Cweak([0, T ];L
q(Ω;R3)) for a certain q > 1, p(%) ∈ L1((0, T )× Ω).
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The weak formulation of the momentum equation reads:

∫
Ω

(
%u(τ, ·) ·ϕϕϕ(τ, ·)− (%u)0 ·ϕϕϕ(0, ·)

)
dx (5.5)

=

∫ τ

0

∫
Ω

(
%u · ∂tϕϕϕ+ %(u⊗ u) : ∇xϕϕϕ+ p(%)divxϕϕϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕϕϕ+ (λ+ µ)divxudivxϕϕϕ− %f ·ϕϕϕ

)
dx dt

for any τ ∈ [0, T ] and for any test function ϕϕϕ ∈ C∞
c ([0, T ]× Ω;R3).

Note that (5.5) already includes the satisfaction of the initial condition

%u(0, ·) = (%u)0.

5.3 Energy inequality

The weak solutions are not known to be uniquely determined by the initial
data. Therefore it is desirable to introduce as much physically grounded
conditions as allowed by the construction of the weak solutions. One of them
is

Energy inequality:

∫
Ω

(
1

2
%|u|2 + P (%)

)
(τ, ·) dx+

∫ τ

0

∫
Ω

(
µ|∇xu|2+(λ+µ)|divxu|2

)
dx dt

(5.6)

≤
∫
Ω

(
1

2%0
|(%u)0|2 + P (%0)

)
dx+

∫ τ

0

∫
Ω

%f · u dx dt

for a.a. τ ∈ (0, T ), where

P (%) = %

∫ ϱ

1

p(z)

z2
dz.



30 CHAPTER 5. COMPLETE WEAK FORMULATION

Some remarks are in order. To begin, given the specific choice of the
pressure p(%) = a%γ and the fact that the total mass of the fluid is a constant
of motion, the function P (%) in (5.6) can be taken as

P (%) =
a

γ − 1
%γ.

Next, we need a kind of compatibility condition between %0 and (%u)0
provided we allow the initial density to vanish on a nonempty set:

(%u)0 = 0 a.a. on the “vacuum” set {x ∈ Ω | %0(x) = 0}. (5.7)



Part II

Weak sequential stability for
large γ
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Chapter 6

Weak sequential stability

The problem of weak sequential stability may be stated as follows:

Weak sequential stability:

Given a family {%ε,uε}ε>0 of weak solutions of the compressible Navier–
Stokes system, emanating from the initial data

%ε(0, ·) = %0,ε, (%u)ε(0, ·) = (%u)0,ε,

we want to show that

%ε → %, uε → u as ε→ 0

in a certain sense and at least for suitable subsequences, where %, u is
another weak solution of the same system.

Although showing weak sequential stability does not provide an explicit
proof of existence of the weak solutions, its verification represents one of the
prominent steps towards a rigorous existence theory for a given system of
equations.

33
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6.1 Uniform bounds

To begin the analysis, we need uniform bounds in terms of the data. To this
end, we choose the initial data in such a way that∫

Ω

(
1

2%0,ε
|(%u)0,ε|2 + P (%0,ε)

)
dx ≤ E0, (6.1)

where the constant E0 is independent of ε. Moreover, the main and most
difficult steps of the proof of weak sequential stability remain basically the
same under the simplifying assumption

f ≡ 0.

In accordance with the energy inequality (5.6), we get for any T <∞

sup
t∈(0,T )

‖%ε(t, ·)‖Lγ(Ω) ≤ c (6.2)

and
sup
t∈(0,T )

‖√%εuε(t, ·)‖L2(Ω;R3)) ≤ c, (6.3)

together with ∫ T

0

‖uε(t, ·)‖2W 1,2(Ω;R3) dt ≤ c, (6.4)

where the symbol c stands for a generic constant independent of ε.
Interpolating (6.2), (6.3), we get

‖%εuε‖Lq(Ω;R3) = ‖
√
%ε
√
%εuε‖Lq(Ω;R3) ≤ ‖

√
%ε‖L2γ(Ω)‖

√
%εuε‖L2(Ω;R3),

with

q =
2γ

γ + 1
> 1 provided γ > 1.

We conclude that

supt∈[0,T ]‖%εuε(t, ·)‖Lq(Ω;R3) ≤ C, q =
2γ

γ + 1
. (6.5)

Next, applying a similar treatment to the convective term in the momen-
tum equation, we have

‖%εuε ⊗ uε‖Lq(Ω;R3×3) ≤ ‖%εuε‖L2γ/(γ+1)(Ω;R3)‖uε‖L6(Ω;R3), with q =
6γ

4γ + 3
.
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Using the standard embedding relation

W 1,2(Ω) ↪→ L6(Ω), (6.6)

we may therefore conclude that∫ T

0

‖%εuε ⊗ uε‖2Lq(Ω;R3×3) dt ≤ c, q =
6γ

4γ + 3
. (6.7)

Note that
6γ

4γ + 3
> 1 as long as γ >

3

2
.

Finally, we have the pressure estimates (see Chapter 8 for the proof):∫ T

0

∫
Ω

p(%ε)%
α
ε dx dt = a

∫ T

0

∫
Ω

%γ+αε dx dt ≤ c (6.8)

for α = min{γ
2
, 2
3
γ − 1}.

6.2 Limit passage

In view of the uniform bounds established in the previous section, we may
assume that

%ε → % weakly-(*) in L∞(0, T ;Lγ(Ω)), (6.9)

uε → u weakly in L2(0, T ;W 1,2(Ω;R3)) (6.10)

passing to suitable subsequences as the case may be. Moreover, since %ε
satisfies the equation of continuity (5.4), relation (6.9) may be strengthened
to (see Chapter 7, in particular Lemma 7.4 and Theorem 7.2)

%ε → % in Cweak([0, T ];L
γ(Ω)). (6.11)

Let us recall that, in view of (6.9), relation (6.11) simply means{
t 7→

∫
Ω

%ε(t, ·)ϕ dx
}
→
{
t 7→

∫
Ω

%(t, ·)ϕ dx
}
in C[0, T ]

for any ϕ ∈ C∞
c (Ω).
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6.3 Compactness of the convective term

Our next goal is to establish convergence of the convective terms. Recall
that, in view of the estimate (6.5), we may suppose that

%εuε → %u weakly-(*) in L∞(0, T ;L2γ/(γ+1)(Ω;R3))

and even
%εuε → %u in Cweak([0, T ];L

2γ/(γ+1)(Ω;R3)), (6.12)

where the bar denotes (and will always denote in the future) a weak limit of
a composition.

Our goal is to show that
%u = %u.

This can be observed in several ways. Seeing that

W 1,2
0 (Ω) ↪→↪→ Lq(Ω) compactly for 1 ≤ q < 6,

we deduce that

Lp(Ω) ↪→↪→ W−1,2(Ω) compactly whenever p >
6

5
. (6.13)

In particular, relation (6.11) yields (for γ > 6
5
, cf. Theorem 7.2)

%ε → % in C([0, T ];W−1,2(Ω))),

which, combined with (6.10) and (6.12), gives rise to the desired conclusion

%u = %u.

For more details see again Chapter 7.

6.4 Passing to the limit — step 1

Now, due to the fact that γ > 3/2 and due to estimate (6.7), we may infer
that

%εuε ⊗ uε → %u⊗ u weakly in Lq((0, T )× Ω;R3×3) for a certain q > 1.
(6.14)
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Recalling (6.12), compactness of the embedding (6.13) and using that 2γ
γ+1

>
6
5
for γ > 3

2
we conclude that

%u⊗ u = %u⊗ u.

Summing up the previous discussion we deduce that the limit functions
%, u satisfy the equation of continuity∫

Ω

(
%(τ, ·)ϕ(τ, ·)− %0ϕ(0, ·)

)
dx (6.15)

=

∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞
c ([0, T ] × Ω), together with a relation for

the momentum ∫
Ω

(
%u(τ, ·) ·ϕϕϕ(τ, ·)− (%u)0 ·ϕϕϕ(0, ·)

)
dx (6.16)

=

∫ τ

0

∫
Ω

(
%u · ∂tϕϕϕ+ %u⊗ u : ∇xϕϕϕ+ p(%)divxϕϕϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕϕϕ+ (λ+ µ)divxu divxϕϕϕ

)
dx dt

for any test function ϕϕϕ ∈ C∞
c ([0, T ]× Ω;R3).

Here, we have also to assume at least weak convergence of the initial data,
specifically,

%0,ε → %0 weakly in Lγ(Ω), (6.17)

(%u)0,ε → (%u)0 weakly in L1(Ω;R3).

Thus it remains to show the crucial relation

p(%) = p(%)

or, equivalently,

%ε → % a.a. in (0, T )× Ω. (6.18)

This will be carried over in a series of steps specified in the remaining part
of this chapter.
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6.5 Strong convergence of the densities

In order to simplify presentation and to highlight the leading ideas, we assume
that

γ ≥ 5,

in particular
%ε → % in Cweak([0, T ];L

γ(Ω)), γ ≥ 5.

6.5.1 Compactness via Div-Curl lemma

Div-Curl lemma, developed by Murat and Tartar [15], [18], represents an
efficient tool for handling compactness in non-linear problems, where the
classical Rellich–Kondraschev argument is not applicable.
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Div-Curl lemma:

Lemma 6.1 Let B ⊂ RM be an open set. Suppose that

vn → v weakly in Lp(B;RM),

wn → w weakly in Lq(B;RM)

as n→∞, where
1

p
+

1

q
=

1

r
< 1.

Let, moreover,

{div[v]}∞n=1 be precompact in W−1,s(B),

{curl[w]}∞n=1 be precompact in W−1,s(B;RM×M)

for a certain s > 1.

Then
vn ·wn → v ·w weakly in Lr(B).

We give the proof only for a very special case that will be needed in the
future, namely, we assume that

div vn = 0, wn = ∇xΦn,

∫
RM

Φn dy = 0. (6.19)

Moreover, given the local character of the weak convergence, it is enough
to show the result for B = RM . By the same token, we may assume that
all functions are compactly supported. We recall that a (scalar) sequence
{gn}∞n=1 is precompact in W−1,s(RM) if

gn = divhn, with {hn}∞n=1 precompact in Ls(RM ;RM).

Now, it follows from the standard compactness arguments that

Φn → Φ (strongly) in Lq(RM), ∇xΦ = w.
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Taking ϕ ∈ C∞
c (RM) we have∫

RM

vn ·wnϕ dy =

∫
RM

vn · ∇xΦnϕ dy

= −
∫
RM

vn · ∇xϕΦn dy → −
∫
RM

v · ∇xϕΦ dy

=

∫
RM

v ·wϕ dy,

which completes the proof under the simplifying hypothesis (6.19).

6.5.2 Renormalized equation

We start with the renormalized equation (5.3) with b(%) = % log(%)− %:∫ T

0

∫
Ω

(
(%ε log(%ε) ∂tψ − %εdivxuεψ

)
dx dt = −

∫
Ω

%0,ε log(%0,ε) dx (6.20)

for any ψ ∈ C∞
c [0, T ), ψ(0) = 1. Clearly, relation (6.20) is a direct conse-

quence of (5.3). Repeating the procedure from Chapter 2 we can get∫
Ω

%ε log(%ε)(t, ·) dx+
∫ T

0

∫
Ω

%εdivxuε dx dt =

∫
Ω

%0,ε log(%0,ε) dx. (6.21)

Passing to the limit for ε→ 0 in (6.21) and assuming %0,ε → %0 in Lp(Ω) for
some p > 1 we get∫

Ω

% log %(t, ·) dx+
∫ t

0

∫
Ω

%divxu dx dτ =

∫
Ω

%0 log(%0) dx. (6.22)

Our next goal is to show that the limit functions %, u, besides (6.15), satisfy
also its renormalized version. To this end, we use the procedure proposed
by DiPerna and Lions [4], specifically, we regularize (6.15) by a family of
regularizing kernels κδ(x) to obtain:

∂t%δ + divx(%δu) = divx(%δu)− [divx(%u)]δ,

with
vδ = κδ ∗ v, where ∗ stands for spatial convolution.
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We easily deduce that

∂tb(%δ) + divx(b(%δ)u) +
(
b′(%δ)%δ − b(%δ)

)
divxu

= b′(%δ)
(
divx(%δu)− [divx(%u)]δ

)
.

Taking the limit δ → 0 and using Friedrich’s lemma (see Chapter 7; here
we need that % ∈ L2((0, T )× Ω)) and the procedure from Chapter 2 we get∫

Ω

% log(%)(t, ·) dx+
∫ t

0

∫
Ω

%divxu dx dτ =

∫
Ω

%0 log(%0) dx;

whence, in combination with (6.22),∫
Ω

(
% log(%)−% log(%)

)
(t, ·) dx+

∫ t

0

∫
Ω

(
%divxu−%divxu

)
dx dτ = 0. (6.23)

Assume, for a moment, that we can show∫ τ

0

∫
Ω

%divxu dx dt ≥
∫ τ

0

∫
Ω

%divxu dx dt for any τ > 0, (6.24)

which, together with lower semi-continuity of convex functionals, yields

% log(%) = % log(%). (6.25)

In order to continue, we need the following (standard) result:

Lemma 6.2 Suppose that

%ε → % weakly in L2(Q),

where
% log(%) = % log(%).

Then
%ε → % in L1(Q).
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Proof: Suppose that
0 < δ ≤ %.

Consequently, because of convexity of z 7→ z log(z), we have a.e. in QM,δ =
{(t, x) ∈ Q; %(t, x) ≤M,%(t, x) ≥ δ}

%ε log(%ε)− % log(%) = (log(%) + 1) (%ε − %) + α(%, %ε)|%ε − %|2

≥


(log(%) + 1)(%ε − %) +

1

4M
|%ε − %|2 if %ε(t, x) ≤ 2M,

(log(%) + 1)(%ε − %) +
|%ε − %|2

4|%ε − %|
if %ε(t, x) > 2M.

Therefore ∫
{δ≤ϱ}∩QM

|%ε − %| dx dt

≤ C(M, |Q|)
(∣∣∣ ∫

{δ≤ϱ}∩QM

(log(%) + 1)(%ε − %) dx dt
∣∣∣

+
∣∣∣ ∫

{δ≤ϱ}∩QM

(%ε log(%ε)− % log(%)) dx dt
∣∣∣)

+C(M, |Q|)
(∣∣∣ ∫

{δ≤ϱ}∩QM

(log(%) + 1)(%ε − %) dx dt
∣∣∣

+
∣∣∣ ∫

{δ≤ϱ}∩QM

(%ε log(%ε)− % log(%)) dx dt
∣∣∣) 1

2
.

Since
∫
{(t,x)∈Q;ϱ(t,x)>M} |%ε − %| dx dt → 0 for M → ∞ uniformly in ε ∈

(0, 1), we conclude that

%ε → % a.a. on the set {% ≥ δ} for any δ > 0.

Now, since
%ε → % a.a. on the set {% = 0}

and
|{0 < % < δ}| → 0 as δ → 0,

we obtain the desired conclusion. �
In accordance with the previous discussion, the proof of strong (pointwise)

convergence of {%ε}ε>0 reduces to showing (6.24). This will be done in the
next section.
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6.5.3 The effective viscous flux

The effective viscous flux

(2µ+ λ)divxu− p(%)

is a remarkable quantity that enjoys better regularity and compactness prop-
erties than its components separately. To see this, we start with the momen-
tum equation ∫

Ω

(
%εuε(τ, ·) ·ϕϕϕ(τ, ·)− (%u)0,ε ·ϕϕϕ(0, ·)

)
dx (6.26)

=

∫ τ

0

∫
Ω

(
%εuε · ∂tϕϕϕ+ %ε(uε ⊗ uε) : ∇xϕϕϕ+ p(%ε)divxϕϕϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xuε : ∇xϕϕϕ+ (λ+ µ)divxuεdivxϕϕϕ

)
dx dt,

together with its weak limit∫
Ω

(
%u(τ, ·) ·ϕϕϕ(τ, ·)− (%u)0 ·ϕϕϕ(0, ·)

)
dx (6.27)

=

∫ τ

0

∫
Ω

(
%u · ∂tϕϕϕ+ %(u⊗ u) : ∇xϕϕϕ+ p(%)divxϕϕϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕϕϕ+ (λ+ µ)divxudivxϕϕϕ

)
dx dt.

Our goal is to take

ϕϕϕ = ϕϕϕε = φ∇x∆
−1[1Ω%ε], φ ∈ C∞

c (Ω)

as a test function in (6.26), and

ϕϕϕ = φ∇x∆
−1[1Ω%], φ ∈ C∞

c (Ω),

in (6.27).
Here, ∆−1 represents the inverse of the Laplacean for space-periodic func-

tions for space periodic boundary conditions. For homogeneous Dirichlet
boundary conditions it is possible to use the inverse Laplace operator intro-
duced in (8.34). Since Ω ⊂ R3 is a bounded domain, we have

∇x∆
−1[1Ω%ε] bounded in L∞(0, T ;W 1,γ(Ω;R3)), γ > 3.
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Moreover, as 1Ω%ε as well as 1Ω% satisfy the equation of continuity, we
have

∂t∇x∆
−1[1Ω%ε] = −∇x∆

−1divx[%εuε], ∂t∇x∆
−1[1Ω%] = −∇x∆

−1divx[%u].

Step 1: As
%ε → % in Cweak([0, T ];L

γ(Ω)),

we have, in accordance with the standard Sobolev embedding relation

W 1,γ(Ω) ↪→↪→ C(Ω),

∇x∆
−1[1Ω%ε]→ ∇x∆

−1[1Ω%] in C([0, T ]× Ω).

