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Statistical inference
in a normal linear model
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Overview
❏ Population model Y = X⊤β + ε and the corresponding random sample

{(Yi , X⊤
i )⊤; i = 1, . . . , n} drawn from the joint distribution F(Y ,X) of the

generic random vector (Y , X⊤)⊤ ∈ Rp+1 (where ε ∼ N(0, σ2))
❏ The underlying structure (i.e., the model) is also assumed to hold for

Yi = X⊤
i β + εi , for i = 1, . . . , n, where εi ∼ N(0, σ2)

❏ The model can be also equivalently expressed in a matrix notation as

Y = Xβ + ε, where ε ∼ Nn(0, σ2I)

❏ The model formulations used above specify the following
— the (conditional) mean structure of Y given X (i.e, E [Y |X] = Xβ)
— the (conditional) variance-covariance structure of Y (i.e., VarY = σ2I)
— independence of Yi and Yj for any i ̸= j (zero correlation + normality)

❏ Moreover, the joint distribution function F(Y ,X)(y , x) can be factorized as

F(Y ,X)(y , x) = FY |X(y |x) · FX(x)

where FY |X is the normal distribution and FX does not depend on β, σ2
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Typical linear regression model assumptions

❏ Ordinary linear regression model
❏ random sample (Yi , X⊤

i )⊤, i = 1, . . . , n from the joint distribution F(Y ,X)
❏ mean specification E [Y |X] = Xβ, respectively E [Y |X] = X⊤β
❏ variance specification Var(Y |X) = σ2I, resp. Var(ε) = σ2I

❏ Normal linear regression model
❏ random sample (Yi , X⊤

i )⊤, i = 1, . . . , n from the joint distribution F(Y ,X)
❏ distributional specification Y |X ∼ Nn(Xβ, σ2I)

The formulation of the normal model above also implies the following:
❏ ε|X ∼ Nn(0, σ2I)
❏ ε ∼ Nn(0, σ2I)
❏ the error terms ε1, . . . , εn form a random sample from a univariate normal

distribution with the zero mean and the variance σ2 > 0
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Model utilization for a prediction of some new Y

❏ One of the principal roles of the regression model is use the information in
X ∈ Rp (typically easily accessible) to learn something relevant (e.g. the
conditional mean) of the variable Y (which is typically not observed in
a straightforward way)—typically applied for (Ynew , x⊤

new )⊤ independent from
the original sample where xnew ∈ Rp is known and Ynew ∈ R is unknown

❏ For the parameter estimate β̂ ∈ Rp in a normal linear model it holds that
β̂ ∼ Np(β, σ2(X⊤X)−1)

❏ For the new observation from the same model Ynew = x⊤
new β + εnew it holds

Ynew ∼ N(x⊤
new β, σ2)

❏ The best linear estimate (prediction) for Ynew is Ŷnew = x⊤β̂, where

Ŷnew = x⊤
new β̂ ∼ N(x⊤

new β, σ2x⊤
new (X⊤X)−1xnew )

❏ The corresponding prediction interval for Ynew and some α ∈ (0, 1) is

P
[

Ynew ∈
(

x⊤
new β̂ ± t1−α/2(n − p)

√
MSe(1 + x⊤

new (X⊤X)−1xnew )
)]

= 1 − α
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Model utilization for an inference about β

❏ The normal model Y = Xβ + ε, where ε ∼ Nn(0, σ2I) is assumed to hold
❏ The unknown parameters to be estimated are β ∈ Rp, and σ2 > 0

❏ Statistical inference (involves confidence intervals and statistical tests)
can be also performed with respect to the parameters β and σ2

(or it can be of some interest to do inference about some linear combination(s) of β)

❏ From the practical point of view, we are interested in the parameter
vector β ∈ Rp itself but also some (reasonable) linear combinations of the
form l⊤β, for some (fixed) vector l ∈ Rp

❏ the process of building the final model – an inference on some elements of
the unknown vector β ∈ Rp can help to decide which covariates—the
elements of X ∈ Rp should be included in the model

❏ interpretation of the final model – the inference allows to use the estimated
parameters in β̂ ∈ R to make statistically valid conclusions about the
whole (unknown) population

❏ Technically, one can be also interested in more complex transformations of
the unknown vector of parameters but the linearity assumed above
preserve simplicity and explicit formulas...
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Parameter estimation in the normal model

