Lecture 8 | 07.04.2025

Statistical inference in a normal linear model

Overview

- □ **Population model** $Y = \mathbf{X}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and the corresponding random sample $\{(Y_i, \mathbf{X}_i^{\top})^{\top}; i = 1, ..., n\}$ drawn from the joint distribution $F_{(Y, \mathbf{X})}$ of the generic random vector $(Y, \mathbf{X}^{\top})^{\top} \in \mathbb{R}^{p+1}$ (where $\boldsymbol{\varepsilon} \sim N(0, \sigma^2)$)
- The underlying structure (i.e., the model) is also assumed to hold for

$$Y_i = \mathbf{X}_i^{\top} \boldsymbol{\beta} + \varepsilon_i$$
, for $i = 1, ..., n$, where $\varepsilon_i \sim N(0, \sigma^2)$

The model can be also equivalently expressed in a matrix notation as

 $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \text{where } \boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbb{I})$

The model formulations used above specify the following

- the (conditional) mean structure of **Y** given \mathbb{X} (i.e, $E[Y|\mathbb{X}] = \mathbb{X}\beta$)
- the (conditional) variance-covariance structure of **Y** (i.e., $Var \mathbf{Y} = \sigma^2 \mathbb{I}$)
- independence of Y_i and Y_j for any $i \neq j$ (zero correlation + normality)

D Moreover, the joint distribution function $F_{(Y,X)}(y,x)$ can be factorized as

 $F_{(Y,\boldsymbol{X})}(y,\boldsymbol{x}) = F_{Y|\boldsymbol{X}}(y|\boldsymbol{x}) \cdot F_{\boldsymbol{X}}(\boldsymbol{x})$

where $F_{Y|X}$ is the normal distribution and F_X does not depend on β , σ^2

Typical linear regression model assumptions

Ordinary linear regression model

 \Box random sample $(Y_i, \mathbf{X}_i^{\top})^{\top}$, i = 1, ..., n from the joint distribution $F_{(Y, \mathbf{X})}$

- \Box mean specification $E[\boldsymbol{Y}|\mathbb{X}] = \mathbb{X}\beta$, respectively $E[\boldsymbol{Y}|\boldsymbol{X}] = \boldsymbol{X}^{\top}\beta$
- variance specification $Var(\boldsymbol{Y}|\mathbb{X}) = \sigma^2 \mathbb{I}$, resp. $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbb{I}$

Normal linear regression model

- \Box random sample $(Y_i, \mathbf{X}_i^{\top})^{\top}$, i = 1, ..., n from the joint distribution $F_{(Y, \mathbf{X})}$
- \Box distributional specification $\boldsymbol{Y} | \mathbb{X} \sim N_n(\mathbb{X}\beta, \sigma^2 \mathbb{I})$

The formulation of the normal model above also implies the following:

- $\Box \epsilon | \mathbb{X} \sim N_n(\mathbf{0}, \sigma^2 \mathbb{I})$
- $\Box \ \epsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbb{I})$
- \Box the error terms $\varepsilon_1, \ldots, \varepsilon_n$ form a random sample from a univariate normal distribution with the zero mean and the variance $\sigma^2 > 0$