In particular, we deduce from (6.26), (6.27),

lim
ε→0

[ ∫ τ

0

∫
Ω

(
%εuε · ∂tϕϕϕε + %εuε ⊗ uε : ∇xϕϕϕε + p(%ε)divxϕϕϕε

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xuε : ∇xϕϕϕε + (λ+ µ)divxuεdivxϕϕϕε

)
dx
]
dt

=

∫ τ

0

∫
Ω

(
%u · ∂tϕϕϕ+ %(u⊗ u) : ∇xϕϕϕ+ p(%)divxϕϕϕ

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu : ∇xϕϕϕ+ (λ+ µ)divxudivxϕϕϕ

)
dx dt,

with
ϕϕϕ = φ∇x∆

−1[1Ω%],

similarly for ϕϕϕε. Therefore

lim
ε→0

[ ∫ τ

0

∫
Ω

(
φp(%ε)%ε + p(%ε)∇xφ · ∇x∆

−1[1Ω%ε]
)
dx dt (6.28)

−
∫ τ

0

∫
Ω

φ
(
µ∇xuε : ∇2

x∆
−1[1Ω%ε] + (λ+ µ)divxuε%ε

)
dx dt

]
− lim

ε→0

∫ τ

0

∫
Ω

(
µ∇xuε · ∇xφ · ∇x∆

−1[1Ω%ε]

+(λ+ µ)divxuε∇xφ · ∇x∆
−1[1Ω%ε]

)
dx dt
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=

∫ τ

0

∫
Ω

(
φp(%)%+ p(%)∇xφ · ∇x∆

−1[1Ω%]
)
dx dt

−
∫ τ

0

∫
Ω

φ
(
µ∇xu : ∇2

x∆
−1[1Ω%] + (λ+ µ)divxu%

)
dx dt

−
∫ τ

0

∫
Ω

(
µ∇xu · ∇xφ · ∇x∆

−1[1Ω%] + (λ+µ)divxu∇xφ · ∇x∆
−1[1Ω%]

)
dx dt

+ lim
ε→0

∫ τ

0

∫
Ω

(
φ%εuε · ∇x∆

−1[divx(%εuε)]

−%ε(uε ⊗ uε) : ∇x

(
φ∇x∆

−1[1Ω%ε]
) )

dx dt

−
∫ τ

0

∫
Ω

(
φ%u · ∇x∆

−1[divx(%u)]− %(u⊗ u) : ∇x

(
φ∇x∆

−1[1Ω%]
) )

dx dt.

Step 2: We have∫
Ω

φ∇xuε : ∇2
x∆

−1[1Ω%ε] dx =

∫
Ω

φ
3∑

i,j=1

(
∂xju

i
ε[∂xi∆

−1∂xj ][1Ω%ε]
)
dx

=

∫
Ω

3∑
i,j=1

(
∂xj(φu

i
ε)[∂xi∆

−1∂xj ][1Ω%ε]
)
dx

−
∫
Ω

3∑
i,j=1

(
∂xjφu

i
ε[∂xi∆

−1∂xj ][1Ω%ε]
)
dx

=

∫
Ω

φdivxuε%ε dx+

∫
Ω

∇xφ ·uε%ε dx−
∫
Ω

3∑
i,j=1

(
∂xjφu

i
ε[∂xi∆

−1∂xj ][1Ω%ε]
)
dx.

Consequently, going back to (6.28) and dropping the compact terms, we
obtain

lim
ε→0

∫ τ

0

∫
Ω

φ
(
p(%ε)%ε − (λ+ 2µ)divxuε%ε

)
dx dt (6.29)

−
∫ τ

0

∫
Ω

φ
(
p(%)%− (λ+ 2µ)divxu%

)
dx dt

= lim
ε→0

∫ τ

0

∫
Ω

φ
(
%εuε · ∇x∆

−1[divx(%εuε)]
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−%ε(uε ⊗ uε) : ∇x∆
−1∇x[1Ω%ε]

)
dx dt

−
∫ τ

0

∫
Ω

φ
(
%u · ∇x∆

−1[divx(%u)]− %(u⊗ u) : ∇x∆
−1∇x[1Ω%]

)
dx dt.

Step 3: Our ultimate goal is to show that the right-hand side of (6.29)
vanishes. To this end, we write

%εuε · ∇x∆
−1[divx(%εuε)]− %ε(uε ⊗ uε) : ∇x∆

−1∇x[1Ω%ε]

= uε ·
(
%ε∇x∆

−1[divx(%εuε)]− %εuε · ∇x∆
−1∇x[1Ω%ε]

)
.

Consider the bilinear form

[v,w] =
3∑

i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)
, Ri,j = ∂xi∆

−1∂xj ,

where we may write

3∑
i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)

=
3∑

i,j=1

(
(vi −Ri,j[v

j])Ri,j[w
j]− (wi −Ri,j[w

j])Ri,j[v
j]
)

= U ·V −W · Z,

where

U i =
3∑
j=1

(vi −Ri,j[v
j]), W i =

3∑
j=1

(wi −Ri,j[w
j]), divxU = divxW = 0,

and

V i = ∂xi

(
3∑
j=1

∆−1∂xjw
j

)
, Zi = ∂xi

(
3∑
j=1

∆−1∂xjv
j

)
, i = 1, 2, 3.

Thus a direct application of Div-Curl lemma (Lemma 6.1) yields

[vε,wε]→ [v,w] weakly in Ls(R3)
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whenever vε → v weakly in Lp(R3;R3), wε → w weakly in Lq(R3;R3), and

1

p
+

1

q
=

1

s
< 1.

Seeing that

%ε → % in Cweak([0, T ];L
γ(Ω)), %εuε → %u in Cweak([0, T ];L

2γ/(γ+1)(Ω;R3))

we conclude that (we use v with vi = δik% for k = 1, 2, 3 and w = %u;
similarly for vε and wε)

1Ω%ε(t, ·)∇x∆
−1[divx(%εuε)(t, ·)]− (%εuε)(t, ·) · ∇x∆

−1∇x[1Ω%ε(t, ·)] (6.30)

→
%(t, ·)∇x∆

−1[divx(%u)(t, ·)]− (%u)(t, ·) · ∇x∆
−1∇x[1Ω%(t, ·)]

weakly in Ls(Ω;R3) for all t ∈ [0, T ],

with

s =
2γ

γ + 3
>

6

5
since γ ≥ 5.

Thus we conclude that the convergence in (6.30) takes place in the space

Lq(0, T ;W−1,2(Ω;R3)) for any 1 ≤ q <∞;

whence, going back to (6.29), we conclude

lim
ε→0

∫ τ

0

∫
Ω

φ
(
p(%ε)%ε − (λ+ 2µ)divxuε%ε

)
dx dt (6.31)

=

∫ τ

0

∫
Ω

φ
(
p(%)%− (λ+ 2µ)divxu%

)
dx dt.

As a matter of fact, using exactly same method and localizing also in the
space variable, we could prove that a.e. in (0, T )× Ω

p(%)%− (λ+ 2µ)divxu% = p(%)%− (λ+ 2µ)divxu%, (6.32)

which is the celebrated relation on “weak continuity” of the effective viscous
pressure discovered by Lions [14].
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Since p is a non-decreasing function, we have∫ τ

0

∫
Ω

(
p(%ε)− p(%)

)
(%ε − %) dx dt ≥ 0;

now relation (6.31) yields the desired conclusion (6.24), namely∫ τ

0

∫
Ω

(
divxu%− divxu%

)
dx dt ≥ 0.

Thus we get (6.25); whence

%ε → % a.a. in (0, T )× Ω (6.33)

and in Lq((0, T )× Ω) for any q < γ +min
{
γ
2
, 2
3
γ − 1

}
.



Part III

Existence of weak solutions for
small γ

49





51

Last part of the lecture series is devoted to the proof of existence of weak
solutions to the compressible Navier–Stokes system provided p(%) ∼ %γ with
γ > 3

2
. The proof is technically much more complicated than the previous

part, however, there are several places which are quite similar to it. Moreover,
in the following chapter we also prove several facts (renormalized solution to
the continuity equation, continuity in time, estimates of the density etc.)
which we skipped in the previous part due to technical complications we
tried to avoid there.

We first show the Friedrichs commutator lemma which plays a central role
in the study of renormalized solutions to the continuity equation. Next we
consider the continuity in time of the density and the momentum. The last
chapter contains the core of the existence proof: the approximate problem,
existence of a solution for fixed positive regularizing parameters and finally
the limit passages which give us solution to our original problem. Note that
the proof is performed for the homogeneous Dirichlet boundary conditions
for the velocity. The presentation of this part is mostly based on the material
from book [16] by A. Novotný and I. Straškraba. For another approach, based
on the construction of the approximative problem via a numerical method,
see [9].
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Chapter 7

Mathematical tools

7.1 Continuity equation: renormalized solu-

tions and extension

We recall that for a function f ∈ Lp(R;Lq(RN)), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, or
f ∈ C(R;Lq(RN) we can define the mollifiers:

• over time

Tε(f)(t, x) =

∫
R
ωε(t− τ)f(τ, x) dτ ;

we have for 1 ≤ q ≤ ∞

Tε(f) ∈ C∞(R;Lq(RN)),
Tε(f)→ f in Lp(R;Lq(RN)) if f ∈ Lp(R;Lq(RN)), 1 ≤ p <∞,
Tε(f)→ f in C(R;Lq(RN)) if f ∈ CB(R;Lq(RN));

moreover

‖Tε(f)‖Lp(R;Lq(RN )) ≤ ‖f‖Lp(R;Lq(RN )), 1 ≤ p ≤ ∞

• over space

Sε(f)(t, x) =

∫
RN

ωε(x− y)f(t, y) dy;

then we have for 1 ≤ p ≤ ∞

Sε(f) ∈ Lp(R;C∞(RN)),
Sε(f)→ f in Lp(R;Lq(RN)) if f ∈ Lp(R;Lq(RN)), 1 ≤ q <∞;

53
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moreover

‖Sε(f)‖Lp(R;Lq(RN )) ≤ ‖f‖Lp(R;Lq(RN )), 1 ≤ q ≤ ∞

A central technical result is the Friedrichs commutator lemma.

Lemma 7.1 Let N ≥ 2, 1 ≤ q, β ≤ ∞, (q, β) 6= (1,∞), 1
q
+ 1

β
≤ 1. Let

1 ≤ α ≤ ∞, 1
p
+ 1

α
≤ 1. Assume for I ⊂ R a bounded time interval

% ∈ Lα(I;Lβloc(R
N)), u ∈ Lp(I;W 1,q

loc (R
N ;RN).

Then
Sε(u · ∇x%)− u · ∇xSε(%)→ 0 in Ls(I;Lrloc(R

N)).

Here, 1
s
= 1

α
+ 1

p
and r ∈ [1, q) if β = ∞ and q ∈ (1,∞], 1

q
+ 1

β
≤ 1

r
≤ 1

otherwise, where

u · ∇x% := divx(%u)− %divx(u) (in D′(RN)).

Proof: To simplify, we consider only the case β, q <∞ which is enough for
our purpose.

Step 1: We have〈
Sε(u · ∇x%), ϕ

〉
=

∫ T

0

∫
RN

(∫
RN

%(t, y)u(t, y) · ∇xωε(x− y) dy
)
ϕ(t, x) dx dt

−
∫ T

0

∫
RN

(∫
RN

%(t, y)divu(t, y)ωε(x− y) dy
)
ϕ(t, x) dx dt,

〈
u ·∇xSε(%), ϕ

〉
=

∫ T

0

∫
RN

u(t, x) ·
(∫

RN

∇xωε(x−y)%(t, y) dy
)
ϕ(t, x) dx dt.

Therefore〈
Sε(u · ∇x%)− u · ∇xSε(%), ϕ

〉
=

∫ T

0

∫
RN

(
Iε(t, x)− Jε(t, x)

)
ϕ(t, x) dx dt

with

Iε(t, x) =

∫
RN

%(t, y)
(
u(t, y)− u(t, x)

)
· ∇xωε(x− y) dy,
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and

Jε(t, x) =

∫
RN

%(t, y)divxu(t, y)ωε(x− y) dy.

We define r0 as

1

r0
=

1

β
+

1

q

and get

Jε → %divxu strongly in Ls(I;Lr0loc(R
N)).

In Steps 2, 3 and 4 we show that

Iε → %divxu strongly in Ls(I;Lr0loc(R
N))

which will finish the proof of this lemma.

Step 2: We aim at proving

‖Iε‖Lr0 (BR) ≤ C‖%(t)‖Lβ(BR+1)‖∇xu(t)‖Lq(BR+2;RN×N ) for a.a. t ∈ (0, T ).
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We have

‖Iε‖r0Lr0 (BR)

=

∫
BR

∣∣∣∣∫
|x−y|≤ε

%(t, y)
(
u(t, y)− u(t, x)

) 1

εN+1
· ∇ω

(
x− y
ε

)
dy

∣∣∣∣r0 dx

=

∫
BR

∣∣∣∣∫
|z|≤1

%(t, x− εz)u(t, x− εz)− u(t, x)

ε
· ∇ω(z) dz

∣∣∣∣r0 dx

≤
(∫

|z|≤1

|∇ω(z)|r′0 dz
) r0

r′0 ×

×
∫
BR

∫
|z|≤1

|%(t, x− εz)|r0
∣∣∣∣u(t, x− εz)− u(t, x)

ε

∣∣∣∣r0 dz dx

≤ C(ω)

∫
BR+1

∫
|z|≤1

|%(t, ξ)|r0
∣∣∣∣u(t, ξ + εz)− u(t, ξ)

ε

∣∣∣∣r0 dz dξ (for ε < 1)

≤ C(ω)|B1|
r0
β

∫
BR+1

|%(t, ξ)|r0
(∫

|z|≤1

∣∣∣∣u(t, ξ + εz)− u(t, ξ)

ε

∣∣∣∣q dz)
r0
q

dξ

≤ C(ω,N, q, β)

(∫
BR+1

|%(t, ξ)|β dξ

) r0
β

×

×

(∫
BR+1

∫
|z|≤1

∣∣∣∣u(t, ξ + εz)− u(t, ξ)

ε

∣∣∣∣q dz dξ
) r0

q

≤ C‖%(t)‖Lβ(BR+1)‖∇xu(t)‖Lq(BR+2;RN×N ).

Step 3: Let us show the strong convergence, first for a.a. t ∈ (0, T ), in

Lr0loc(R
N). Due to Step 2 it is enough to verify that the strong convergence

holds for any % ∈ C∞
c (RN), t ∈ (0, T ) fixed. Indeed, let %n ∈ C∞

c (RN),
%n → %(t, ·) in Lβ(BR+1). Then

‖(Iε − %divxu)(t, ·)‖Lr0 (BR)

≤
∥∥∥∥∫

RN

(
%(t, y)− %n(y)

)(
u(t, y)− u(t, ·)

)
· ∇xωε(· − y) dy

∥∥∥∥
Lr0 (BR)

+

∥∥∥∥∫
RN

%n(y)
(
u(t, y)− u(t, ·)

)
· ∇xωε(· − y) dy − (%ndivxu(t, ·))

∥∥∥∥
Lr0 (BR)

+
∥∥∥(%n − %(t, ·))divxu(t, ·)∥∥∥

Lr0 (BR)
.
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The first term is bounded by (see also the treatment of the second term,
below)

C‖%n − %(t, ·)‖Lβ(BR+1)‖∇xu(t, ·)‖Lq(BR+2;RN×N ) → 0 for n→∞,

the third is bounded by

C‖%n − %(t, ·)‖Lβ(BR)‖divxu(t, ·)‖Lq(BR;RN×N ) → 0 for n→∞.

To conclude, let % be a smooth function. Using the change of variables
z = x−y

ε
, as above,

Ĩε(t, x) =

∫
|z|≤1

%(t, x− εz)
(
u(t, x− εz)− u(t, x)

ε

)
· ∇ω(z) dz.

As u ∈ W 1,q
loc (R

N ;RN) for a.a. t ∈ (0, T ),

u(t, x− εz)− u(t, x)

ε
= −z ·

∫ 1

0

∇xu(t, x− ετz) dτ → −z · ∇xu(t, x)

for a.a. t ∈ (0, T ) and a.a. (x, z) ∈ RN × B1 (a.a. points are Lebesgue
points). Moreover, as % is smooth, %(t, x− εz)→ %(t, x), (x, z) ∈ BR+1×B1,
t ∈ (0, T ). Therefore, by Vitali’s theorem∫

RN

(Ĩεϕ)(t, x) dx → −
∫
B1

zi∂jω(z) dz

∫
RN

%(t, x)∂iuj(t, x)ϕ(t, x) dx

=

∫
RN

(%divxu)(t, x)ϕ(t, x) dx.

Step 4: We have

‖Iε‖sLs(I;Lr0 (BR)) ≤ C

∫ T

0

‖%(t, ·)‖sLβ(BR+1)
‖∇xu(t, ·)‖sLq(BR+2;RN×N )

dt

≤ C‖%‖sLα(I;Lβ(BR+1))
‖∇xu‖sLp(I;Lq(BR+2;RN×N ))

.

Due to this and the fact that

Iε → %divxu in Lr0loc(R
N) for a.a. t ∈ (0, T ),

we get due to Step 2 by the Lebesgue dominated convergence theorem the
claim of the lemma. �
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Next we show that we may extend (sufficiently regular) solution to the
continuity equation outside a Lipschitz domain in such a way that the exten-
sion (by zero in the case of our boundary conditions) solves the continuity
equation in the full RN . In particular, this shows that we may use as test
functions smooth functions up to the boundary.

Lemma 7.2 Let Ω be a bounded Lipschitz domain in RN , N ≥ 2, I ⊂ R be
an open interval and QT = I × Ω. Let % ∈ L2(QT ), u ∈ L2(I;W 1,2

0 (Ω;RN))
and f ∈ L1(QT ) satisfy

∂t%+ divx(%u) = f in D′(QT ).

Extending (%,u, f) by (0,0, 0) outside Ω,

∂t%+ divx(%u) = f in D′(I × RN).

Proof: We have to show (after the extension by (0,0, 0))

−
∫ T

0

∫
RN

%∂tη dx dt−
∫ T

0

∫
RN

%u · ∇xη dx dt

=

∫ T

0

∫
RN

fη dx dt ∀η ∈ C∞
c ((0, T )× RN).

Denote

Φm ∈ C∞
c (Ω), m ∈ N, 0 ≤ Φm ≤ 1,

Φm(x) = 1 for x ∈
{
y ∈ Ω; dist(y, ∂Ω) ≥ 1

m

}
,

|∇xΦm(x)| ≤ 2m for x ∈ Ω.

Evidently, Φm → 1 pointwise in Ω and for any fixed compact K ⊂ Ω,

supp∇xΦm ⊂ Ω \K for m ≥ m0(K) ∈ N, |supp∇xΦm| → 0.

