Lecture 7 | 07.04.2025

Linear mixed effects model
(some theoretical and empirical issues)
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A brief overview

[ Simple linear regression model for repeated measurements within N € N
(independent) subjects (i € {1,..., N}) where

Y, =XiB+ei
for the response vector Y; € R" where X; = (X, ..., X,-,,,)T, X € RP for
j=1,...,n; are the explanatory vectors—measurements at time points
ti = (ti,...,tin,) " and B € R? is the unknown vector of parameters

[ The variance-covariance structure within each subject is modelled by the
vector parameters a € RY, such that e; ~ N, (0;, Vi(t;, ), where

.
eij = zj wi + Wi(ty) + wy
for random vector w;, random process W;(t), and random variable wj

(1 This can be rewritten as a linear mixed (effects) model (LMM) with
fixed effects 3, random effects w;'s, and the error terms R;'s

Y =XiB + Ziw; + R;,
where R; = (R,'l, e R,‘r,l.)T = (VV,'(t,'l) + Wity ...y VV,‘(t,'n,.) + UJ,‘nl)T

(different formulations of the same model depending on which part of the model is emphasized)
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Two stage approach vs. LMM formulation

(1 Considering the longitudinal data {(Yj;, X;); i=1,...,N;j=1,...,n}
the statistical analysis can be either performed in a two stage process
(1) separate models Y; = XSl)ﬂ,’ + €; for each subject i =1,..., N
(2) and the overall model for regression parameters 3; = X§2)B + b;

[ Alternatively (but not equivalently), one common model with mixed
effects (LMM) can be used instead where

— Y = XEI)XE2) B+ Xgl) b, + €
—— ~— N =~
XA .

i Zj

Y =X +e
B =X7"B+b

w; R;

What are common drawbacks of the two-stage model formulation that are
overcome in the overall LMM formulation?

Consider, for instance, a linear regression line in the first stage and a subject with only
one observations. Or, instead, a quadratic fit in the first stage and some subjects with

only two measurements?
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Components of the LMM

1 Fixed effects X;3

[ the same structure for all subjects (the population mean structure)
[J covariates Xj; are generally assumed to be random but the regression
framework is typically considered conditionally on the model matrix X

d Random effects Z;w;

[ the subject-specific part of the model (the individual mean structure)

[ describes how the mean parameters for one subject differ from the mean
parameters for the other subject—resp. how the population mean
(common) differs from the subject’s specific mean (individual)

1 Non-systematic terms (error) R;

[d sometimes called the variance components model
[ accounts for the between and withing subjects’ variability
[ partially modeled by the subject specific covariates...
(typically when heterogeneity is modeled withing specific groups)
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Population vs. individual interpretation

Consider LMM of the form Y; = X;8 + Z;w; + R; where, typically,
w; ~ N(0,G) and R; ~ N(0,R;) — alternatively Y = X3 +Zw + R

O Marginal model Y; ~ N(X;8,Z,GZ; +R;)

A population characterization and a population interpretation of the model—the
model describes the conditional mean given a subset of specific (sub-population)
characteristics. Inference with respect to the subpopulation differences

(1 Hierarchical model Yj|w; ~ N(X;8 + Ziw;,R;) and w; ~ N(0,G)

Subject specific characterization and subject specific as well as population
interpretation of the model—the model describes—in two levels (therefore
hierarchical)—the conditional mean of a specific subject i but it can be
integrated over the distribution of w; to obtain the population characterization

(similarly as in the marginal model)

<> note, that the hierarchical model can be used to obtain the marginal model, but
this does not hold in vise-versa manner. Also, different hierarchical models can
produce the same marginal model
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Examples

1 Example 1 Consider a simple linear mixed effect model for two repeated
observations only (i.e., n; = 2) with a random intercept term and
uncorrelated heterogenous errors R; = (Ri1, Ri2) " where Ry ~ N(0,77)
and R ~ N(0, 722) What is the mean structure? What is the overall
variance-covariance structure Z;GZ;" + R;?

1 Example 2 Consider a simple linear mixed effect model for two repeated
observations only (i.e., nj = 2) with (uncorrelated) random intercept and
random slope terms and homoscedastic errors R; ~ N»(0, 72I). What is
the mean structure? What is the overall variance-covariance structure?