Model utilization for a prediction of some new Y

- □ One of the principal roles of the regression model is use the information in $X \in \mathbb{R}^p$ (typically easily accessible) to learn something relevant (e.g. the conditional mean) of the variable Y (which is typically not observed in a straightforward way)—typically applied for $(Y_{new}, x_{new}^{-})^{\top}$ independent from the original sample where $x_{new} \in \mathbb{R}^p$ is known and $Y_{new} \in \mathbb{R}$ is unknown
- □ For the parameter estimate $\widehat{\beta} \in \mathbb{R}^p$ in a normal linear model it holds that $\widehat{\beta} \sim N_p(\beta, \sigma^2(\mathbb{X}^\top \mathbb{X})^{-1})$
- □ For the new observation from the same model $Y_{new} = \mathbf{x}_{new}^{\top}\beta + \varepsilon_{new}$ it holds $Y_{new} \sim N(\mathbf{x}_{new}^{\top}\beta, \sigma^2)$
- □ The best linear estimate (prediction) for Y_{new} is $\widehat{Y}_{new} = \mathbf{x}^{\top}\widehat{\beta}$, where $\widehat{Y}_{new} = \mathbf{x}_{new}^{\top}\widehat{\beta} \sim N(\mathbf{x}_{new}^{\top}\beta, \sigma^2\mathbf{x}_{new}^{\top}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbf{x}_{new})$
- □ The corresponding prediction interval for Y_{new} and some $\alpha \in (0, 1)$ is $P\left[Y_{new} \in \left(\mathbf{x}_{new}^{\top}\widehat{\boldsymbol{\beta}} \pm t_{1-\alpha/2}(n-p)\sqrt{MSe(1+\mathbf{x}_{new}^{\top}(\mathbb{X}^{\top}\mathbb{X})^{-1}\mathbf{x}_{new}})\right)\right] = 1-\alpha$

Model utilization for an inference about β

D The normal model $\mathbf{Y} = \mathbb{X}\beta + \boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbb{I})$ is assumed to hold

D The unknown parameters to be estimated are $\beta \in \mathbb{R}^p$, and $\sigma^2 > 0$

- □ Statistical inference (involves confidence intervals and statistical tests) can be also performed with respect to the parameters β and σ^2 (or it can be of some interest to do inference about some linear combination(s) of β)
- □ From the practical point of view, we are interested in the parameter vector $\beta \in \mathbb{R}^{p}$ itself but also some (reasonable) linear combinations of the form $I^{\top}\beta$, for some (fixed) vector $I \in \mathbb{R}^{p}$
 - □ the process of building the final model an inference on some elements of the unknown vector $\beta \in \mathbb{R}^p$ can help to decide which covariates—the elements of $\mathbf{X} \in \mathbb{R}^p$ should be included in the model
 - \Box interpretation of the final model the inference allows to use the estimated parameters in $\widehat{\beta} \in \mathbb{R}$ to make statistically valid conclusions about the whole (unknown) population
- Technically, one can be also interested in more complex transformations of the unknown vector of parameters but the linearity assumed above preserve simplicity and explicit formulas...

Parameter estimation in the normal model

Recall, that there are basically two standard techniques for the parameter estimation under the linear model formulation:

Least Squares

Maximum Likelihood

In both situations the estimates for $\beta \in \mathbb{R}^p$ are given by the formulae $\square \ \widehat{\beta} = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X} \mathbf{Y}$, where $\mathbb{X}^\top \mathbb{X}$ is of a full rank $p \in \mathbb{N}$

Under the ML estimation, the estimate for $\sigma^2 > 0$ can be also obtained $\Box \ \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{Y}_i)^2$, where $\widehat{Y}_i = Y_i - \mathbf{X}_i^\top \widehat{\beta}$

Both estimates—quantities $\widehat{\beta}$ and $\widehat{\sigma^2}$ —are random quantities (random vector and random variable) and, therefore, it is reasonable to investigate their statistical properties (e.g., mean, variance, distribution, etc.) (note, that the ML estimate $\widehat{\sigma^2}$ is biased and, instead, an unbiased estimate *MSe* is used)

Linear combinations of the model parameters

- □ The unknown vector of parameters β ∈ ℝ^p is used to model the conditional mean structure E[Y|X] but specific interpretation (meaning) of the elements of β depends on the parametrization that is used
- □ Therefore, it is also of some interest to perform statistical inference about some linear combination of the unknown vector of parameters—inference about some different parametrization of the mean structure

□ Let $\mathbb{L} \in \mathbb{R}^{m \times p}$ be a matrix with nonzero rows $I_1^{\top}, ..., I_m^{\top}$ and let $\theta = \mathbb{L}\beta = (I_1^{\top}\beta, ..., I_m^{\top}\beta)^{\top} = (\theta_1, ..., \theta_m)^{\top} \in \mathbb{R}^m$ be some linear combinations of the original parameter $\beta \in \mathbb{R}^p$ vector