We can write∫ T

0

∫
RN

fη dx dt =

∫ T

0

∫
RN

fΦmη dx dt+

∫ T

0

∫
RN

fη(1− Φm) dx dt︸ ︷︷ ︸
→0

,
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0

∫
RN

%∂tη dx dt =

∫ T

0

∫
RN

%∂t(Φmη) dx dt+

∫ T

0

∫
RN

%∂tη(1− Φm) dx dt︸ ︷︷ ︸
→0

,

∫ T

0

∫
RN

%u · ∇xη dx dt =

∫ T

0

∫
RN

%u · ∇x(Φmη) dx dt

+

∫ T

0

∫
RN

%u · ∇xη(1− Φm) dx dt︸ ︷︷ ︸
→0

−
∫ T

0

∫
RN

%u · ∇xΦmη dx dt.

We know that∫ T

0

∫
RN

fηΦm dx dt = −
∫ T

0

∫
RN

%∂t(Φmη) dx dt−
∫ T

0

∫
RN

%u·∇x(Φmη) dx dt

as Φmη has support in Ω. Therefore we have to show that

Im =

∫ T

0

∫
RN

%u · ∇xΦmη dx dt→ 0.

But due to the Hardy inequality

|Im| ≤
∫ T

0

∫
RN

|%||u||∇xΦm||η| dx dt

≤ 2 sup
t,x
|η(t, x)|

∫ T

0

‖%‖L2({supp∇xΦm})

∥∥∥∥ u

dist(x, ∂Ω)

∥∥∥∥
L2(Ω;RN )

dt

≤ C(η,Ω)

∫ T

0

‖%‖L2({supp∇xΦm})‖u‖W 1,2
0 (Ω;RN ) dt

≤ C(η,Ω)‖%‖L2(0,T ;L2({supp∇xΦm}))‖u‖L2(0,T ;W 1,2
0 (Ω;RN )) → 0

as m→∞. The lemma is proved. �

Remark 7.1 Hence, in case % ∈ L2((0, T )×Ω) (as u ∈ L2(0, T ;W 1,2
0 (Ω;R3))

will be satisfied), we further have∫
Ω

%(t, x) dx =

∫
Ω

%(s, x) dx for any t, s ∈ [0, T ].

It is enough to take η ≡ 1 in [s, t] × Ω, provided % is weakly continuous in
L1(Ω) (which will be proved later). On the other hand, if only % ∈ Lp(QT ),
1 ≤ p < 2, the mass may not be conserved.
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An explicit counterexample (due to E. Feireisl and H. Petzeltová) shows
this, even in 1D. Let Ω = (0, 1) and

u(x) =
(
x(1− x)

)α
, %(t, x) =

1

u(x)
h

(
t−
∫ x

0

1

u(y)
dy

)
,

1

2
< α < 1,

with h ∈ C1(R), h(s) = 0 for s ≤ 0. Evidently

u ∈ W 1,2
0 (0, 1),

{
u′ ∼ xα−1, x→ 0 =⇒ α > 1

2
,

u′ ∼ (1− x)α−1, x→ 1 =⇒ α > 1
2
,

% ∈ C([0, T ];Lp(0, 1)), 1 ≤ p <
1

α

(
1

u
∈ Lp, p < 1

α

)
⇒ α < 1,

and
∂t% =

1
u(x)

h′
(
t−
∫ x
0

1
u(y)

dy
)

∂x(%u) = h′
(
t−
∫ x
0

1
u(y)

dy
)

−1
u(x)

⇒ ∂t%+ ∂x(%u) = 0.

But ∫
Ω

%(t, x) dx is not constant, as∫
Ω

%(0, x) dx = 0, but for h suitably chosen

∫
Ω

%(t, x) dx 6= 0 ∀t > 0.

This example can also be generalized to higher space dimensions.

We finish this section by showing that, under certain regularity assump-
tions, a weak solution to the continuity equation is also a renormalized so-
lution. This fact will be important in the proof of the existence of weak
solution in the last chapter.

Due to Lemma 7.1 we have

Lemma 7.3 Let N ≥ 2, 2 ≤ β <∞, λ0 < 1, −1 < λ1 ≤ β
2
− 1 and

b ∈ C([0,∞)) ∩ C1((0,∞)), |b′(t)| ≤ ct−λ0 , t ∈ [0, 1], (7.1)

|b′(t)| ≤ ctλ1 , t ≥ 1. (7.2)

Let % ∈ Lβ(I;Lβloc(R
N)), % ≥ 0 a.e. in I×RN , u ∈ L2(I;W 1,2

loc (R
N ;RN)) and

f ∈ Lz(I;Lzloc(R
N)), z = β

β−λ1 if λ1 > 0, z = 1 if λ1 ≤ 0. Suppose that

∂t%+ divx(%u) = f in D′(I × RN). (7.3)
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(i) Then for any b ∈ C1([0,∞)) satisfying (7.2) we have

∂tb(%) + divx(b(%)u) + {%b′(%)− b(%)}divxu = fb′(%) in D′(I × RN).
(7.4)

(ii) If f = 0, then (7.4) holds for any b satisfying (7.1) and (7.2).

Proof: We consider only case (ii), leaving (i) as possible exercise for the
reader.

We regularize (7.3) over space variable and get

∂tSε(%) + divx(Sε(%)u) = rε(%,u) a.e. in I × RN , (7.5)

where
rε(%,u) = divx(Sε(%)u)− divx(Sε(%u)).

But
rε(%,u) = u · ∇xSε(%) + Sε(%)divxu− Sε(divx(%u))

= u · ∇xSε(%)− Sε(u · ∇x%) + Sε(%)divxu− Sε(%divxu),
hence by Lemma 7.1 and an easy observation

rε(%,u)→ 0 in Lr(I;Lrloc(R
N)),

1

r
=

1

β
+

1

2
(≤ 1).

To avoid singularity at % = 0, we multiply (7.5) by b′h(Sε(%)) with bh(·) =
b(h+ ·), h > 0, and obtain

∂tbh(Sε(%)) + divx(bh(Sε(%))u) +
(
Sε(%)b

′
h(Sε(%))− bh(Sε(%))

)
divxu

= rεb
′
h(Sε(%)) a.e. in I × RN .

Now we pass with ε → 0+. As Sε(%) → % in Lβ(I;Lβloc(R
N)) (i.e. for a

subsequence a.e. in I × RN), we get by Vitali’s (convergence) theorem that
bh(Sε(%))→ bh(%),

Sε(%)b
′
h(Sε(%))− bh(Sε(%))→ %b′h(%)− bh(%) in Lploc(I × RN), 1 ≤ p < 2

(Sε(%)b
′
h(Sε(%)) ≤ CSε(%)

1+β
2
−1 for Sε(%)� 1). As this term is bounded also

in L2(I × Ω′) for Ω′ bounded subset of RN , then the convergence holds also
in the weak sense in L2(I × Ω′). Therefore, passing with ε→ 0, we have

∂tbh(%) + divx(bh(%)u) +
(
%b′h(%)− bh(%)

)
divxu = 0,
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as ∣∣∣ ∫ T

0

∫
Ω′
rεb

′
h(Sε(%)) dx dt

∣∣∣ ≤ ∫ T

0

‖rε‖Lr(Ω′)‖b′h(Sε(%))‖Lr′ (Ω′) dt→ 0,

where 1
r′
= 1− 1

r
= 1

2
− 1

β
= β−2

2β
and ‖b′h(Sε(%))‖Lr(Ω′) ≤ ‖Sε(%)‖Lβ(Ω′).

Finally we aim to pass with h→ 0+. Recall that

|{(t, x); % ≥ k} ∩ (I × Ω′)| ≤ k−β‖%‖β
Lβ((I×Ω′)∩{ϱ≥k}).

Then we write for ψ ∈ C∞
c (I × RN)∫

I×RN

(
%b′h(%)− bh(%)

)
divxuψ dx dt

=

∫
(I×RN )∩{ϱ≤k}∩suppψ

(
%b′h(%)− bh(%)

)
divxuψ dx dt

+

∫
(I×RN )∩{ϱ>k}∩suppψ

(
%b′h(%)− bh(%)

)
divxuψ dx dt.

Now, passing with h→ 0+, the first term on the right-hand side goes to∫
I×RN

(
%b′(%)− b(%)

)
divxuψ1{ϱ≤k} dx dt,

due to the Lebesgue dominated convergence theorem. The second term can
be controlled by

C

∫
{ϱ>k}

(
%(%+ h)

β
2
−1 + %

β
2

)
|divxu| |ψ| dx dt

≤ C

∫
{ϱ≥k}

(
%

β
2 + %

)
|divxu||ψ| dx dt

≤ C
(
‖%‖

β
2

Lβ((I×Ω′)∩{ϱ≥k})‖divxu‖L2(I×Ω′)

+ ‖%‖
β
2

Lβ((I×Ω′)∩{ϱ≥k})k
1−β

2 ‖divxu‖L2(I×Ω′)

)
→k→∞ 0.

Further,∫
I×RN

(
%b′(%)− b(%)

)
divxuψ1{ϱ≤k} dx dt

→k→∞

∫
I×RN

(
%b′(%)− b(%)

)
divxuψ dx dt,

by the Lebesgue dominated convergence theorem. The other terms can be
controlled similarly. The lemma is proved. �
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7.2 Continuity in time

First, we have

Definition 7.1 The function g belongs to Cweak([0, T ];L
q(Ω)), 1 ≤ q < ∞,

if
∫
Ω
gϕ dx ∈ C([0, T ]) for all ϕ ∈ Lq′(Ω).

We have the following easy result:

Lemma 7.4 Let 1 < q < ∞, Ω ⊂ RN be a domain and I ⊂ R be an open
and bounded interval. Let f ∈ L∞(I;Lq(Ω)) and ∂t

∫
Ω
fη dx ∈ L1(I) for all

η ∈ C∞
c (Ω). Then there exists g ∈ Cweak(I;L

q(Ω)) such that for a.a. t ∈ I
f(t, ·) = g(t, ·) (in the sense of Lq(Ω)).

Proof: Take any η ∈ C∞
c (Ω). As

∫
Ω
fη dx ∈ W 1,1(I), we know that there

exists wη ∈ AC([0, T ]) such that wη(t) =
∫
Ω
f(t, ·)η dx for a.e. t ∈ I. Fur-

thermore, by virtue of the theorem on Lebesgue points we know that there
exists N ⊂ I with zero one-dimensional Lebesgue measure such that for any
t ∈ I \N and any η ∈ C∞

c (Ω)

lim
h→0+

1

h

∫ t+h

t

(∫
Ω

fη dx
)
ds =

∫
Ω

f(t, ·)η dx;

whence we see that wη(t) =
∫
Ω
f(t, ·)η dx for any η ∈ C∞

c (Ω) and any t ∈ I\N
(the set N is in particular the same for all functions η) and

lim
h→0+

1

h

∫ t+h

t

(∫
Ω

fη dx
)
ds = wη(t) for all t ∈ I,

similarly for limh→0− (at the endpoints the limits are one-sided). It implies
that

|wη(t)| ≤ ‖f‖L∞(0,T ;Lq(Ω))‖η‖Lq′ (Ω).

Thus by the Riesz representation theorem,

wη(t) =

∫
Ω

g(t, ·)η dx for all η ∈ C∞
c (Ω)

and g(t, ·) ∈ Lq(Ω). We will show that g ∈ Cweak([0, T ];L
q(Ω)). To this aim

choose ε > 0 and take arbitrary ϕ ∈ Lq′(Ω). Since C∞
c (Ω) is dense in Lq

′
(Ω),
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1 ≤ q′ <∞, we have∣∣∣∣∫
Ω

(
g(t+ δ, ·)− g(t, ·)

)
ϕ dx

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

(
g(t+ δ, ·)− g(t, ·)

)
η dx

∣∣∣∣
+

∣∣∣∣∫
Ω

(
g(t+ δ, ·)− g(t, ·)

)
(ϕ− η) dx

∣∣∣∣ ,
where η ∈ C∞

c (Ω) is suitably chosen in such a way that the second integral
is less than ε/2. Now, due to the continuity of

∫
Ω
gη dx, we can choose δ0

sufficiently small that for 0 ≤ |δ| ≤ δ0 the first integral is bounded by ε/2.
The lemma is proved. �.

Remark 7.2 Looking at the weak formulation of the continuity equation,
as % ∈ L∞(0, T ;Lγ(Ω)) and u ∈ L2(0, T ;W 1,2

0 (Ω;R3)), we immediately see
(at least for γ > 6

5
) that % ∈ Cweak([0, T ];L

γ(Ω)), as

∂t

∫
Ω

%η dx = −
∫
Ω

%u · ∇xη dx ∈ L1(0, T ).

Remark 7.3 Similarly we have that %u ∈ Cweak([0, T ];L
2γ
γ+1 (Ω;R3)). In-

deed,∫
Ω

(%|u|)
2γ
γ+1 dx =

∫
Ω

(%|u|2)
γ

γ+1%
γ

γ+1 dx

≤
(∫

Ω

%|u|2 dx
) γ

γ+1
(∫

Ω

%γ dx

) 1
γ+1

∈ L∞(I).

Looking at the weak formulation of the momentum equation, it is an easy
task to verify that for ϕϕϕ ∈ C∞

c ([0, T ]× Ω;R3)

∂t

(∫
Ω

%u ·ϕϕϕ dx
)
∈ L1(I),

which finishes the proof.

In what follows we will use the following abstract version of the Arzelà–
Ascoli theorem (see [12, Theorem 1.6.9])

Theorem 7.1 Let X and B be Banach spaces such that B ↪→↪→ X. Let
fn be a sequence of functions: I → B which is uniformly bounded in B and
uniformly continuous in X. Then there exists f ∈ C(I;X) such that fn → f
in C(I;X) at least for a chosen subsequence.
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Then we have

Theorem 7.2 Let 1 < p, q < ∞, Ω be a bounded Lipschitz domain in RN ,
N ≥ 2. Let {gn}∞n=1 be a sequence of functions: I → Lq(Ω) such that

• gn ∈ Cweak(I;L
q(Ω)) for all n ∈ N

• gn is uniformly continuous in W−1,p(Ω)

• gn is uniformly bounded in Lq(Ω).

Then at least for a chosen subsequence
(i)

gn → g in Cweak(I;L
q(Ω)).

(ii) If moreover Lq(Ω) ↪→↪→ W−1,p(Ω) (i.e. 1 < p ≤ N
N−1

and 1 < q <∞, or
N
N−1

< p <∞, Np
N+p

< q <∞), then

gn → g in C(I;W−1,p(Ω)).

Proof: (i) As W−1,p(Ω) ↪→ W−1,s(Ω) for s = min
{
p, N

N−1

}
, the sequence gn

is uniformly continuous in W−1,s(Ω). As the embedding Lq(Ω) ↪→ W−1,s(Ω)
is compact, we have by virtue of Theorem 7.1 gn → g in C(I;W−1,s(Ω)), at
least for a chosen subsequence.

Therefore, for a given ε > 0 there exists n0 such that for m, n > n0:∣∣∣ ∫
Ω

(gn(t, ·)− gm(t, ·))η dx
∣∣∣

≤ ‖(gn(t, ·)− gm(t, ·)‖W−1,s(Ω)‖η‖W 1,s′ (Ω) ≤ ε‖η‖W 1,s′ (Ω),

for all η ∈ C∞
c (Ω), for all t ∈ I. Hence for any η ∈ C∞

c (Ω) the mappings t 7→∫
Ω
gn(t, ·)η dx form a Cauchy sequence in C(I) which has a limit Aη ∈ C(I).

Similarly as in Lemma 7.4 it is possible to verify that if ‖gn‖L∞(0,T ;Lq(Ω)) ≤ C,
then maxt∈[0,T ] ‖gn(t, ·)‖Lq(Ω) ≤ C, uniformly in n. Thus

sup
t∈I
|Aη(t)| ≤

∣∣∣ lim sup
n→∞

∫
Ω

gn(t, ·)η dx
∣∣∣ ≤ C‖η‖Lq′ (Ω),

η ∈ C∞
c (Ω), we see that η 7→ Aη is a linear densely defined bounded operator

from Lq(Ω) to R. Hence

Aη(t) =

∫
Ω

g(t, ·)η dx with g(t, ·) ∈ Lq(Ω).
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Moreover, t 7→
∫
Ω
g(t, ·)η dx ∈ C(I) for all η ∈ C∞

c (Ω) and by the density

argument also for η ∈ Lq′(Ω). Moreover, again by the density argument

sup
t∈I

∣∣∣ ∫
Ω

(gn(t, ·)− g(t, ·))η dx
∣∣∣→n→∞ 0,

hence ∫
Ω

gn(t, ·)η dx→
∫
Ω

g(t, ·)η dx in C(I)

for any η ∈ Lq′(Ω).
To prove (ii), recall that Lq(Ω) ↪→↪→ W−1,p(Ω) and the result follows

from Theorem 7.1. �
Next

Lemma 7.5 Let Ω be a bounded Lipschitz domain in RN , N ≥ 2, 1 < q <
∞, 1 ≤ p < ∞. If gn → g in Cweak(I;L

q(Ω)), then gn → g strongly in
Lp(I;W−1,r(Ω)) provided Lq(Ω) ↪→↪→ W−1,r(Ω).

Proof: As

gn(t, ·)⇀ g(t, ·) in Lq(Ω), t ∈ I,

and Lq(Ω) ↪→↪→ W−1,r(Ω), we have

gn(t, ·)→ g(t, ·) in W−1,r(Ω), t ∈ I.

As in particular gn is bounded in L∞(I;Lq(Ω)), then also (cf. the proofs of
Lemma 7.4 and Theorem 7.2)

sup
t∈I
‖gn(t, ·)‖Lq(Ω) ≤ C

and so is bounded supt∈I ‖gn(t, ·)‖W−1,r(Ω). Thus by the Lebesgue dominated
convergence theorem∫ T

0

‖gn(t, ·)− g(t, ·)‖pW−1,r(Ω) dt→n→∞ 0.

�
We further have
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Lemma 7.6 Let N ≥ 2, 1 < β <∞, θ ∈ (0, β
4
) and Ω be a bounded domain

in RN . Let the pair (%,u) fulfill

% ≥ 0 a.e. in (0, T )× RN , % ∈ L∞(0, T ;Lβloc(R
N)) ∩ Cweak([0, T ];L

β(Ω)),

u ∈ L2(0, T ;W 1,2
loc (R

N ;RN))

and let (%,u) solve the renormalized continuity equation with b(s) = sθ, i.e.