Thus, as a direct consequence, any good marginal model fit can not be used as an
argument to justify also a good hierarchical model fit...
We can only contradict a wrong model... we can not prove a right model!
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Inference in a marginal model

Basically, there are two parts of the model that are important when
performing the statistical inference about the unknown parameters

[ Inference about the fixed effects (parameters 8 € R”)

1 Wald type tests

[ t-tests and F-tests

[ likelihood ratio tests

1 robust (sandwich) inference

[ Inference about variance/covariance components (parameters o € R9)

[d Wald type tests
[ likelihood ratio tests

< in practical applications there are also various information criteria used
(AIC, BIC, Hannan and Quinn (HQIC), Bozdogan (CAIC), etc.)

(log-likelihood minus penalty: #6 | (#0logN')/2) | #6loglog N | #6(log N +1)/2,

where N = Zi ni for ML and N' = N — p for REML — but ML should be used for comparisons)
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Inference for the mean structure (1)

[ the estimate for 8 € R?
B@) = (x"wx) X Wy

where W™ = V(a, t), and & € R9 is a REML (ML) estimate of a € RY
(B(a) is unbiased estimate whatever the value of a € R? is plugged-in)

[ the variance of B(a) is
Var[B(&)] = (xTWx) (XTWT[Var Y]WX) (XTwx) ™
and for a correctly specified variance matrix Var[3(&)] = (XTWX)_l
[ the distribution of E(a) is (conditionally on &) approximately normal,

with the corresponding mean and variance structure
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Inference for the mean structure (1)
Consider the null hypothesis of the form Hy : LB =0vs. Hy : LB #0

(1 Wald tests (approximate)
-1 -1 H
T=3LT {L (x"v (e a)x) LT} LB % X
(but the additional variability introduced by replacing a with @ is not accounted for)

[ t-tests and F-tests (approximate)

_ -1
BTLT [L(XTVI(L a)x) LT] LA

- Ho
F o rank(]L) as. Frank(L),M

(where M needs to be approximated—containment, Satterthwaite, or Kenward & Roger)

[ Likelihood ratio tests (approximate)

L=—2InX=—2In [L(model Ho)/L(model Ha)] i Xim(Ha)—dim(Ho)
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Inference for the variance structure (1)

Both, ML and REML estimates of & € R9 are approximately normally
distributed with the true value as the mean vector and the inverse Fisher
information matrix as the variance-covariance matrix

1 Approximate Wald type tests are easily obtainable
(in SAS the option covtest in the proc mixed statement)

[d However, some statistical tests may not have any reasonable
interpretation under the hierarchical model (the tests are only meaningful
under the marginal model)  (Consider: VarY;i(t)) = (1,t)G(1,t)" + o?)

[ Moreover, the quality of the normal approximation depends on the true
value of a € RY and the approximation completely fails when testing for
boundary values (Again marginal vs. hierarchical model)

1 Likelihood ratio tests for comparisons of nested models
(also valid for REML if the same mean structure is used)
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Inference for the variance structure (1)

[ Under the hierarchical model the asymptotic distribution of the likelihood
ratio test statistic under the null hypothesis of variance component
insignificance can be derived

[ For a model with random effects (intercept and slope) w; ~ N>(0, G) the
significance of the random slope can be tested by the null hypothesis

Ho : g12 = g1 = g

1 Note, that the null hypothesis (specifically g2 = 0, where G = (g;)7_; is
actually on the boundary of the parameter space—therefore, a normal
approximation for the the corresponding estimate g is not appropriate

[ It can be show, that under the null hypothesis Hy the likelihood ratio test
statistic —2In Ay converges in distribution to a mixture of two x2
distributions:

—2InAn gxiz, for N = oo
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Inference on individual profiles )]

The measurements of the dependent variable, Yj; € R, for subjects i = 1,..., N and
repeated observations j = 1,..., n; within the subject i (taken at the time-points

tip < tip < --- < tjp;) can be also expressed as
Yi(ty) = i = ulty) + Uj + Wilty) + wy

where
O u(ty) = X; B is the mean profile
0 Uy = zj w;, where U ~ N(0, z] Gz;), independent in i € {1,..., N}

1 W;(t;) are realization of independent copies {W;(t)} of a zero mean
Gaussian process with the covariance function o?p(u)

O wj ~ N(0,72) are mutually independent measurement errors

Goal: To construct an estimate (a prediction) for an individual i outcome
at the time point t, meaning that we want to obtain the profile for Y;(t)
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Towards the individual’s prediction