□ Thus, instead of performing the statistical inference about $\beta \in \mathbb{R}^{p}$ the statistical inference is focusing on $\beta \in \mathbb{R}^{m}$ instead

Statistical properties of \hat{eta} and $\hat{m{ heta}}$

Recall, that we are working with the **normal linear model** of the form $\mathbf{Y}|\mathbb{X} \sim N_n(\mathbb{X}\beta, \sigma^2\mathbb{I})$ and $\hat{\boldsymbol{\beta}} = (\mathbb{X}^\top\mathbb{X})^{-1}\mathbb{X}^\top\mathbf{Y}$ is the estimate for $\boldsymbol{\beta} \in \mathbb{R}^p$ Moreover, $\boldsymbol{\theta} = \mathbb{L}\beta$, where $\mathbb{L} \in \mathbb{R}^{m \times p}$, such that $rank(\mathbb{L}) = m$

Then the following holds:

$$\ \ \, \widehat{\boldsymbol{\theta}} = \mathbb{L}\widehat{\boldsymbol{\beta}} \text{ is the (BLUE) estimate for } \boldsymbol{\theta} \in \mathbb{R}^n$$

$$\square \ \widehat{\boldsymbol{Y}} | \mathbb{X} \sim N_n(\mathbb{X}\boldsymbol{\beta}, \sigma^2 \mathbb{H})$$

$$\square \boldsymbol{U} | \boldsymbol{\mathbb{X}} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{\mathbb{M}})$$

$$\widehat{\boldsymbol{\theta}} \sim N_m(\boldsymbol{\theta}, \sigma^2 \mathbb{L}(\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{L}^\top)$$

 \sim

$$\square$$
 random vectors \overleftarrow{Y} and \overleftarrow{U} are conditionally (given \mathbb{X}) independent

$$\Box$$
 random vector θ and SSe are conditionally (given \mathbb{X}) independent

$$\Box \ \frac{1}{m} (\widehat{\theta} - \theta)^{\top} \Big(MSe \cdot \mathbb{V} \Big)^{-1} (\widehat{\theta} - \theta) \sim F_{m,n-p}$$

Inference in a normal linear model

□ Inference about some $\beta_j \in \mathbb{R}$ (one element in $\beta \in \mathbb{R}^p$) □ confidence interval $\hat{\beta}_j \pm t_{n-p}(1-\alpha/2)\sqrt{MSe \cdot v_{jj}}$, where $Var\hat{\beta}_j = \sigma^2 v_{jj}$ □ statistical tests of the null hypothesis $H_0: \beta_j = \beta_i^{(0)}$ against some H_A

\Box Simultaneous confidence region for β

- $\Box \ \mathcal{S}(\alpha) = \{\beta \in \mathbb{R}^{p}; \ \frac{1}{p}(\beta \widehat{\beta})^{\top} (MSe^{-1}\mathbb{X}^{\top}\mathbb{X})(\beta \widehat{\beta}) < F_{p,n-p}(1-\alpha)\},$ which is an elipsoid with the center $\widehat{\beta}$, the shape matrix $MSe \cdot (\mathbb{X}^{\top}\mathbb{X})^{-1}$ and the diameter $\sqrt{kF_{p,n-p}(1-\alpha)}$
- ullet statistical test of the null hypothesis $H_0:eta=eta^{(0)}$ against some H_A

Summary

Simple inference in the normal linear model

- \square confidence intervals and statistical tests for elements of $\beta \in \mathbb{R}^p$
- \Box confidence intervals for some linear combination $I^{\top}\beta$, where $I \in \mathbb{R}^{p}$

Simultaneous inference for vector parameters

- \Box confidence regions and statistical tests for the whole vector $\beta \in \mathbb{R}^{p}$
- **\Box** confidence regions for some linear combinations $\mathbb{L}\beta$, where $\mathbb{L} \in \mathbb{R}^{m \times p}$

Prediction in the normal linear model

- \Box point prediction for a new value of Y given the observed X = x (x_{new})
- \Box interval prediction for a new value of Y given the observed X = x (x_{new})