∂t%
θ + divx(%

θu) + (θ − 1)%θdivxu = 0 in D′((0, T )× RN). (7.6)

Then % ∈ C([0, T ];Lp(Ω)), 1 ≤ p < β.

Remark 7.4 In our case of the compressible Navier–Stokes equations with
the pressure law p(%) = %γ we have % ∈ C([0, T ];Lp(Ω)), 1 ≤ p < γ.

Proof: Due to (7.6) we know that ∂t
∫
Ω
ρθη dx ∈ L2(0, T ) for all η ∈ C∞

c (Ω),
hence by Lemma 7.4 we know that % = %̃ a.e. in (0, T ) × Ω, where %̃θ ∈
Cweak([0, T ];L

β
θ (Ω)). We now take (7.6) with %̃ and regularize it over the

space variable by the mollifier Sε. Thus

∂tSε(%̃
θ)+divx(Sε(%̃

θ)u) = (1−θ)Sε(%̃θdivxu)+rε(%̃θ,u) in D′((0, T )×RN),
(7.7)

where rε(%̃
θ,u) = divx(Sε(%̃

θ)u)− divx(Sε(%̃
θu)). Indeed,

Sε(%̃
θ) ∈ C([0, T ]× Ω), ‖Sε(%̃θ)(t, ·)‖Lq(RN ) ≤ ‖%̃θ(t, ·)‖Lq(RN )

by the Hausdorff–Young inequality. Therefore there exists ε0 > 0 such that

sup
ε∈(0,ε0)

sup
t∈[0,T ]

‖Sε(%̃θ)(t, ·)‖Lq(RN ) <∞, 1 ≤ q ≤ β

θ
.

Furthermore,

Sε(%̃
θ)(t, ·)→ %̃θ(t, ·) strongly in Lq(Ω), 1 ≤ q ≤ β

θ
, t ∈ [0, T ],

Sε(%̃
θdivxu)→ %̃θdivxu strongly in L2(0, T ;L

2β
2θ+β (Ω)).

(7.8)

By Lemma 7.1 (Friedrichs commutator lemma)

rε(%̃
θ,u)→ 0 in L2(I;L

2β
2θ+β (Ω)).
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We now apply Lemma 7.3 (renormalized solution with non-zero right hand
side) with b(s) = (s+ 1)2 to (7.7)

∂t(Sε(%̃
θ) + 1)2 + divx((Sε(%̃

θ) + 1)2u) + (Sε(%̃
θ)2 − 1)divxu

= 2(1− θ)(Sε(%̃θ) + 1)Sε(%̃
θdivxu) + 2(Sε(%̃

θ) + 1)rε(%̃
θ,u) (7.9)

in D′((0, T )×RN). We have that {
∫
Ω
|Sε(%̃θ)|2η dx}ε>0 is uniformly bounded

for every η ∈ C∞
c (Ω) on [0, T ] and by (7.9) together with assumptions on

%,u also uniformly continuous on [0, T ]. Now, due to (7.8) and Arzelà–Ascoli
theorem ∫

Ω

|Sε(%̃θ)|2η dx→
∫
Ω

|%̃θ|2η dx in C[0, T ], η ∈ C∞
c (Ω).

Therefore, by density argument (ηε → 1),
∫
Ω
|%̃θ|2 dx ∈ C([0, T ]). As %̃θ ∈

Cweak([0, T ];L
2(Ω)), we get

%̃θ ∈ C([0, T ];L2(Ω)).

Now, due to interpolation of Lebesgue spaces

%̃ ∈ C([0, T ];Lp(Ω)), 1 ≤ p < β.

Finally, due to our assumption % = %̃ (in the sense of the Lβ(Ω)-space) for
every t ∈ [0, T ]. �



Chapter 8

Existence proof

8.1 Approximations

Recall that we aim at proving the existence of weak solutions (in the sense
as presented in Chapter 5) to the following problem (we set a = 1 in the
pressure law for the sake of simplicity):

∂t(%u) + divx(%u⊗ u)− µ∆u− (µ+ λ)∇xdivxu
+∇x%

γ = %f in (0, T )× Ω,
∂t%+ divx(%u) = 0 in (0, T )× Ω,

u(t, x) = 0 on (0, T )× ∂Ω,
%(0, x) = %0(x), (%u)(0, x) = (%u)0(x) in Ω.

(8.1)

We first mollify the initial condition. We take a smooth compactly sup-
ported regularization of the density %̃0,δ and set

%0,δ = δ + %̃0,δ.

Then %0,δ is smooth, positive in Ω and constant around the boundary (thus
∂ϱ0,δ
∂n

= 0 at ∂Ω). Then we denote (%u)0,δ the compactly supported regular-
ization of initial momentum and denote

u0,δ =
(%u)0,δ
%0,δ

.

At the first level we regularize the pressure (δ > 0) and get the regularized

69



70 CHAPTER 8. EXISTENCE PROOF

system with artificial pressure

∂t(%u) + divx(%u⊗ u)− µ∆u− (µ+ λ)∇xdivxu
+∇x%

γ + δ∇x%
β = %f in (0, T )× Ω,

∂t%+ divx(%u) = 0 in (0, T )× Ω,
u(t, x) = 0 on (0, T )× ∂Ω,

%(0, x) = %0,δ(x), (%u)(0, x) = (%u)0,δ(x) in Ω.

(8.2)

At the next level we regularize the continuity equation (ε > 0) and get
the continuity equation with dissipation

∂t(%u) + divx(%u⊗ u)− µ∆u− (µ+ λ)∇xdivxu
+∇x%

γ + δ∇x%
β + ε(∇x% · ∇x)u = %f in (0, T )× Ω,

∂t%+ divx(%u)− ε∆% = 0 in (0, T )× Ω,

u(t, x) = 0,
∂%

∂n
= 0 on (0, T )× ∂Ω,

%(0, x) = %0,δ(x), (%u)(0, x) = (%u)0,δ(x) in Ω.

(8.3)

The ε-term in the approximate balance of momentum is added in order to
obtain a suitable form of the energy equality which will be seen below.

The last level is based on the finite dimensional projection (Galerkin ap-
proximation) of the momentum equation. We take a basis in W 1,2

0 (Ω;R3)
(orthogonal) which is orthonormal in L2(Ω;R3) and is formed by eigenfunc-
tions of the Lamé equation

−µ∆ΦΦΦj − (µ+ λ)∇xdivxΦΦΦj = αjΦΦΦj,

0 < α1 < α2 ≤ . . . , ΦΦΦj ∈ W 1,p
0 (Ω;R3) ∩W 2,p(Ω;R3), 1 ≤ p < ∞ arbitrary,

with the scalar products

(u,v)W 1,2
0 (Ω;R3) :=

∫
Ω

(
µ∇xu : ∇xv + (µ+ λ)divxu divxv

)
dx,

(u,v)L2(Ω;R3) :=

∫
Ω

u · v dx.

We first show existence of solutions to the Galerkin approximation (Sec-
tion 8.2). Then we collect estimates independent of the dimension of the
Galerkin approximation and pass in Section 8.3 with n → ∞. We receive
system (8.3), i.e. system with continuity equation with dissipation. Next we
prove estimates independent of the parameter ε and pass with ε → 0+ and
get the system with the artificial pressure (8.2) (Section 8.4). In the last
section we collect estimates independent of δ and pass with δ → 0+ to get a
solution to the original system (8.1).



8.2. EXISTENCE FOR THE GALERKIN APPROXIMATION 71

8.2 Existence for the Galerkin approximation

We take δ, ε > 0, n ∈ N and β > 1 sufficiently large (e.g. β ≥ 15 is enough).
Let us denote Xn = Lin{ΦΦΦ1, . . . ,ΦΦΦn}. Our aim is to show:

Theorem 8.1 Under the assumption of Theorem 8.3, let

0 < %(δ) ≤ %0,δ ≤ %(δ) <∞, %0,δ ∈ C∞(Ω).

Then for any ε, δ > 0 and n ∈ N there exists a (unique) couple (%n,un) such
that:

(i) for any p ∈ [1,∞), %n ∈ C([0, T ];W 1,p(Ω)) ∩ Lp(I;W 2,p(Ω)), ∂t%n ∈
Lp(I;Lp(Ω)), % > 0 a.e. in (0, T )× Ω, un ∈ C0,1([0, T ];Xn)

(ii) ∫ T

0

∫
Ω

(
∂t(%nun) ·Φ− %n(un⊗un) : ∇xΦ+ µ∇xun : ∇xΦ

+ (µ+ λ)divxundivxΦ− (%γn + δ%βn)divxΦ

+ ε∇x%n∇xun ·Φ
)
dx dt =

∫ T

0

∫
Ω

%nf ·Φ dx dt ∀Φ ∈ Xn

(iii)
∂t%n + divx(%nun)− ε∆%n = 0 a.e. in (0, T )× Ω

(iv) %n(0) = %0,δ, un(0) = Pnu0,
∂ϱn
∂n
|∂Ω = 0, where Pn is the projector of

L2(Ω;R3) to Xn and %0,δ ∈ C∞(Ω) is the regularized initial condition

(v) denoting

Eδ(%,u)(t) =
∫
Ω

(
1

2
%|u|2 + %γ

γ − 1
+

δ%β

β − 1

)
(t, ·) dx,

we have

Eδ(%n,un)(t) +
∫ t

0

∫
Ω

(
µ|∇xun|2 + (µ+ λ)(divxun)

2
)
dx dτ

+εγ

∫ t

0

∫
Ω

%γ−2
n |∇x%n|2 dx dτ + εδβ

∫ t

0

∫
Ω

%β−2
n |∇x%n|2 dx dτ

≤
∫ t

0

∫
Ω

%nf · un dx dτ + Eδ(%0,δ, Pnu0) a.e. in (0, T ).

(8.4)
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Let us first look at the parabolic Neumann problem

∂t%− ε∆% = h in (0, T )× Ω, (8.5)

%(0) = %0 in Ω,

∂%

∂n

∣∣∣
∂Ω

= 0 in (0, T )

with h and %0 given sufficiently regular functions. We have the following
result (for the proof see e.g. [1])

Lemma 8.1 Let 0 < θ ≤ 1, 1 < p, q < ∞, Ω bounded, Ω ∈ C2,θ, %0 ∈
W̃ 2− 2

p
,q(Ω) = {z ∈ C∞(Ω); ∂z

∂n
|∂Ω = 0}

∥·∥
W

2− 2
p ,q

(Ω), where ‖ · ‖
W

2− 2
p ,q

(Ω)
is the

norm in the Sobolev–Slobodetskii space. Let h ∈ Lp(0, T ;Lq(Ω)). Then

there exists unique % ∈ Lp(0, T ;W 2,q(Ω))∩C([0, T ];W 2− 2
p
,q(Ω)) with the time

derivative ∂t% ∈ Lp(0, T ;Lq(Ω)), together with the estimates

ε1−
1
p‖%‖

L∞(0,T ;W
2− 2

p ,q
(Ω))

+ ‖∂t%‖Lp(0,T ;Lq(Ω)) + ε‖%‖Lp(0,T ;W 2,q(Ω))

≤ C(p, q,Ω)
(
ε1−

1
p‖%0‖

W
2− 2

p ,q
(Ω)

+ ‖h‖Lp(0,T ;Lq(Ω))

)
.

If h = divxb, b ∈ Lp(0, T ;Lq(Ω;R3)), %0 ∈ Lq(Ω), then there exists unique
% ∈ Lp(0, T ;W 1,q(Ω)) ∩ C([0, T ];Lq(Ω)), solving in D′(0, T )

d

dt

∫
Ω

%η dx+ ε

∫
Ω

∇x% · ∇xη dx = −
∫
Ω

b · ∇xη dx, ∀η ∈ C∞(Ω)

and

ε1−
1
p‖%‖L∞(0,T ;Lq(Ω)) + ε‖∇x%‖Lp(0,T ;Lq(Ω))

≤ C(p, q,Ω)
(
ε1−

1
p‖%0‖Lq(Ω) + ‖b‖Lp(0,T ;Lq(Ω;R3))

)
.

We now return to

∂t%+ divx(%u)− ε∆% = 0 in (0, T )× Ω,

%(0) = %0,δ in Ω, (8.6)

∂%

∂n

∣∣∣
∂Ω

= 0 in (0, T ).

We aim at proving
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Lemma 8.2 Let 0 < θ ≤ 1, Ω ∈ C2,θ bounded, 0 < % ≤ %0,δ ≤ % < ∞,

%0,δ ∈ C∞(Ω) and
∂ϱ0,δ
∂n

= 0 on ∂Ω. Let u ∈ L∞(0, T ;W1,∞
0 (Ω;R3)), where

W1,∞
0 (Ω;R3) = {z ∈ W 1,∞(Ω;R3); z|∂Ω = 0}. Then there exists unique

solution to (8.6) % = %(u) ∈ Lp(0, T ;W 2,p(Ω)) ∩ C([0, T ];W 1,p(Ω)), ∂t% ∈
Lp(0, T ;Lp(Ω)), 1 < p <∞, arbitrary. Moreover

%e−
∫ t
0 ∥u(τ)∥W1,∞(Ω;R3) dτ ≤ %(t, x) ≤ %e

∫ t
0 ∥u(τ)∥W1,∞(Ω;R3) dτ , (8.7)

for t ∈ [0, T ] and a.a. x ∈ Ω. If ‖u‖L∞(I;W 1,∞(Ω;R3)) ≤ K, then

‖%‖L∞(0,t;W 1,2(Ω)) ≤ C‖%0,δ‖W 1,2(Ω)e
C
ε
(K+K2)t,

‖∇2
x%‖L2((0,t)×Ω;R3×3) ≤

C

ε

√
t‖%0,δ‖W 1,2(Ω)Ke

C
ε
(K+K2)t +

C

ε
‖%0,δ‖W 1,2(Ω),

‖∂t%‖L2((0,t)×Ω) ≤ C
√
t‖%0,δ‖W 1,2(Ω)Ke

C
ε
(K+K2)t + ‖%0,δ‖W 1,2(Ω),

‖(%(u1)− %(u2))‖L2((0,t)×Ω) ≤
C(K, ε, T )t‖%0,δ‖W 1,2(Ω)‖u1 − u2‖L∞(0,t;W 1,∞(Ω;R3)),

(8.8)
where t ∈ [0, T ].

Proof:
Step 1: First, if Ω ∈ C2, u ∈ L∞(0, T ;W1,∞

0 (Ω;R3)), %0,δ ∈ W 1,2(Ω), there
exists unique % ∈ C([0, T ];W 1,2(Ω))∩L2(0, T ;W 2,2(Ω)), ∂t% ∈ L2((0, T )×Ω)
solution to (8.6).

• We construct the solution by the Galerkin method, with the orthonor-
mal (in L2) and orthogonal (inW 1,2) basis of the Laplace equation with
the Neumann boundary condition at ∂Ω.

• For n ∈ N, testing by %n, ∆%n, ∂t%n we get (note that −
∫
Ω
∇x%n ·

∇x∆%n dx =
∫
Ω
∇2
x%n : ∇2

x%n dx, as
∫
∂Ω
∇x%n ·∇x

∂ϱn
∂n

dS = 0 due to the
boundary conditions)

‖%n(t)‖L∞(0,T ;W 1,2(Ω)) ≤ C(T, ‖u‖L∞(I;W 1,∞(Ω;R3)), ε),

‖∇x%n‖L2(I;W 1,2(Ω;R3)) ≤ C(T, ‖u‖L∞(I;W 1,∞(Ω;R3)), ε),

‖∂t%n‖L2((0,T )×Ω) ≤ C(T, ‖u‖L∞(I;W 1,∞(Ω;R3)), ε).



74 CHAPTER 8. EXISTENCE PROOF

• Letting n→∞ in∫ T

0

(∫
Ω

∂t%nψ dx

)
z dt+ ε

∫ T

0

∫
Ω

∇x%n · ∇xψz dx dt

= −
∫ T

0

∫
Ω

divx(%nu)ψz dx dt ∀ψ ∈ Lin{h1, . . . , hn}, z ∈ C∞
c (0, T )

leads to ∫ T

0

(∫
Ω

∂t%ψ dx

)
z dt+ ε

∫ T

0

∫
Ω

∇x% · ∇xψz dx dt

= −
∫ T

0

∫
Ω

divx(%u)ψz dx dt

for any z ∈ C∞
c (0, T ) and ψ ∈ Lin{h1, h2, . . . }, where {hi}∞i=1 is the

basis formed by the eigenfunctions of the Laplace equations with the
homogeneous Neumann boundary condition on ∂Ω.

• By the density argument∫ T

0

∫
Ω

∂t%η dx dt+ ε

∫ T

0

∫
Ω

∇x% · ∇xη dx dt

= −
∫ T

0

∫
Ω

divx(%u)η dx dt ∀η ∈ L2(0, T ;W 1,2(Ω)).

• Finally, the continuity in W 1,2(Ω) follows by standard arguments.

Step 2: Now, let Ω ∈ C2,θ. We apply Lemma 8.1 (with the right-hand
side h := −divx(%u) ∈ L2(0, T ;L6(Ω)) ∩ L∞(0, T ;L2(Ω)) and get (by boot-
strapping argument) that % ∈ Lp(0, T ;W 2,p(Ω)) ∩ C([0, T ];W 1,p(Ω)) with
∂t% ∈ Lp((0, T )× Ω) for any 1 < p <∞.

Step 3: Consider R(t) = %e
∫ t
0 ∥divxu(τ,·)∥L∞(Ω) dτ . Then

R′(t)− ‖divxu(t, ·)‖L∞(Ω)R(t) = 0, R(0) = %

and

R′ + divx(Ru) ≥ 0 a.e. in QT .
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Denote ω(t, x) = %(t, x)−R(t). Then

∂tω + divx(ωu)− ε∆ω ≤ 0 a.e. in QT ,

ω(0, x) = %0 − % ≤ 0,
∂ω

∂n

∣∣∣
∂Ω

= 0.
(8.9)

Test (8.9) by ω+ = max{ω, 0}

1

2

d

dt
‖ω+‖2L2(Ω) + ε

∫
Ω

|∇xω
+|2 dx

≤ −1

2

∫
Ω

|ω+|2divxu dx ≤ 1

2
‖divxu‖L∞(Ω)‖ω+‖2L2(Ω)

and thus
d

dt
‖ω+‖2L2(Ω) ≤ ‖divxu‖L∞(Ω)‖ω+‖2L2(Ω).