O as far as wj ~ N(0,72) are zero-mean (independent) measurement errors
they do not contribute to the prediction/estimation of Yj(t)

[ therefore, the prediction/estimate of Y;(t) can be expressed as
Yi(t) = fi(t) + U + Wi(t) = A(t) + Q(t)
where [i(t) represents the estimate for the mean structure and SAZ,-(t)

represents the estimate for the variance/covariance structure

(1 the mean structure can be estimated by standard techniques (e.g., by
assuming a linear regression model)
1 How to estimate the variance/covariance structure Q;(t)?
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Continuous process vs. discrete realizations

[ the subject specific profile Yi(t) is only observed at some finite number of
time points t; = (ti, ..., ti;) € R"

[ the same can be also said about the subject specific variance/covariance
structure Q;(t) that is only observed at t; = (tj1, ..., tin,) € R™

[ Analogously, the estimate for Q;(t) will be only provided for some specific
(finitely many) time points, lets say t = (ti,...,t,) € R"

(3 Under the assumed normality, we have Y; ~ N(X;8, Z:GZ; + oH; + 72I;)
and also ©; = (Q(t1),...,Qi(ta)) " ~ N(0,Z:GZ, + o*H,) where Z;
and H; correspond to the time points t = (ti,..., t,) "

[ Thus, it also holds that

(%) =ma () (305 7500 )
Y, ntn; XiB )\ (i, t) I+ 2(t,t)

where (-, ) represent the corresponding covariance matrix

Longitudinal and Panel data | (NMST 422) 14 /18



Conditional normal distribution
1 A natural estimate for {2; would the the conditional expectation, i.e.

Q; = E[QiY)]

[ Using standard properties of a multivariate normal distribution, where

(3)~ma((m) (3 52))

it holds that
1 the conditional expectation of X given Y is
EX|Y = y] = p1 + 1255, (y — p2)

(ex)v)
[ the conditional variance of X given Y is

Var[X|Y = y] = £11 — 105, Ty

(Zx1v)
[ thus, the conditional distribution of X given Y is

XY =y~ Np(ux|v, Zx|v)
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Estimate for the subject’s profile

Using now the properties of the multivariate normal distribution we
finally obtain

a

4

(]

Q= E[Q)]Y] = =(¢, t) [72]1 + X(ti, t,-)} 71(Y,- - XiB)
Var[ﬁ,-\ Y] =3(t, t) - 2(t, t;) [7211 + 3(t;, t,-)} _IE(tf, t)

in the expressions above there are still some quantities that are unknown
(the vector of the regression parameters 3 € R” or the parameters a € RY
that specifies the variance/covariance structure)

plug-in techniques are typically used to obtain the final estimate for €2;

note, that for 72 = 0 and t = t;, the estimator/predictor Q; reduces to
(Y: — X,ﬁ) with zero variance (meaning that if there is no measurement
error than the data are perfect estimate/prediction for the true outcome
at the existing observation time points)

when 72 > 0, than €; reflects some compromise between (Y; — X;3) and
zero tending to zero when 72 increases
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Examples

1 Example 1 Assume a simple linear (regression) model with a random
intercept term (i.e., z; = 1 and w; ~ N(0,2?))
1 observations Yj(t;) = Y = pu(ty) + Ui + Wi(t)j + wij
1 thus, Y; ~ N(X;8, V2]; + o2H; + 7—2]1,-)
1 and, also, ©; ~ N(O,Z/2Jt + 02Ht)

(1 Example 2 Assume a simple linear (regression) model with a random
intercept and random slope (i.e., z; = (1,t;) " and w; ~ N>(0,°T)),
where T € R?*? is a unit matrix and w; = (wit, wi2)

(0 observations Y;(t;) = Y = u(ty) + (wir + wiatij) + Wi(t)ij + wij
[ thus, Y; ~ N(X,‘,B7 1/2M,' + O'ZH,' + 7'2]1,'), where M; = (1 + tijtik)]"’jk:l
0 and, also, ; ~ N(0, v*M¢ + 0®H), where M = (1 + tjt¢)?,_,
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Bayesian interpretation

[ prior density for the random effects: w; ~ g(w)
[ conditional density of the data: Y;|w; ~ f(y|w)
[ posterior density for the random effects

f(y|lw)g(w)

) = Ty w)g(w)dw

[ posterior mean of g(w|y) used as an estimate for w;
(still depends on the estimated parameters in a € RY)
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