Recall, that there are basically two standard techniques for the parameter
estimation under the linear model formulation:

❏ Least Squares
❏ Maximum Likelihood

In both situations the estimates for β ∈ Rp are given by the formulae
❏ β̂ = (X⊤X)−1XY , where X⊤X is of a full rank p ∈ N

Under the ML estimation, the estimate for σ2 > 0 can be also obtained
❏ σ̂2 = 1

n
∑n

i=1(Yi − Ŷi )2, where Ŷi = Yi − X⊤
i β̂

Both estimates—quantities β̂ and σ̂2—are random quantities (random
vector and random variable) and, therefore, it is reasonable to investigate
their statistical properties (e.g., mean, variance, distribution, etc.)
(note, that the ML estimate σ̂2 is biased and, instead, an unbiased estimate MSe is used)
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Linear combinations of the model parameters

❏ The unknown vector of parameters β ∈ Rp is used to model the
conditional mean structure E [Y |X] but specific interpretation (meaning)
of the elements of β depends on the parametrization that is used

❏ Therefore, it is also of some interest to perform statistical inference about
some linear combination of the unknown vector of parameters—inference
about some different parametrization of the mean structure

❏ Let L ∈ Rm×p be a matrix with nonzero rows l⊤
1 , . . . , l⊤

m and let
θ = Lβ = (l⊤

1 β, . . . , l⊤
m β)⊤ = (θ1, . . . , θm)⊤ ∈ Rm be some linear

combinations of the original parameter β ∈ Rp vector

❏ Thus, instead of performing the statistical inference about β ∈ Rp the
statistical inference is focusing on β ∈ Rm instead
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Statistical properties of β̂ and θ̂
Recall, that we are working with the normal linear model of the form
Y |X ∼ Nn(Xβ, σ2I) and β̂ = (X⊤X)−1X⊤Y is the estimate for β ∈ Rp

Moreover, θ = Lβ, where L ∈ Rm×p, such that rank(L) = m

Then the following holds:
❏ θ̂ = Lβ̂ is the (BLUE) estimate for θ ∈ Rm

❏ Ŷ |X ∼ Nn(Xβ, σ2H)
❏ U|X ∼ Nn(0, σ2M)
❏ θ̂ ∼ Nm(θ, σ2L(X⊤X)−1L⊤)
❏ random vectors Ŷ and U are conditionally (given X) independent
❏ random vector θ̂ and SSe are conditionally (given X) independent
❏ MSe(n − p)/σ2 = SSe/σ2 ∼ χ2

n−p and ∥Ŷ − Xβ∥2/σ2 ∼ χ2
p

❏ Tj = θ̂j −θj√
MSe·vjj

∼ tn−p, where V = L(X⊤X)−1L⊤ = (vij)m
i,j=1

❏ 1
m (θ̂ − θ)⊤

(
MSe · V

)−1
(θ̂ − θ) ∼ Fm,n−p
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Inference in a normal linear model

❏ Inference about some βj ∈ R (one element in β ∈ Rp)

❏ confidence interval β̂j ± tn−p(1 − α/2)
√

MSe · vjj , where Var β̂j = σ2vjj

❏ statistical tests of the null hypothesis H0 : βj = β
(0)
j against some HA

❏ Simultaneous confidence region for β

❏ S(α) = {β ∈ Rp ; 1
p (β − β̂)⊤(MSe−1X⊤X)(β − β̂) < Fp,n−p(1 − α)},

which is an elipsoid with the center β̂, the shape matrix MSe · (X⊤X)−1

and the diameter
√

kFp,n−p(1 − α)
❏ statistical test of the null hypothesis H0 : β = β(0) against some HA

NMFM 334 | Lecture 8 9 / 10



Summary

❏ Simple inference in the normal linear model
❏ confidence intervals and statistical tests for elements of β ∈ Rp

❏ confidence intervals for some linear combination l⊤β, where l ∈ Rp

❏ Simultaneous inference for vector parameters
❏ confidence regions and statistical tests for the whole vector β ∈ Rp

❏ confidence regions for some linear combinations Lβ, where L ∈ Rm×p

❏ Prediction in the normal linear model
❏ point prediction for a new value of Y given the observed X = x (xnew )
❏ interval prediction for a new value of Y given the observed X = x (xnew )
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