By the Gronwall inequality

‖ω+(t, ·)‖L2(Ω) ≤ ‖ω+(0, ·)‖L2(Ω)e
∫ t
0 ∥divxu∥L∞(Ω) dτ = 0

and thus
%(t, x)−R(t) ≤ 0 a.e. in QT .

Analogously, denoting r(t) = %e−
∫ t
0 ∥divxu(τ)∥L∞(Ω) dτ , ω(t, x) = %(t, x)− r(t)

∂tω + divx(ωu)− ε∆ω ≥ 0 a.e. in QT ,

ω(0) = %0 − % ≥ 0,
∂ω

∂n

∣∣∣
∂Ω

= 0.
(8.10)

Testing by ω− implies ‖ω−(t, ·)‖L2(Ω) = 0 and thus

%(t, x)− r(t) ≥ 0 a.e. in QT .

Whence (8.7).
Step 4: (L2 bounds):

a) Test (8.6) by %

d

dt
‖%‖2L2(Ω) + 2ε

∫
Ω

|∇x%|2 dx = −
∫
Ω

%2divxu dx

=⇒ d

dt
‖%‖2L2(Ω) ≤ ‖u‖W 1,∞(Ω;R3)‖%‖2L2(Ω).
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b) Test (8.6) by −∆%

d

dt

∫
Ω

|∇x%|2 dx+ 2ε

∫
Ω

|∆%|2 dx

= 2

∫
Ω

%divxu∆% dx+ 2

∫
Ω

u · ∇x%∆% dx

≤ C‖u‖W 1,∞(Ω;R3)‖%‖W 1,2(Ω)‖∆%‖L2(Ω)

≤ C ′

ε
‖u‖2W 1,∞(Ω;R3)‖%‖

2
W 1,2(Ω) + ε‖∆%‖2L2(Ω).

Therefore

d

dt
‖%‖2W 1,2(Ω) ≤

C

ε

(
‖u‖W 1,∞(Ω;R3) + ‖u‖2W 1,∞(Ω;R3)

)
‖%‖2W 1,2(Ω),

i.e.

‖%‖L∞(0,t;W 1,2(Ω))

≤ ‖%0,δ‖W 1,2(Ω)e
C
ε

(
∥u∥L∞(0,t;W1,2(Ω;R3))+∥u∥2

L∞(0,t;W1,2(Ω;R3))

)
t
.

Further

ε

∫ t

0

‖∆%‖2L2(Ω) dτ ≤ ‖%0‖W 1,2(Ω)

+ C‖u‖L∞(0,t;W 1,∞(Ω;R3))‖%‖L∞(0,t;W 1,2(Ω))

∫ t

0

‖∆%‖L2(Ω) dτ

which gives (8.8)2. Similarly, testing (8.6) by ∂t%∫ t

0

‖∂t%‖2L2(Ω) dτ +
ε

2
‖∇x%(t, ·)‖2L2(Ω;R3)

≤ ε

2
‖∇x%0,δ‖2L2(Ω;R3) +

∫ t

0

∫
Ω

divx(%u)∂t% dx dt ≤ ε

2
‖∇x%0,δ‖2L2(Ω;R3)

+ C
(
‖u‖L∞(0,T ;W 1,∞(Ω;R3)), ‖%‖L∞(0,T ;W 1,2(Ω;R3)),

√
t‖∂t%‖L2(0,T ;L2(Ω))

)
,

which yields (8.8)3.
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Step 5: (Uniqueness) First, to get (8.8)4, take u1, u2 and subtract from the
equation for %1 = %1(u1) the equation for %2 = %2(u2). It reads:

∂t(%1 − %2)− ε∆(%1 − %2) = −%1divx(u1 − u2)−∇x%1 · (u1 − u2)

−(%1 − %2)divxu2 −∇x(%1 − %2) · u2.

Test the above obtained equality by (%1 − %2):

d

dt
‖%1 − %2‖2L2(Ω) + 2ε‖∇x(%1 − %2)‖2L2(Ω;R3) =∫

Ω

[
−%1divx(u1−u2)−∇x%1 ·(u1−u2)−(%1−%2)divxu2−∇x(%1−%2) ·u2

]
×

× (%1 − %2) dx ≤ C(‖%1‖W 1,2(Ω)‖%1 − %2‖L2(Ω)‖u1 − u2‖W 1,∞(Ω;R3)

+ ‖u2‖W 1,∞(Ω;R3)‖%1 − %2‖2L2(Ω))

and thus

d

dt
‖%1 − %2‖L2(Ω)

≤ C‖%1‖W 1,2(Ω)‖u1 − u2‖W 1,∞(Ω;R3) + C‖u2‖W 1,∞(Ω;R3)‖%1 − %2‖L2(Ω).

Applying Gronwall’s lemma

‖(%1 − %2)(t, ·)‖L2(Ω) ≤

C

∫ t

0

(
‖%1‖W 1,2(Ω)‖u1 − u2‖W 1,∞(Ω;R3)e

∫ t
τ C∥u2∥W1,∞(Ω;R3)(s) ds

)
dτ,

which proves (8.8)4 and hence also the uniqueness. �

Remark 8.1 We can also show the validity of the renormalized continuity
equation. Using the same method as in the proof of the validity of renormal-
ized continuity equation, we have for any b sufficiently smooth, convex

∂tb(%) + divx(b(%)u) + (%b′(%)− b(%))divxu− ε∆b(%) ≤ 0.

Indeed, formally, multiplying the continuity equation by b′(%)

∂tb(%) + divx(b(%)u) + (%b′(%)− b(%))divxu− ε∆b(%) = −εb′′(%)|∇x%|2 ≤ 0,
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where we used that

∆b(%) = divx(b
′(%)∇x%) = b′(%)∆%+ b′′(%)|∇x%|2.

The details are similar as in the case with ε = 0, the only problematic term
has a good sign. Note also that we can integrate the continuity equation over
Ω (i.e. use as test function 1)

d

dt

∫
Ω

%(t, x) dx = 0 ⇒
∫
Ω

%(t, x) dx = const. (in time).

We now return to the full system with the Galerkin approximation for
the velocity. We want to obtain a solution for the Galerkin approximation of

∂t(%u) + divx(%u⊗ u)− µ∆u− (µ+ λ)∇xdivxu
+∇x(%

γ + δ%β) + ε∇x% · ∇xu = %f

with % being a solution to the (regularized) continuity equation with the
velocity u.

We shall apply the following version of the Schauder fixed point theorem
(for the proof see e.g. [6])

Theorem 8.2 Let T : X → X be continuous and compact, X a Banach
space. Let for any s ∈ [0, 1] the fixed points sTu = u be bounded. Then T
possesses at least one fixed point.

We define the mapping T as follows. Take w ∈ C([0, T ];Xn), where Xn

is the finite dimensional space spanned by the first n eigenvalues of −µ∆u−
(µ+ λ)∇xdivxu with u|∂Ω = 0. We look for un, the Galerkin approximation
of the linearized momentum equation, i.e. for the solution to∫

Ω

∂t(%(w)un) · hi dx+
∫
Ω

divx(%(w)w ⊗ un) · hi dx

+ µ

∫
Ω

∇xun : ∇xhi dx+(µ+ λ)

∫
Ω

divxundivxhi dx (8.11)

+

∫
Ω

(∇x%
γ(w) + δ∇x%

β(w)) · hi dx+
∫
Ω

ε∇x%(w) · ∇xun · hi dx

=

∫
Ω

%f · hi dx, un(0) = Pnu0, i = 1, . . . , n.



8.2. EXISTENCE FOR THE GALERKIN APPROXIMATION 79

Since forw ∈ C([0, T ];Xn) the solution to the regularized continuity equation
is bounded away from zero, it is not difficult to see that there exists a solution
to (8.11). Moreover, as the problem is linear, ∂t% ∈ Lp((0, T ) × Ω) for any
p <∞, by a standard energy method and Gronwall’s argument, the solution
is unique.

It is also possible to show that T is a continuous and compact mapping
from C([0, T ];Xn) to itself. The main point is that we get an estimate of ∂tun,
while in the spatial variable the compactness is just a consequence of the fact
that Xn is finite dimensional. What remains to show is the boundedness of
the possible fixed points. Take s ∈ [0, 1] and

sT (un) = un, i.e., T (un) =
un
s
.

Then

∫
Ω

∂t(%un) · un dx+
∫
Ω

divx(%un ⊗ un) · un dx

+

∫
Ω

ε∇x% · ∇xun · un dx+
∫
Ω

µ|∇xun|2 dx

+

∫
Ω

(µ+ λ)(divxun)
2 dx+s

∫
Ω

(∇x%
γ + δ∇x%

β)un dx = s

∫
Ω

%f · un dx

for s ∈ [0, 1]. Next, we have

∫
Ω

∂t(%un) · un dx =
1

2
∂t

∫
Ω

%|un|2 dx+
1

2

∫
Ω

∂t%|un|2 dx,∫
Ω

divx(%un ⊗ un) · un dx =
1

2

∫
Ω

divx(%un)|un|2 dx,∫
Ω

ε∇x% · ∇xun · un dx =
ε

2

∫
Ω

∇x%∇x|un|2 dx = −ε
2

∫
Ω

∆%|un|2 dx.

Summing these three integrals we get 1
2
∂t
∫
Ω
%|un|2 dx, due to the continuity
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equation. Further

∫
Ω

∇x%
γ · un dx =

γ

γ − 1

∫
Ω

%un · ∇x%
γ−1 dx

=− γ

γ − 1

∫
Ω

%γ−1divx(%u) dx

=
1

γ − 1
∂t

∫
Ω

%γ dx− εγ

γ − 1

∫
Ω

%γ−1∆% dx

=
1

γ − 1
∂t

∫
Ω

%γ dx+ εγ

∫
Ω

%γ−2|∇x%|2 dx,∫
Ω

∇x%
β · un dx =

1

β − 1
∂t

∫
Ω

%β dx+ εβ

∫
Ω

%β−2|∇x%|2 dx.

Thus

d

dt
Esδ (%,un) + µ

∫
Ω

|∇xun|2 dx+ (µ+ λ)

∫
Ω

(divxun)
2 dx

+sεγ

∫
Ω

%γ−2|∇x%|2 dx+ sεδβ

∫
Ω

%β−2|∇x%|2 dx ≤ s

∫
Ω

%f · un dx,
(8.12)

where Esδ (%,un) = 1
2

∫
Ω

(
%|un|2 + s ϱγ

γ−1
+ s δϱ

β

β−1

)
dx. As

∣∣∣∣∫
Ω

%f · un dx
∣∣∣∣ ≤ ∣∣∣∣∫

Ω

√
%
√
%un · f dx

∣∣∣∣
≤ ‖%‖

1
2

L∞(0,T ;L1(Ω))‖f‖L∞((0,T )×Ω;R3)‖%|un|2‖
1
2

L1((0,T )×Ω),

we get the L∞(0, T ) control of the kinetic energy
∫
Ω
%|un|2 dx and L1(0, T )

control of
∫
Ω
|∇xun|2 dx independently of s. As Xn is finite dimensional,

using (8.12) and (8.7), we see that % is pointwisely controlled independently
of s and thus, using once more (8.12), we see that ‖un‖C([0,T ];Xn) is also
controlled independently of s. Therefore we can apply Theorem 8.2 to finish
the proof of Theorem 8.1. Note that (8.4) follows from (8.12) integrating
over (0, T ), setting s = 1 and % := %n. �
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8.3 Estimates independent of n, limit passage

n→∞
Recall that we have from the energy inequality (8.12)

‖%n|un|2‖L∞(0,T ;L1(Ω)) ≤ C,
‖%n‖L∞(0,T ;Lβ(Ω)) ≤ C,
‖un‖L2(0,T ;W 1,2(Ω;R3)) ≤ C,

‖%
β
2
n ‖L2(0,T ;W 1,2(Ω)) ≤ C.

(8.13)

Note that

‖%n‖L 5
3β((0,T )×Ω)

≤ ‖%n‖
2
5

L∞(0,T ;Lβ(Ω))
‖%n‖

3
5

Lβ(0,T ;L3β(Ω))
≤ C. (8.14)

Next we test the continuity equation by %n.

1

2

d

dt
‖%n‖22 + ε‖∇x%n‖22 = −

∫
Ω

divx(%nun)%n dx

=
1

2

∫
Ω

un · ∇x%
2
n dx = −1

2

∫
Ω

%2ndivxun dx.

Taking β ≥ 12
5
(5
3
β = 4) we therefore have

‖%n‖L2(0,T ;W 1,2(Ω)) ≤ C. (8.15)

As we control

%nun =
√
%n
√
%nun in L∞(0, T ;L

2β
β+1 (Ω;R3))

(recall that
√
%n is controlled in L∞(0, T ;L2β(Ω)) and

√
%nun is controlled in

L∞(0, T ;L2(Ω;R3))), and

%nun in L2(0, T ;L
6β
β+6 (Ω;R3))

(recall that %n is controlled in L∞(0, T ;Lβ(Ω)) and un in L
2(0, T ;L6(Ω;R3))),

then %nun is bounded in L
10β−6
3(β+1) ((0, T )× Ω;R3). Hence for β > 3 we control

%nun in Ls̃((0, T ) × Ω;R3) for some s̃ > 2 and by virtue of Lemma 8.1 also
∇x%n in Ls̃((0, T ) × Ω;R3). Thus we know that divx(%nun) is bounded in
Lq((0, T )× Ω) for some q > 1. Whence Lemma 8.1 implies estimates

‖∇2
x%n‖Lq((0,T )×Ω;R3×3) ≤ C,
‖∂t%n‖Lq((0,T )×Ω) ≤ C

(8.16)
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for some q > 1.
We now recall our problem∫
Ω

∂t(%nun) · hi dx−
∫
Ω

%n(un ⊗ un) : ∇xhi dx+ µ

∫
Ω

∇xun : ∇xhi dx

+(µ+ λ)

∫
Ω

divxundivxhi dx−
∫
Ω

(%γn + δ%βn)divxhi dx

+ε

∫
Ω

∇x%n · ∇xun · hi dx =

∫
Ω

%nf · hi dx, (8.17)

∂t(%n)− ε∆%n+divx(%nun) = 0,

∂%n
∂n

∣∣∣∣
∂Ω

= 0.

We have (for a chosen subsequence, denoted however again by the same index
n)

∂t%n ⇀ ∂t% in Lq((0, T )× Ω),

∇2
x%n ⇀ ∇2

x% in Lq((0, T )× Ω;R3×3),

⇒ ∇x%n → ∇x% in Lr((0, T )× Ω;R3) ∀r ≤ 2,

%n ⇀
∗ % in L∞(0, T ;Lβ(Ω)),

%n ⇀ % in L
5
3
β((0, T )× Ω),

⇒ %n → % in Lr((0, T )× Ω) ∀r < 5

3
β,

un ⇀ u in L2(0, T ;W 1,2(Ω;R3)),

⇒ %nun ⇀ %u in L
10β−6
3(β+1) ((0, T )× Ω).

Next we want to show that in fact %nun → %u strongly. To this aim, let
us observe that for Pn the orthogonal projection from L2(Ω;R3) to Xn we
have

d

dt

∫
Ω

Pn(%nun) ·Φ dx =

∫
Ω

%n(un ⊗ un) : ∇xPn(Φ) dx

− µ
∫
Ω

∇xun : ∇xPn(Φ) dx− (µ+ λ)

∫
Ω

divxundivxPn(Φ) dx

+

∫
Ω

(%γn+δ%
β
n)divxPn(Φ) dx−ε

∫
Ω

∇x%n·∇xun·Pn(Φ) dx+

∫
Ω

%nf ·Pn(Φ) dx,

(8.18)
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t ∈ (0, T ) and Φ ∈ C∞
c (Ω;R3). We now recall the properties of the projection

Pn: ∫
Ω

Pn(u) · v dx =

∫
Ω

u · Pn(v) dx, ∀u,v ∈ L2(Ω;R3),

lim
n→∞

‖(Pn − I)u‖L2(Ω;R3) = 0, ∀u ∈ L2(Ω;R3),

‖Pn(u)‖Wk,2(Ω;R3) ≤ C‖u‖Wk,2(Ω;R3), k = 1, 2,

u ∈ W 1,2
0 (Ω;R3) ∩W k,2(Ω;R3),

lim
n→∞

‖(Pn − I)u‖W 1,2(Ω;R3) = 0, ∀u ∈ W 1,2
0 (Ω;R3),

lim
n→∞

(
sup

z∈W 1,q(Ω;R3);z ̸=0

(‖(Pn − I)z‖L2(Ω;R3)

‖z‖W 1,q(Ω;R3)

))
= 0, q >

6

5
.

(8.19)

To prove the last statement (the only nontrivial), assume the contrary. Hence
there exists ε0 > 0 and {zn}∞n=1 ⊂ W 1,q(Ω;R3) such that ‖zn‖W 1,q(Ω;R3) = 1
and ‖(Pn − I)zn‖L2(Ω;R3) ≥ ε0. Due to the compact embedding, there exists

a subsequence znk
→ z in L2(Ω;R3); whence

‖(Pnk
−I)znk

‖L2(Ω;R3) ≤ ‖(Pnk
−I)(znk

−z)‖L2(Ω;R3)+‖(Pnk
−I)z‖L2(Ω;R3) → 0

as k →∞, due to (8.19)2 and (8.19)3.
It is an easy matter to observe that using (8.18) and (8.19) we have for

some a > 1
‖∂t(Pn(%nun))‖La(0,T ;W−2,2(Ω;R3)) ≤ C.

Moreover,

‖Pn(%nun)‖Lq(0,T ;W 1,2(Ω;R3)) ≤ C‖%nun‖Lq(0,T ;W 1,2(Ω;R3)) ≤ C, q > 1,

provided β > 15; if 10β−6
3(β+1)

> 3, then by Lemma 8.1 ∇x%n is bounded in

Lr((0, T )×Ω;R3) for some r > 3 and thus %n is bounded in Lr(0, T ;L∞(Ω)).
By virtue of the Aubin–Lions lemma,

Pn(%nun)→ z, strongly in Lq(0, T ;L2(Ω;R3)).

It is not difficult to see, due to the fact that %nun converges to %u weakly,
that z = %u; it is enough to note that∫ T

0

∫
Ω

z ·ϕϕϕη dx dt←
∫ T

0

∫
Ω

Pn(%nun) ·ϕϕϕη dx dt

=

∫ T

0

∫
Ω

%nun · Pn(ϕϕϕ)η dx dt→
∫ T

0

∫
Ω

%u ·ϕϕϕη dx dt
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for all η ∈ C∞
c ((0, T )) and all ϕϕϕ ∈ C∞

c (Ω;R3).

Then as

‖%nun − %u‖Lq(0,T ;L2(Ω;R3))

≤ ‖%nun − Pn(%nun)‖Lq(0,T ;L2(Ω;R3)) + ‖Pn(%nun)− %u‖Lq(0,T ;L2(Ω;R3)),

we get due to (8.19)5 that %nun → %u in La(0, T ;L2(Ω;R3). Whence (recall
that β > 15)

%nun → %u in L3((0, T )× Ω;R3). (8.20)

Therefore we have for some s > 1

%nun ⊗ un ⇀ %u⊗ u in Ls((0, T )× Ω;R3×3). (8.21)

Finally, as ∇x%n is bounded in Ls1((0, T )× Ω;R3), s1 > 3, we have that
∇x%n → ∇x% in L3((0, T )× Ω;R3), and

ε∇x%n · ∇xun ⇀ ε∇x% · ∇xu in L
6
5 ((0, T )× Ω;R3).

Altogether we can pass to the limit in (8.17) to get

−
∫ T

0

∫
Ω

(%u) ·Φ∂tψ dx dt

−
∫ T

0

∫
Ω

%(u⊗ u) : ∇xΦψ dx dt+

∫ T

0

∫
Ω

µ∇xu : ∇xΦψ dx dt

+(µ+ λ)

∫ T

0

∫
Ω

divxudivxΦψ dx dt−
∫ T

0

∫
Ω

(%γ + δ%β)divxΦψ dx dt

+ε

∫ T

0

∫
Ω

∇x% · ∇xu ·Φψ dx dt =

∫ T

0

∫
Ω

%f ·Φψ dx dt,

(8.22)
first for any Φ ∈ Lin{h1,h2, . . . } and ψ ∈ C∞

c (0, T ), later due to density
argument we could enlarge the space. As we do not need to specify the space
now, we will not mention it explicitly. Finally, we may repeat the considera-
tions performed in Chapter 3 connected with the weak continuity of the mo-

mentum (note that by Lemma 7.4 we know that %u ∈ Cweak([0, T ];L
2β
β+1 (Ω)))
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and get∫
Ω

(%u · )))ϕ(τ, ·) dx−
∫
Ω

%0,δu0 ·ϕϕϕ(0, ·) dx =

∫ τ

0

∫
Ω

(%u) · ∂tϕϕϕ dx dt

+

∫ τ

0

∫
Ω

%(u⊗ u) : ∇xϕϕϕ dx dt−
∫ τ

0

∫
Ω

µ∇xu : ∇xϕϕϕ dx dt

−(µ+ λ)

∫ τ

0

∫
Ω

divxudivxϕϕϕ dx dt−
∫ τ

0

∫
Ω

(%γ + δ%β)divxϕϕϕ dx dt

+ε

∫ τ

0

∫
Ω

∇x% · ∇xu ·ϕϕϕ dx dt−
∫ τ

0

∫
Ω

%f ·ϕϕϕ dx dt

(8.23)

for any ϕϕϕ ∈ C∞
c ([0, τ ]× Ω;R3) and any 0 < τ ≤ T .

After the limit passage in the continuity equation we get

∂t%− ε∆%+ divx(%u) = 0,
∂%

∂n

∣∣∣∣
∂Ω

= 0, (8.24)

satisfied a.e. and in the weak sense.

Finally, we may also pass to the limit in the energy inequality. We take
(8.12) with s = 1 and integrate if over the time interval [0, t] ⊂ [0, T ]. To
pass to the limit in this inequality, we multiply it by a smooth compactly
supported function ψ in the time interval (0, T ) and integrate it once more
over the time variable, now over [0, T ]. In this form we may perform the limit
passage n → ∞ (in the terms with velocity gradients, we also use Fatou’s
lemma) and finally we get rid of the function ψ. We have

∫
Ω

(
1

2
%|u|2 + %γ

γ − 1
+ δ

%β

β − 1

)
(τ, ·) dx+ µ

∫ t

0

∫
Ω

|∇xu|2 dx dτ

+(µ+ λ)

∫ τ

0

∫
Ω

(divxu)
2 dx dτ + εδβ

∫ τ

0

∫
Ω

%β−2|∇x%|2 dx dτ

+εγ

∫ τ

0

∫
Ω

%γ−2|∇x%|2 dx dτ

≤
∫ τ

0

∫
Ω

%f · u dx dτ +

∫
Ω

(
1

2
%0,δ|u0|2 +

%γ0,δ
γ − 1

+ δ
%β0,δ
β − 1

)
dx

(8.25)

for a.a. t ∈ (0, T ].
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8.4 Estimates independent of ε, limit passage

ε→ 0+

Recall that from the energy inequality (8.25) we have

‖%ε|uε|2‖L∞(0,T ;L1(Ω)) ≤ C,
‖%ε‖L∞(0,T ;Lβ(Ω)) ≤ C,
‖uε‖L2(0,T ;W 1,2(Ω;R3)) ≤ C.

(8.26)

For β ≥ 4 we may test the continuity equation by %ε and get

√
ε‖%ε‖L2(0,T ;W 1,2(Ω)) ≤ C. (8.27)

However, at this point we need some better (and independent of ε) estimates
of the pressure. We recall the properties of the Bogovskii operator (see
(4.14)–(4.16) from Chapter 4).

We use as the test function in the momentum equation (8.23)

B
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
.

Recall that (1 ≤ p <∞)∥∥∥∥%ε − 1

|Ω|

∫
Ω

%0,δ dx

∥∥∥∥p
p

≤ C(p,Ω)

∫
Ω

%pε dx.

Note further that

∂t

(
B
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

))
= B(∂t%ε) = −B

(
divx(%εuε)− ε∆%ε

)
.

We have ∫ T

0

∫
Ω

(%γ+1
ε + δ%β+1

ε ) dx dt =
9∑
j=1

Ij,

where

I1 =
1

|Ω|

∫ T

0

(∫
Ω

(%γε + δ%βε ) dx

∫
Ω

%0,δ dx
)
dt,
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I2 = −
∫ T

0

∫
Ω

(%εuε) · ∂t
(
B
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

))
dx dt

= −
∫ T

0

∫
Ω

%εuε · B (∂t%ε) dx dt

=

∫ T

0

∫
Ω

(%εuε · B(divx(%εuε))− ε%εuε · B(∆%ε))ψ dx dt

= I12 + I22 ,

I3 = −
∫ T

0

∫
Ω

%ε(uε ⊗ uε) : ∇xB
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
dx dt,

I4 =

∫ T

0

∫
Ω

µ∇xuε : ∇xB
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
dx dt,

I5 =

∫ T

0

∫
Ω

(µ+ λ)divxuε

(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
dx dt,

I6 =

∫ T

0

∫
Ω

ε∇x%ε · ∇xuε · B
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
dx dt,

I7 = −
∫ T

0

∫
Ω

%εf · B
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)
dx dt,

I8 = −
∫
Ω

%εuε(T, ·) · B
(
%ε(T, ·)−

1

|Ω|

∫
Ω

%0,δ dx

)
dx,

I9 = −
∫
Ω

%0,δu0 · B
(
%0,δ −

1

|Ω|

∫
Ω

%0,δ dx

)
dx.

We estimate each term separately:

|I1| ≤ C(‖%ε‖γL∞(0,T ;Lγ(Ω)) + δ‖%ε‖βL∞(0,T ;Lβ(Ω))
) ≤ C(DATA),

|I12 | ≤
∫ T

0

∫
Ω

%ε|uε| · |B(divx(%εuε))| dx dt

≤ C

∫ T

0

‖%ε‖L3(Ω)‖uε‖L6(Ω;R3)‖%εuε‖L2(Ω;R3) dt

≤ C

∫ T

0

‖%ε‖2L3(Ω)‖uε‖2L6(Ω;R3) dt ≤ C(DATA)
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if β ≥ 3,

|I22 | ≤ C

∫ T

0

∫
Ω

|%εuε|
∣∣∣B(ε∆%ε)∣∣∣ dx dt

≤ C

∫ T

0

ε‖∇%ε‖L2(Ω;R3)‖%ε‖L3(Ω)‖uε‖L6(Ω;R3) dt ≤ C(DATA)

if β ≥ 3 (note that ∇%ε · n = 0 on ∂Ω),

|I3| ≤ C

∫ T

0

∫
Ω

%ε|uε|2
∣∣∣∣∇xB

(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)∣∣∣∣ dx dt

≤ C

∫ T

0

‖%ε‖2L3(Ω)‖uε‖2L6(Ω;R3) dt ≤ C(DATA)

if β ≥ 3,

|I4|+ |I5| ≤

C

∫ T

0

‖∇xuε‖L2(Ω;R3×3)

∥∥∥∥∇xB
(
%ε −

1

|Ω|

∫
Ω

%0,δ dx

)∥∥∥∥
L2(Ω;R3×3)

dt

≤ C

∫ T

0

‖∇xuε‖L2(Ω;R3×3)‖%ε‖L2(Ω) dt ≤ C(DATA)

if β ≥ 2,

|I6| ≤ C

∫ T

0

ε‖∇x%ε‖L2(Ω;R3)‖∇xuε‖L2(Ω;R3×3)×

×
∥∥∥∥B(%ε − 1

|Ω|

∫
Ω

%0,δ dx

)∥∥∥∥
L∞(Ω;R3)

dt

≤ C

∫ T

0

ε‖∇x%ε‖L2(Ω;R3)‖∇xuε‖L2(Ω;R3×3)‖%ε‖Lβ(Ω) dt ≤ C(DATA)

if β > 3,

|I7| ≤ C

∫ T

0

‖%ε‖Lβ(Ω)

∥∥∥∥B(%ε − 1

|Ω|

∫
Ω

%0,δ dx

)∥∥∥∥
L

β
β−1 (Ω;R3)

dt

≤ C

∫ T

0

‖%ε‖2Lβ(Ω) dt
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if β ≥ 3
2
,

|I8| ≤ ‖%εuε‖
L∞(0,T ;L

2β
β+1 (Ω)

∥∥∥∥B(%ε − 1

|Ω|

∫
Ω

%0,δ dx

)∥∥∥∥
C([0,T ]×Ω)

≤ C(DATA)

for β > 3; here we use that %εuε ∈ Cweak([0, T ];L
2β
β+1 (Ω;R3)) and the embed-

ding W 1,β(Ω) ↪→ C(Ω). Finally

|I9| ≤ C(DATA).

Therefore, ∫ T

0

∫
Ω

(%γ+1
ε + δ%β+1

ε ) dx dt ≤ C(DATA)

provided
β > 3.

Hence
‖%ε‖Lγ+1((0,T )×Ω) + δ

1
β+1‖%ε‖Lβ+1((0,T )×Ω) ≤ C. (8.28)

Using Theorem 7.2 together with the considerations as in Chapter 3 based
on the weak formulation of the continuity equation we have

%ε → % in Cweak(0, T ;L
β(Ω)).

Using the weak formulation of the momentum equation and the arguments
as above and in Chapter 3 we have

%εuε → %u in Cweak([0, T ];L
2β
β+1 (Ω;R3)).

Writing the continuity equation (8.24) in the weak form,∫
Ω

(%εΦ)(τ, ·) dx−
∫
Ω

%0,δΦ(0, ·) dx

=

∫ τ

0

∫
Ω

%ε∂tΦdx dt−
∫ τ

0

∫
Ω

ε∇x%ε · ∇xΦdx dt

+

∫ τ

0

∫
Ω

%εuε · ∇xΦdx dt ∀Φ ∈ C∞
c ([0, τ ]× Ω), τ ∈ (0, T ],
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we may pass with ε→ 0+ (ε‖∇x%ε‖L2((0,T )×Ω;R3) → 0)∫
Ω

(%Φ)(τ, ·) dx−
∫
Ω

%0,δΦ(0, ·) dx =

∫ τ

0

∫
Ω

%ε∂tΦdx dt

+

∫ τ

0

∫
Ω

%εuε · ∇xΦdx dt ∀Φ ∈ C∞
c ([0, τ ]× Ω), τ ∈ (0, T ],

(8.29)

whence it also holds for Φ ∈ W 1,2((0, τ)×Ω) such that Φ ∈ C([0, τ ];L
β

β−1 (Ω))
and we recover the weak formulation of the continuity equation.

Next we consider the momentum equation. Since

ε

∫ T

0

∫
Ω

|∇x%ε · ∇xuε| dx dt

≤
√
ε
√
ε‖∇x%ε‖L2(0,T ;L2(Ω;R3))‖∇xuε‖L2((0,T )×Ω;R3×3),

and exactly as in Chapter 6

%εuε ⊗ uε ⇀ %u⊗ u in Lq((0, T )× Ω;R3×3) for some q > 1,

we recover after the limit passage ε→ 0+∫
Ω

(%u ·ΦΦΦ)(τ, ·) dx−
∫
Ω

%0,δu0 ·ΦΦΦ(0, ·) dx

=

∫ τ

0

∫
Ω

%u · ∂tΦ dx dt+

∫ τ

0

∫
Ω

%(u⊗ u) : ∇xΦ dx dt

−µ
∫ τ

0

∫
Ω

∇xu : ∇xΦ dx dt− (µ+ λ)

∫ τ

0

∫
Ω

divxu divxΦ dx dt

+

∫ τ

0

∫
Ω

(%γ + δ%β)divxΦ dx dt+

∫ τ

0

∫
Ω

%f ·Φ dx dt,

(8.30)

for any Φ ∈ C∞
c ([0, τ ] × Ω;R3) and any 0 < τ ≤ T . By density argument,

it also holds for Φ bounded (continuous) with ∂tΦ ∈ L2(0, τ ;L
6β

5β−1 (Ω;R3)),
∇xΦ ∈ L2((0, τ) × Ω;R3×3) and divxΦ ∈ Lβ+1((0, τ) × Ω) such that the

function ΦΦΦ ∈ C([0, τ ];L
2β
β−1 (Ω;R3)), 0 < τ ≤ T . The last task is to show that

%γ + δ%β = %γ + δ%β, i.e., the strong convergence of the density.

8.4.1 Strong convergence of the density

First recall that we have the following renormalized formulation of the con-
tinuity equation (note that the equation holds pointwise a.e. in (0, T )× Ω)

∂t(b(%ε)) + divx(b(%ε)uε) + (%εb
′(%ε)− b(%ε))divxuε − ε∆b(%ε)

= −εb′′(%ε)|∇x%ε|2 ≤ 0
(8.31)
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with b sufficiently smooth and convex. Due to the fact β > 2, we also have in
the limit (we can prove it directly from the weak formulation of the continuity
equation for the limit functions, see Lemma 7.3)

∂t(b(%)) + divx(b(%)u) + (%b′(%)− b(%))divxu = 0 (8.32)

for b sufficiently smooth; however, now it holds only in the sense of distribu-
tions. We will return to the precise formulation below.

We now proceed as in the weak sequential compactness part. The aim is
to show the effective viscous flux identity

%γ+1 + δ%β+1 − (2µ+ λ)%divxu = %γ%+ δ%β%− (2µ+ λ)%divxu a.e. in Ω.
(8.33)

However, we should be careful with the term %β+1 since the existence of
the weak limit is not a consequence of the estimates of the density proved
above. We will comment on this below. To show (8.33) we proceed exactly
as in Chapter 6. One difference is that for ϕϕϕε = Φ∇x∆

−1[%ε1Ω] with Φ ∈
C∞
c ([0, T ]× Ω) we have

∂tϕϕϕε = Φ∇x∆
−1[∂t%ε1Ω] + l.o.t = −∇x∆

−1divx(%εuε) + ε∇x(%ε1Ω)︸ ︷︷ ︸
→0

+l.o.t.,

where l.o.t. denotes lower order terms coming from the derivatives of the
function Φ. Next, ∆−1 represents here the inverse of the Laplacean on R3,
specifically,

∂xj∆
−1[v] = Fξ→x

[
iξj
|ξ|2
Fx→ξ[v]

]
.

Finally, the term

ε

∫ T

0

∫
Ω

∇x%ε · ∇xuε ·ϕϕϕε dx dt→ 0 (8.34)

for ε → 0+. The rest is the same, hence we obtain the effective viscous flux
identity. Note that all other terms (except for %β+1

ε ) are equiintegrable and
thus also %β+1

ε is equiintegrable (the localization of the equality is straight-
forward). Thus %β+1

ε ⇀ %β+1 as it the sequence is bounded in L1((0, T )×Ω).
We intend to use in the renormalized continuity equation b(%) = % ln %.

Note that b′′(%) = (ln %+1)′ = 1
ϱ
> 0, i.e. it is a convex function, however, it

has superlinear growth at infinity and the derivative is not bounded at zero.
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However, we can handle the growth by means of Lemma 7.3. Next, due to
Lemma 7.6 we know that the density is continuous with values in Lq(Ω) for
any q < β. We therefore have (we apply the same procedure as we used to
the continuity equation in Chapter 3)∫

Ω

(% ln %ϕ)(τ, ·) dx−
∫
Ω

%0,δ ln %0,δϕ(0, ·) dx

=

∫ τ

0

∫
Ω

% ln %∂tϕ dx dt+

∫ τ

0

∫
Ω

% ln %u · ∇ϕ dx dt−
∫ τ

0

∫
Ω

%divxuϕ dx dt

(8.35)

for any ϕ ∈ C∞
c ([0, τ ] × Ω) and any 0 < τ ≤ T . However, we may argue as

in the proof of Lemma 7.2 to see that we may in fact use test functions from
C∞
c ([0, τ ]×Ω). This finally allows to use as test function 1Ω1[0,τ ] to conclude∫

Ω

(% ln %)(τ, ·) dx−
∫
Ω

%0,δ ln %0,δ dx+

∫ τ

0

∫
Ω

%divxu dx dt = 0.

Further, for ε > 0 we have a.e. in (0, T )× Ω

∂t(%ε ln %ε) + divx(%ε ln %εuε) + %εdivxuε − ε∆(%ε ln %ε) ≤ 0.

Integrating it over Ω (recall that ∂n%ε|∂Ω = 0) and over (0, τ) yields∫
Ω

(%ε ln %ε)(τ, ·) dx−
∫
Ω

%0,δ ln %0,δ dx+

∫ τ

0

∫
Ω

%εdivxuε dx dt ≤ 0.

Passing with ε → 0+ (note that %ε ln %ε converges in Cweak([0, T ];L
q(Ω)) for

any q < β)∫
Ω

(% ln %)(τ, ·) dx−
∫
Ω

%0,δ ln %0,δ dx+

∫ τ

0

∫
Ω

%divxu dx dt ≤ 0.

Therefore∫
Ω

(
(% ln %)(τ, ·)− (% ln %)(τ, ·)

)
dx ≤

∫ τ

0

∫
Ω

(%divxu− %divxu) dx dt

=
1

2µ+ λ

∫ τ

0

∫
Ω

((
%γ%− %γ+1

)
+ δ

(
%β%− %β+1

))
dx dt.

As
%γ+1 − %γ% = lim

ε→0+
(%γ+1
ε − %γε%) = lim

ε→0+
(%γε − %γ)(%ε − %) ≥ 0,
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we have %γ% ≤ %γ+1 and thus∫
Ω

(
(% ln %)(τ, ·)− (% ln %)(τ, ·)

)
dx ≤ 0.

We now apply the following result

Lemma 8.3 Let O ⊂ RM be a measurable set and {vn}∞n=1 a sequence of
functions in L1(Ω) such that

vn ⇀ v in L1(O).

Let Φ: R→ (−∞,∞] be a continuous convex function. Then∫
Ω

Φ(v) dx ≤ lim inf
n→∞

∫
Ω

Φ(vn) dx.

Moreover, if Φ(vn)⇀ Φ(v) in L1(O), then

Φ(v) ≤ Φ(v)

a.e. in O. If, in addition, Φ is strictly convex on an open convex set U ⊂ R,
and

Φ(v) = Φ(v) a.e. in U,

then for possibly a subsequence

vn → v for a.e. y ∈ {y ∈ O, v(y) ∈ U}.

Proof: The proof can be found in [10]. �
This yields

% ln % = % ln %

as well as the a.e. in (0, T ) × Ω the pointwise convergence of the sequence
of densities. This, by virtue of Vitali’s convergence theorem, implies that
%ε → % in Lp((0, T )× Ω) for any p < β + 1.

Hence we get the weak formulation of the momentum equation∫
Ω

(%u ·ΦΦΦ)(τ, ·) dx−
∫
Ω

%0,δu0 ·ΦΦΦ(0, ·)

=

∫ τ

0

∫
Ω

%u · ∂tΦ dx dt+

∫ τ

0

∫
Ω

%(u⊗ u) : ∇xΦ dx dt

−
∫ τ

0

∫
Ω

µ∇xu : ∇xΦ dx dt− (µ+ λ)

∫ τ

0

∫
Ω

divxu divxΦ dx dt

+

∫ τ

0

∫
Ω

(%γ + δ%β) divxΦ dx dt−
∫ τ

0

∫
Ω

%f ·Φ dx dt,

(8.36)
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for any Φ ∈ C∞
c ([0, τ ] × Ω), 0 < τ ≤ T , and the energy inequality (here we

proceed exactly as in the limit passage n→∞)∫
Ω

(
1

2
%|u|2 + %γ

γ − 1
+ δ

%β

β − 1

)
(τ, ·) dx

+µ

∫ τ

0

∫
Ω

|∇xu|2 dx dt+ (µ+ λ)

∫ τ

0

∫
Ω

(divxu)
2 dx dt

≤
∫ τ

0

∫
Ω

%f · u dx dt+

∫
Ω

(
1

2
%0,δ|u0|2 +

%γ0,δ
γ − 1

+ δ
%β0,δ
β − 1

)
dx

(8.37)

for a.e. τ ∈ (0, T ].

8.5 Estimates independent of δ, limit passage

δ → 0+

We have as before

‖%δ|uδ|2‖L∞(0,T ;L1(Ω)) ≤ C,

‖%δ‖L∞(0,T ;Lγ(Ω)) + δ
1
β ‖%δ‖L∞(0,T ;Lβ(Ω)) ≤ C,

‖uδ‖L2(0,T ;W 1,2(Ω;R3)) ≤ C,

(8.38)

and

%δ → % in Cweak(0, T ;L
γ(Ω)),

%δuδ → %u in Cweak(0, T ;L
2γ
γ+1 (Ω;R3)). (8.39)

We need to estimate the pressure in a better space than just L1((0, T )×Ω).
To this aim, we apply similar type of improved pressure estimates as in the
previous limit passage in Section 8.4. However, we have to employ a slightly
different test function, namely

B
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)
.

Recall that ∥∥∥∥%Θδ − 1

|Ω|

∫
Ω

%Θδ dx

∥∥∥∥p
p

≤ C(p,Ω)

∫
Ω

%pΘδ dx
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for any 1 ≤ p <∞, and

∂t

(
B
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

))
= B

(
∂t%

Θ
δ −

1

|Ω|

∫
Ω

∂t%
Θ
δ dx

)
. (8.40)

Due to the renormalized continuity equation, we have in the sense of distri-
butions

∂t%
Θ
δ = −divx(%Θδ uδ)− (Θ− 1)%Θδ divxu,

therefore

B
(
∂t%

Θ
δ −

1

|Ω|

∫
Ω

∂t%
Θ
δ dx

)
= −B(divx(%Θδ uδ))− (Θ− 1)B

(
%Θδ divxuδ −

1

|Ω|

∫
Ω

%Θδ divxuδ dx

)
.

Thus ∫ T

0

∫
Ω

(%γ+Θ
δ + δ%β+Θ

δ ) dx dt =
8∑
j=1

Ij,

where

I1 =
1

|Ω|

∫ T

0

(∫
Ω

(%γδ + δ%βδ ) dx

∫
Ω

%Θδ dx
)
dt,

I2 = −
∫ T

0

∫
Ω

(%δuδ) · ∂t
(
B
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

))
dx dt

= −
∫ T

0

∫
Ω

B
(
∂t%

Θ
δ −

1

|Ω|

∫
Ω

∂t%
Θ
δ dx

)]
dx dt

=

∫ T

0

∫
Ω

(
%δuδ · B(divx(%δuδ)) + (Θ− 1)%δuδ · B

(
%Θδ divxuδ

− 1

|Ω|

∫
Ω

%Θδ divxuδ dx
))

dx dt

= I12 + I22 ,

I3 = −
∫ T

0

∫
Ω

%δ(uδ ⊗ uδ) : ∇xB
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)
dx dt,
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I4 =

∫ T

0

∫
Ω

µ∇xuδ : ∇xB
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)
dx dt,

I5 =

∫ T

0

∫
Ω

(µ+ λ)divxuδ

(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)
dx dt,

I6 = −
∫ T

0

∫
Ω

%δf · B
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)
dx dt,

I7 = −
∫
Ω

(%δuδ)(T, ·) · B
(
%Θδ (T, ·)−

1

|Ω|

∫
Ω

%Θδ (T, ·) dx
)

dx,

I8 = −
∫
Ω

%Θ0,δu0 · B
(
%Θ0,δ −

1

|Ω|

∫
Ω

%Θ0,δ dx

)
dx.

We estimate each term separately:

|I1| ≤ C(‖%δ‖γ+Θ
L∞(0,T ;Lγ(Ω))

+ δ‖%δ‖βL∞(0,T ;Lβ(Ω))
‖%δ‖ΘL∞(0,T ;Lγ(Ω))) ≤ C(DATA)

provided Θ ≤ γ,

I12 = C

∫ T

0

∫
Ω

%δuδ · B(divx(%δuδ)) dx dt

≤ C

∫ T

0

‖%δ‖L 3
2 (1+Θ)(Ω)

‖uδ‖L6(Ω;R3)‖%δuδ‖
L

6(1+Θ)
1+5Θ (Ω;R3)

dt

≤ C

∫ T

0

∫
Ω

‖%δ‖1+Θ

L
3
2 (1+Θ)(Ω)

‖uδ‖2L6(Ω;R3) dx dt ≤ C(DATA)

if Θ ≤ 2
3
γ − 1,

|I22 | ≤ C

∫ T

0

∫
Ω

%δ|uδ|
∣∣∣B(%Θδ divxuδ − 1

Ω|

∫
Ω

%Θδ divxuδ dx
)∣∣∣ dx dt

≤ C

∫ T

0

‖%δ‖Lγ(Ω)‖uδ‖L6(Ω;R3) ×

×
∥∥∥B(%Θδ divxuδ − 1

|Ω|

∫
Ω

%Θδ divxuδ dx
)∥∥∥

L
6γ

5γ−6 (Ω;R3)
dt

≤ C

∫ T

0

‖%δ‖Lγ(Ω)‖uδ‖L6(Ω;R3)‖divxuδ‖L2(Ω)‖%δ‖Θ
L

3γΘ
2γ−3 (Ω)

≤ C(DATA)
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if Θ ≤ 2
3
γ − 1 and γ ≤ 6,

|I3| ≤ C

∫ T

0

∫
Ω

%δ|uδ|2
∣∣∣∣∇xB

(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)∣∣∣∣ dx dt

≤ C

∫ T

0

‖%δ‖Lγ(Ω)‖uδ‖2L6(Ω;R3)‖%δ‖
Θ

L
3γΘ
2γ−3 (Ω)

dx dt ≤ C(DATA)

if Θ ≤ 2
3
γ − 1,

|I4|+ |I5| ≤

C

∫ T

0

‖∇xuδ‖L2(Ω;R3×3)

∥∥∥∥∇xB
(
%Θδ −

1

|Ω|

∫
Ω

%Θδ dx

)∥∥∥∥
L2(Ω;R3×3)

dt

≤ C

∫ T

0

‖∇xuδ‖L2(Ω;R3×3)‖%δ‖L2Θ(Ω) dt ≤ C(DATA),

if Θ ≤ γ
2
,

|I6| ≤ C

∫ T

0

‖%δ‖Lγ(Ω)

∥∥∥∥B(%Θδ − 1

|Ω|

∫
Ω

%Θδ dx

)∥∥∥∥
L

γ
γ−1 (Ω;R3)

dt

≤ C

∫ T

0

‖%δ‖1+Θ
Lγ(Ω) dt

if Θ ≤ 3(γ−1)
3−γ if γ < 3, Θ arbitrary finite if γ ≥ 3,

|I7| ≤ ‖%δuδ‖
L∞(0,T ;L

2γ
γ+1 (Ω)

∥∥∥∥B(%Θδ − 1

|Ω|

∫
Ω

%Θδ dx

)∥∥∥∥
C([0,T ];L

2γ
γ−1 (Ω)

≤ C(DATA)

for Θ < 5γ−1
6

; here we use that %δuδ ∈ Cweak([0, T ];L
2γ
γ+1 (Ω;R3)) and the

embedding W 1, γ
Θ (Ω) ↪→↪→ L

2γ
γ−1 (Ω). Finally

|I8| ≤ C(DATA).

Hence
‖%δ‖Lγ+Θ((0,T )×Ω) + δ‖%δ‖Lβ+Θ((0,T )×Ω) ≤ C. (8.41)

Note that Θ = min{2
3
γ − 1, γ

2
}; for γ = 6 both values are equal. However,

if we proceed once more for γ > 6 and use, instead of the information %δ
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bounded in L∞(0, T ;Lγ(Ω)), the newly obtained information that the se-

quence is bounded in L
3
2
γ((0, T ) × Ω) in the terms coming from the stress

tensor, we end up with the fact that %δ is bounded in L
5
3
γ−1((0, T )×Ω). This

improvement is not important for us in this situation, so we do not present
any details and leave them for interested reader.

As above we can pass to the limit in the weak formulation of the continuity
equation to get ∫

Ω

(%Φ)(τ, ·) dx−
∫
Ω

%0Φ(0, ·) dx

=

∫ τ

0

∫
Ω

%∂tΦdx dt+

∫ τ

0

∫
Ω

%u · ∇xΦdx dt

(8.42)

for all Φ ∈ C∞
c ([0, τ ]× Ω) and any 0 < τ ≤ T . Moreover, as in the previous

section

%δuδ ⊗ uδ ⇀ %u⊗ u in Lq((0, T )× Ω;R3×3) for some q > 1

and we may pass to the limit δ → 0+ in the weak formulation of the momen-
tum equation (note that δ

∫ τ
0

∫
Ω
%βδdivxΦ dx dt→ 0)∫

Ω

(%u ·Φ)(τ, ·) dx−
∫
Ω

%0u0 ·Φ(0, ·) dx

=

∫ τ

0

∫
Ω

%u · ∂tΦ dx dt+

∫ τ

0

∫
Ω

%(u⊗ u) : ∇xΦ dx dt

−µ
∫ τ

0

∫
Ω

∇xu : ∇xΦ dx dt− (µ+ λ)

∫ τ

0

∫
Ω

divxu divxΦ dx dt

+

∫ τ

0

∫
Ω

%γ divxΦ dx dt−
∫ τ

0

∫
Ω

%f ·Φ dx dt

(8.43)

for all Φ ∈ C∞
c (([0, τ ] × Ω;R3) and all 0 < τ ≤ T . To finish the proof it

remains to show that %γ = %γ. Recall that, due to restriction coming from
above, we consider γ > 3

2
.

8.5.1 Strong convergence of the density

We will follow a similar strategy as before, i.e., we show

• effective viscous flux identity
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• validity of the renormalized continuity equation

• strong convergence of the density

Recall that we control

‖%δ‖Lγ+θ((0,T )×Ω) ≤ C,

where θ = min{2
3
γ − 1, γ

2
}. Then 5

3
γ − 1 = 2 for γ = 9

5
, i.e. for γ < 9

5
there

is an additional difficulty: for the limit (%,u) we do not have guaranteed
the validity of the renormalized continuity equation, we will have to verify it
differently.

We denote

T (z) =


z for z ∈ [0, 1],
∈ (1, 2] concave for z ∈ [1, 3],
2 for z ≥ 3

with T (·) ∈ C∞(R+
0 ), and

Tk(z) = kT
(z
k

)
, k ∈ N.

We aim at showing

%γTk(%)− (2µ+ λ)Tk(%)divxu = %γTk(%)− (2µ+ λ)Tk(%)divxu (8.44)

a.e. in (0, T ) × Ω for all k ∈ N. The proof is based on a similar idea as
before; we use a clever test function for approximated momentum equation
for δ > 0, then for the limit problem; finally we pass to the limit δ → 0+,
using certain tools from the compensated compactness theory.

Recall that we have for δ > 0 the renormalized continuity equation in the
form (in the sense of distributions in (0, T )× Ω)

∂t(Tk(%δ)) + divx(Tk(%δ)uδ) + (%δT
′
k(%δ)− Tk(%δ))divxuδ = 0, (8.45)

however, for the limit we only have (in fact, for γ ≥ 9
5
the situation is better,

however, we are mainly interested in low γ’s)

∂t(Tk(%)) + divx(Tk(%)u) + (%T ′
k(%)− Tk(%))divxu = 0 (8.46)

(again in the sense of distributions in (0, T )× Ω)
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We use as the test function in the approximated momentum equation
(understood in the weak sense)

∂t(%δuδ)+divx(%δuδ⊗uδ)−µ∆uδ− (µ+λ)∇xdivxuδ+∇x

(
%γδ + δ%βδ

)
= %δf

the function
ϕϕϕδ = φ∇x∆

−1(1ΩTk(%δ)), k ∈ N

and for the limit equation (again, understood in the weak sense)

∂t(%u) + divx(%u⊗ u)− µ∆u− (µ+ λ)∇xdivxu+∇x%γ = %f

the test function
ϕϕϕ = φ∇x∆

−1(1ΩTk(%)), k ∈ N.

Here, ∆−1 represents as in the previous section the inverse of the Laplacean
on R3, i.e.

∂xj∆
−1[v] = Fξ→x

[
iξj
|ξ|2
Fx→ξ[v]

]
,

and φ ∈ C∞
c ((0, T )× Ω). Note that for 1 ≤ p < 3 we have

‖∇x∆
−1[v]‖

L
3p
3−p (Ω;R3)

≤ C‖v‖Lp(Ω)

and for p > 3
‖∇x∆

−1[v]‖C(Ω;R3) ≤ C‖v‖Lp(Ω).

Step 1: As
%δ → % in Cweak([0, T ];L

γ(Ω)),

we have, in accordance with the standard Sobolev embedding relation

W 1,p(Ω) ↪→↪→ C(Ω), p > 3,

∇x∆
−1[1ΩTk(%δ)]→ ∇x∆

−1[1ΩTk(%)] in C([0, T ]× Ω).

Now for φ ∈ C∞
c ((0, T )× Ω)

lim
δ→0+

[ ∫ T

0

∫
Ω

(
φp(%δ)Tk(%δ) + p(%δ)∇xφ · ∇x∆

−1[1ΩTk(%δ)]
)
dx dt (8.47)

−
∫ T

0

∫
Ω

φ
(
µ∇xuδ : ∇2

x∆
−1[1ΩTk(%δ)] + (λ+ µ)divxuδTk(%δ)

)
dx dt
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−
∫ T

0

∫
Ω

(
µ∇xuδ · ∇xφ · ∇x∆

−1[1ΩTk(%δ)]

+(λ+ µ)divxuδ∇xφ · ∇x∆
−1[1ΩTk(%δ)]

)
dx dt

]
=

∫ T

0

∫
Ω

(
φp(%)Tk(%)− p(%)∇xφ · ∇x∆

−1[1ΩTk(%)]
)
dx dt

−
∫ T

0

∫
Ω

φ
(
µ∇xu : ∇2

x∆
−1[1ΩTk(%)] + (λ+ µ)divxuTk(%)

)
dx dt

−
∫ T

0

∫
Ω

(
µ∇xu · ∇xφ · ∇x∆

−1[1ΩTk(%)]

+(λ+ µ)divxu∇xφ · ∇x∆
−1[1ΩTk(%)]

)
dx dt

+ lim
δ→0+

∫ T

0

∫
Ω

(
φ%δuδ · ∇x∆

−1[divx(Tk(%δ)uδ) + (%δT
′
k(%δ)− Tk(%δ))divxuδ]

−%δ(uδ ⊗ uδ) : ∇x

(
φ∇x∆

−1[1ΩTk(%δ)]
) )

dx dt

−
∫ T

0

∫
Ω

(
φ%u · ∇x∆

−1[divx(Tk(%)u) + (%T ′
k(%)− Tk(%))divxu]

−%(u⊗ u) : ∇x

(
φ∇x∆

−1[1ΩTk(%)]
))

dx dt

− lim
δ→0+

∫ T

0

∫
Ω

∂tφ%δuδ · ∇x∆
−1(Tk(%δ)) dx dt

+

∫ T

0

∫
Ω

∂tφ%u · ∇x∆
−1(Tk(%)) dx dt.

Step 2: We have∫
Ω

φ∇xuδ : ∇2
x∆

−1[1ΩTk(%δ)] dx =

∫
Ω

φ

3∑
i,j=1

(
∂xju

i
δ[∂xi∆

−1∂xj ][1ΩTk(%δ)]
)
dx

=

∫
Ω

3∑
i,j=1

(
∂xj(φu

i
δ)[∂xi∆

−1∂xj ][1ΩTk(%δ)]
)
dx
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−
∫
Ω

3∑
i,j=1

(
∂xjφu

i
δ[∂xi∆

−1∂xj ][1ΩTk(%δ)]
)
dx

=

∫
Ω

φdivxuδTk(%δ) dx+

∫
Ω

∇xφ · uδTk(%δ) dx

−
∫
Ω

3∑
i,j=1

(
∂xjφu

i
δ[∂xi∆

−1∂xj ][1ΩTk(%δ)]
)
dx.

Consequently, going back to (8.47) and dropping the compact terms, we
obtain

lim
δ→0+

∫ T

0

∫
Ω

φ
(
p(%δ)Tk(%δ)− (λ+ 2µ)divxuδTk(%δ)

)
dx dt (8.48)

−
∫ T

0

∫
Ω

φ
(
p(%) Tk(%)− (λ+ 2µ)divxuTk(%)

)
dx dt

= lim
δ→0+

∫ T

0

∫
Ω

φ
(
%δuδ · ∇x∆

−1[divx(Tk(%δ)uδ)]

−%δ(uδ ⊗ uδ) : ∇x∆
−1∇x[1ΩTk(%δ)]

)
dx dt

−
∫ T

0

∫
Ω

(
φ%u·∇x∆

−1[divx(Tk(%)u)]−φ%(u⊗u) : ∇x∆
−1∇x[1ΩTk(%)]

)
dx dt.

Step 3: Our goal is to show that the right-hand side of (8.48) vanishes.
We write∫
Ω

φ
[
%δuδ · ∇x∆

−1[1Ωdivx(Tk(%δ)uδ)]− %δ(uδ ⊗uδ) : ∇x∆
−1∇x[1ΩTk(%δ)]

]
dx

=

∫
Ω

φuδ·
[
Tk(%δ)∇x∆

−1[divx(1Ω%δuδ)]−%δuδ·∇x∆
−1∇x[1ΩTk(%δ)]

]
dx+l.o.t.,

where l.o.t. denotes lower order terms (with derivatives on φ). As in Chapter
6, we consider the bilinear form

[v,w] =
3∑

i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)
, Ri,j = ∂xi∆

−1∂xj ,
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writing
3∑

i,j=1

(
viRi,j[w

j]− wiRi,j[v
j]
)

=
3∑

i,j=1

(
(vi −Ri,j[v

j])Ri,j[w
j]− (wi −Ri,j[w

j])Ri,j[v
j]
)

= U ·V −W · Z,
where

U i =
3∑
j=1

(vi −Ri,j[v
j]), W i =

3∑
j=1

(wi −Ri,j[w
j]), divxU = divxW = 0,

and

V i = ∂xi

(
3∑
j=1

∆−1∂xjw
j

)
, Zi = ∂xi

(
3∑
j=1

∆−1∂xjv
j

)
, i = 1, 2, 3.

Therefore we may apply the Div-Curl lemma (Lemma 6.1) and using

Tk(%δ)→ Tk(%) in Cweak([0, T ];L
q(Ω)), 1 ≤ q <∞,

%δuδ → %u in Cweak([0, T ];L
2γ/(γ+1)(Ω;R3)),

for vi := Tk(%)δil, l = 1, 2, 3, and w := %u, similarly for vδ and wδ; we
conclude that

Tk(%δ)(t, ·)∇x∆
−1[1Ωdivx(%δuδ)(t, ·)]− (%δuδ)(t, ·) · ∇x∆

−1∇x[1ΩTk(%δ)(t, ·)]
(8.49)

→
Tk(%)(t, ·)∇x∆

−1[1Ωdivx(%u)(t, ·)]− (%u)(t, ·) · ∇x∆
−1∇x[1ΩTk(%)(t, ·)]

weakly in Ls(Ω;R3) for all t ∈ [0, T ],

with

s <
2γ

γ + 1
; but

2γ

γ + 1
>

6

5
since γ >

3

2
.

Thus we may take s > 6
5
. Then the convergence in (8.49) takes place in the

space
Lq(0, T ;W−1,2(Ω)) for any 1 ≤ q <∞;
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going back to (8.48), we have

lim
δ→0

∫ τ

0

∫
Ω

φ
(
p(%δ)Tk(%δ)− (λ+ 2µ)divxuδTk(%δ)

)
dx dt (8.50)

=

∫ τ

0

∫
Ω

φ
(
p(%) Tk(%)− (λ+ 2µ)divxuTk(%)

)
dx dt.

Therefore, localizing we get as in Chapter 6 the desired form of the effec-
tive viscous flux identity (8.44).

Next we want to verify that for γ > 3
2
we have the renormalized continuity

equation (with b(%) = Tk(%)) fulfilled. For γ ≥ 9
5
we get this immediately, as

% belongs to L2((0, T )× Ω). But for γ < 9
5
additional work is required.

We introduce the quantity oscillation defect measure

oscq(%δ − %) := sup
k≥1

lim sup
δ→0+

‖Tk(%δ)− Tk(%)‖Lq((0,T )×Ω).

Below, we shall show

(i) oscγ+1(%δ − %) <∞

(ii)

lim sup
δ→0+

∫ T

0

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx dt

≤
∫ T

0

∫
Ω

(%γTk(%)− %γTk(%)) dx dt,

(8.51)

(iii) if oscq(%δ − %) <∞ for some q > 2, the limit functions (%,u) fulfill the
renormalized continuity equation (with b(%) a bounded, smooth func-
tion) and hence, by density argument, also for less regular functions.

Lemma 8.4 We have (ii), i.e. (8.51), and (i).

Proof: We have∫ T

0

∫
Ω

(
%γTk(%)−%γTk(%)

)
dx dt = lim

δ→0+

∫ T

0

∫
Ω

(
%γδTk(%δ)−%

γ
δTk(%)

)
dx dt

= lim
δ→0+

∫ T

0

∫
Ω

(%γδ − %
γ)(Tk(%δ)− Tk(%)) dx dt

+

∫ T

0

∫
Ω

(%γ − %γ)(Tk(%)− Tk(%)) dx dt. (8.52)
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However, the second term is nonnegative, as

% 7→ %γ is convex,

% 7→ Tk(%) is concave,

i.e. %γ ≤ %γ and Tk(%) ≥ Tk(%), see Lemma 8.3. Next, as

|Tk(t)− Tk(s)| ≤ |t− s|, t, s ≥ 0

(t− s)γ ≤ (tγ − sγ), t ≥ s ≥ 0,

we get

(Tk(t)− Tk(s))(tγ − sγ) ≥ |Tk(t)− Tk(s)|γ+1, t, s ≥ 0.

Hence

lim sup
δ→0+

∫ T

0

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx dt

≤
∫ T

0

∫
Ω

(%γTk(%)− %γTk(%)) dx dt

which proves (ii). Using now (8.44), we have the identity∫ T

0

∫
Ω

(
%γTk(%)−%γ Tk(%)

)
dx dt

= (2µ+ λ) lim
δ→0+

∫ T

0

∫
Ω

divxuδ

(
Tk(%δ)− Tk(%)

)
dx dt

= (2µ+ λ) lim
δ→0+

∫ T

0

∫
Ω

divxuδ

(
(Tk(%δ)− Tk(%)) + (Tk(%)− Tk(%))

)
dx dt

≤ C lim sup
δ→0+

[
‖divxuδ‖L2((0,T )×Ω)

(
‖Tk(%δ)− Tk(%)‖L2((0,T )×Ω)

+ ‖Tk(%)− Tk(%)‖L2((0,T )×Ω)

)]
.

Moreover, due to Lemma 8.3

‖Tk(%)− Tk(%)‖L2((0,T )×Ω) ≤ lim inf
δ→0+

‖Tk(%)− Tk(%δ)‖L2((0,T )×Ω)

≤ lim sup
δ→0+

‖Tk(%)− Tk(%δ)‖L2((0,T )×Ω).
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Hence

lim sup
δ→0+

‖Tk(%δ)− Tk(%)‖γ+1
Lγ+1((0,T )×Ω)

= lim sup
δ→0+

∫ T

0

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx dt

≤
∫ T

0

∫
Ω

(
%γTk(%)−%γ Tk(%)

)
dx dt

≤ C lim sup
δ→0+

‖divxuδ‖L2((0,T )×Ω)‖Tk(%δ)− Tk(%)‖L2((0,T )×Ω)

≤ C lim sup
δ→0+

‖divxuδ‖L2((0,T )×Ω)‖Tk(%δ)− Tk(%)‖Lγ+1((0,T )×Ω).

As we control the L2-norm of divxuδ, the proof of (i) is finished. �
We now prove (iii).

Lemma 8.5 Let Q ⊂ R4 be an open set. Let

%δ ⇀ % in L1(Q),
uδ ⇀ u in Lr(Q;R3),

∇xuδ ⇀ ∇xu in Lr(Q;R3×3),
(8.53)

where r > 1. Let
oscq(%δ − %) <∞, (8.54)

1
q
+ 1

r
< 1, where %δ, uδ are renormalized solutions to the continuity equation.

Then also the limit %, u is a renormalized solution to the continuity equation.

Remark 8.2 The claim of the lemma considers the following definition of
the renormalized solutions to the continuity equation: for any b ∈ C1([0,∞))
such that b′(z) = 0 for z ≥M for some M > 0 it holds

∂t(b(%)) + divx(b(%)u) + (b′(%)%− b(%))divxu = 0

in D′((0, T ) × Ω). Moreover, using the technique from Lemmas 7.2 and 7.3
and ideas used in Chapter 3, we may end up with the renormalized continuity
equation in the time-integrated form with larger class of functions b.

Proof: First of all, note that it is enough to show the result on J ×K with
J a bounded time interval, K a ball such that J ×K ⊂ Q. Recall that we
consider functions b(z) of class C1([0,∞)) which are constant for large values
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of z. Due to the assumption of the lemma and results from Chapter 7 we
know that

Tk(%δ)→ Tk(%) in Cweak(J ;L
β(K)) for any 1 ≤ β <∞,

Tk(%δ)uδ ⇀ Tk(%)u in Lr(J ×K;R3).

Therefore

∂tTk(%) + divx

(
Tk(%)u

)
+ ((T ′

k(%)%− Tk(%))divxu) = 0 in D′(J ×K).

Proceeding as in the proof of Lemma 7.3 we can show that

∂tb(Tk(%)) + divx

(
b(Tk(%))u

)
+
(
(b′(Tk(%))Tk(%)− b(Tk(%)))divxu

)
= −b′(Tk(%))((T ′

k(%)%− Tk(%))divxu) in D′(J ×K),

where b′(z) = 0 for z ≥M . Note that

lim
k→∞

lim
δ→0+

‖%δ − Tk(%δ)‖L1((0,T )×Ω) = 0

as %δ ⇀ % in L1((0, T ) × Ω) and hence %δ is equiintegrable. On the other
hand,

lim
δ→0+

∫ T

0

∫
Ω

(%δ − Tk(%δ))dx dt =

∫ T

0

∫
Ω

(%− Tk(%))dx dt

= ‖%− Tk(%)‖L1((0,T )×Ω).

Therefore it suffices to show that

b′(Tk(%))((T ′
k(%)%− Tk(%))divxu)→ 0

in L1(J ×K) for k →∞. Denote

Qk,M = {(t, x) ∈ J ×K; |Tk(%)| ≤M}.

We have ∥∥∥b′(Tk(%))((T ′
k(%)%− Tk(%))divxu)

∥∥∥
L1(Qk,M )

≤ C supδ>0 ‖divxuδ‖Lr(J×K) lim infδ→0 ‖Tk(%δ)− T ′
k(%δ)%δ‖Lr′ (Qk,M ).
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Clearly,

‖Tk(%δ)− T ′
k(%δ)%δ‖Lr′ (Qk,M )

≤ ‖Tk(%δ)− T ′
k(%δ)%δ‖αL1(Qk,M )‖Tk(%δ)− T ′

k(%δ)%δ‖1−αLq(Qk,M ),

0 < α < 1. As the family {%δ}δ>0 is equiintegrable, due to a similar argument
as above

sup
δ>0
‖Tk(%δ)− T ′

k(%δ)%δ‖L1(J×K) → 0 for k →∞.

Now, recalling that 0 ≤ T ′
k(%δ)%δ ≤ Tk(%δ), we get

‖Tk(%δ)− T ′
k(%δ)%δ‖Lq(Qk,M ) ≤

(
‖Tk(%δ)− Tk(%)‖Lq(Qk,M )

+ ‖Tk(%)− Tk(%)‖Lq(J×K) + ‖Tk(%)‖Lq(Qk,M )

)
≤
(
‖Tk(%δ)− Tk(%)‖Lq(Qk,M ) + oscq(%δ − %) +M |J ×K|

1
q

)
.

Therefore

lim sup
δ→0+

‖Tk(%δ)− T ′
k(%δ)%δ‖Lq(Qk,M )

≤ 2oscq(%δ − %) +M |J ×K|
1
q ≤ C.

The lemma is proved. �
Next we take

bk(%) = %

∫ ϱ

1

Tk(z)

z2
dz;

note that

b′k(%) =

∫ ϱ

1

Tk(z)

z2
dz +

Tk(%)

%
,

i.e. b′′k(%) > 0 for % > 0. Then %b′k(%) − bk(%) = Tk(%) and we have (it
follows by the limit passage δ → 0+ in the renormalized continuity equation
for δ > 0 and the fact that we may extend the density and velocity by zero
and use the equations for these extended functions in the whole R3)∫

Ω

bk(%)(τ, ·) dx−
∫
Ω

bk(%0) dx+

∫ τ

0

∫
Ω

Tk(%)divxu dx dt = 0
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for all τ ∈ (0, T ] and, due to Lemma 8.5∫
Ω

bk(%)(τ, ·) dx−
∫
Ω

bk(%0) dx+

∫ τ

0

∫
Ω

Tk(%)divxu dx dt = 0

for all τ ∈ (0, T ]; we also used that %0,δ → %0 in L1(Ω) and weakly in Lγ(Ω).
Therefore∫

Ω

(
bk(%(t))− bk(%(t))

)
dx =

∫ t

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dτ.

But bk is convex and thus

0 ≤
∫ T

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dt

=

∫ T

0

∫
Ω

(
Tk(%)− Tk(%)

)
divxu dx dt

+

∫ T

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dt.

Now from (8.44) and (8.51)∫ T

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dt

=
1

2µ+ λ

∫ T

0

∫
Ω

(%γTk(%)− %γTk(%)) dx dt

≥ 1

2µ+ λ
lim sup
δ→0+

∫ T

0

∫
Ω

|Tk(%δ)− Tk(%)|γ+1 dx dt,

i.e.

1

2µ+ λ
lim sup
δ→0+

∫ T

0

‖Tk(%δ)− Tk(%)‖γ+1
Lγ+1(Ω)

≤
∫ T

0

∫
Ω

|Tk(%)− Tk(%)||divxu| dx dt

≤ ‖Tk(%)− Tk(%)‖L2((0,T )×Ω)‖divxu‖L2((0,T )×Ω)

≤ C‖Tk(%)− Tk(%)‖
γ−1
2γ

L1((0,T )×Ω)‖Tk(%)− Tk(%)‖
γ+1
2γ

Lγ+1((0,T )×Ω).
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Recall that

‖Tk(%)− Tk(%)‖L1((0,T )×Ω)

≤ ‖Tk(%)− %‖L1((0,T )×Ω) + ‖Tk(%)− %‖L1((0,T )×Ω).

Hence
lim
k→∞
‖Tk(%)− Tk(%)‖L1((0,T )×Ω) = 0.

As
lim
k→∞
‖Tk(%)− Tk(%)‖Lγ+1((0,T )×Ω) ≤ oscγ+1(%δ − %) = C,

we also have that

lim
k→∞

lim sup
δ→0+

‖Tk(%δ)− Tk(%)‖Lγ+1((0,T )×Ω) = 0.

Finally, as

lim sup
δ→0+

‖%δ − %‖L1((0,T )×Ω) ≤ lim sup
δ→0+

‖%δ − Tk(%δ)‖L1((0,T )×Ω)

+ lim sup
δ→0+

‖Tk(%δ)− Tk(%)‖L1((0,T )×Ω) + lim sup
δ→0+

‖Tk(%)− %‖L1((0,T )×Ω) = 0,

we proved
%δ → % in L1((0, T )× Ω)

and therefore also in Lp((0, T )× Ω) for every p < γ + θ.
To conclude the existence proof, note that we may pass to the limit in

the energy inequality as before. We have

Theorem 8.3 Let γ > 3
2
, 0 < Θ ≤ 1, Ω ∈ C2,Θ, 0 < T < ∞ and %0 ∈

Lγ(Ω), %0|u0|2 = |(ϱu)0|2
ϱ0
∈ L1(Ω) and f ∈ L∞((0, T )×Ω;R3). Let p(%) = %γ.

Then there exists a weak solution to the compressible Navier–Stokes system
satisfying the energy inequality, i.e. a weak solution in the sense of Chapter
5.
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