Lecture 4 | 10.03.2025

Multiple regression model
multivariate predictor variable
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Overview: Simple (ordinary) linear regression

(1 Theoretical (population model) for Y, X € R
Y=a+bX+¢

(1 Population model for a random sample S = {(Y;, Xi); i=1,...,n}
Yi=a+ bXi+e;

[ Alternatively (under the assumption of Ec = 0) we can write

E[YIX]=a+bX or E[Y|X=x]=a+ bx

Principal goals:
1 Estimation of the unknown parameters a, b € R
[ Estimation of distributional characteristics of Y|X — e.g., E[Y|X = x]
[ Prediction of a future outcome of Yp, for an observed Xp = xo (known)

[ Forecasting outcomes of Yp given Xy = xp (uncertainty statement)
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Generalization: Multiple regression model

[ Theoretical (population model) for Y € R and X € R” and 3 € R?
Y=a+X B+e¢

which can be also expressed as Y = (1, X")B* +¢, for B* € R°*!
(thus, the first element in the covariate vector X is (be default) equal to one — meaning that

there is always an intercept parameter a € R included in the regression model)

U Thus, for a random sample S = {(Y;, X;")"; i=1,...,n} from Fy x),
the corresponding empirical /sample model can be expressed as

Yi=X'B+ei

with the intercept parameter a € R being implicitly included in the model
(and for some more straightforward notation we will use the notation that 8 € R” and, also,
Xi € RP foralli=1,...,n)—thus Xii = 1 with probability 1)
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Matrix formulation of the sample model

1 For more compact notation the empirical/data model can be expressed as
Y=XB+e¢

where the response vector Y = (Yi,...,Y,)" € R", the model/design
matrix X € R"P, and the error vector € = (e1,...,&n)"

(note, that X = (X1, ..., X,) " or, respectively, the model/design/regression matrix can be
also expressed in a form X = (X;)"7; )

[ Similarly as before, (under the assumption Ec = 0) the population models
E[YIX]=X"B or E[YX=x]=x'8

provide expressions for the theoretical (population) mean within some
specific subpopulation (defined by values in X or x — the conditional mean
of Y when conditioning (restricting) on the the subpopulation given by X)
(note the difference between the first (random) and the second (deterministic) equation —

the conditional expectation E[Y|X] is random variable while E[Y|X = x] is not)
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A little bit of confusion from the notation...

There is always a need to carefully distinguish between the theoretical and the
empirical /data model — compare the following model formulations:

[ Population model Y = X" +¢
(a generic random vector (Y, X")" € R?*! with the (joint) distribution function Fry,y))

O Empirical/data model Y; = X;" 8 + ¢;

(for the random sample {(Y;, X;") " }"_; drawn from the same distribution Fiv.x))

Sometimes, there a lack of distinction between the generic random vector
(Y, X1)T ~ F(y,x) and its independent realizations — the sample {(Y,-,X,.T)T 7

[0 Population (conditional expectation) random model E[Y|X] = XT3
O Population (conditional exp.) non-random model E[Y|X = x] = x' 8

1 Conditional expectation random (data point) model E[Y;|X;] = X;" 8
(1 Conditional expectation random (all data) model E[Y|X] = X3
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Multiple regression example
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Principal goals of the multiple regression

Basically, all the same as in case of the ordinary regression...
[ Estimation of the unknown (vector) parameter 8 € R
[ Estimation of the (population) conditional mean E[Y|X = x]
[ Prediction of a future outcome of Yy, for some given Xo = xo € R”

[ Forecasting outcomes of Yy given Xo = xo (uncertainty / inference)

In addition, for 8 € RP it makes sense to ask for more...
(1 Estimation and inference about some linear combinations ¢' 8, ¢ € R?

[d Multiple comparisons in terms of more linear combinations C3, C € R9*”
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Least-squares vs. maximum likelihood

[ Least-squares estimation (LS) (generally no distributional assumptions)
O Assumptions: ¢ ~ (0, 02), respectively Y|X ~ (XT 8, 52)
1 Convex minimization problem

n

B\: Argmin Z(Y"_X‘Tﬂy

Bere
i=1
J Estimate for 3: ,/3\= XTX)"IXTy

d Maximum likelihood estimation (ML) (typically under the normal model)
O Assumptions: ¢ ~ N(0,02), respectively Y|X ~ N(XT 3, c?)
1 Convex maximization problem

n

~ . xT )2
B = Argmax 7g|og(2m72),%zw}

BERP, 0> 0 o?
i=1

J Estimate for 3: E: XTx)~xTy

O Estimate for o2: o2 =151 (Yi— X,-T/ﬁ\f
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Statistical properties of the estimate 3

1 The LS/ML estimate for 3 € R” is unbiased

EB=E[X'X)7'x"Y] = [(X"X)'X"]EY =8, VBER’

(1 The variance of the LS/ML estimate fj‘\ is

VarB = Var [(XTX)_1XT Y]
= (XTX) X [VarY]X(XTX) ' = *(XTX) 7!
O The LS/ML estimate 3 is BLUE
(BLUE = Best Linear Unbiased Estimate — The Gauss-Markov Theorem)
(1 The distribution of the LS/ML estimate Bis

— asymptotically normal for LSE (under some additional moment conditions)
— exactly normal for MLE (under the normal model assumption ¢ ~ N(0, 02))
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Statistical properties of the estimate o2

Unlike the LS estimation (where no parameter 0> > 0 is present in the
minimization problem) the maximum likelihood estimation simultaneously

provides also the estimate for o2 > 0

1 The ML estimate for o is biased

~ 1 — ~o n—p ,
2 _ A fl — R
Eo 7E[n E_l(Y, Y,)} o

n

O The unbiased estimate (so called REML) for o° is

n

2 n /\27 1 T\ 1
s° = 0% = Yi—Yi) = RSS
n—p n—p;( ) n—p

[0 The distribution of the estimate s> (properly scaled) is
s’(n—p) _RSS 2

= 2
o? 02 P

1 Moreover, the ML estimates E and s%are independent
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Jargon (overview for multiple regression)

(1 Fitted values (“estimates” for Y;'s): Yi=X"B
(Y =(Y41,...,Y,)" is a projection of Y into a p-dimensional subspace of R")
1 Residuals: u; = Y; — ?,

(ui are “estimates” for ¢;, projections of Y; into orthogonal complement)

U Residual sum of squares (RSS): Y7 (Vi — Yi)?
(the sum of squared residuals — minimization criterion — least squares)

1 Residual variance: niz Z:’:l(Y, — Y,)2 (RSS divided by degrees of freedom)
(the empirical estimate of the unknown variance of the error term o2 > 0)

O Residual standard error (RSE): \/ LS (Vi Vi

n—2
(estimate for the standard error — resp. square root of residual variance )
0 Total sum of squares (SST): >_7 (Vi — Y,)?
(the overall data variability with respect to Y when “scaled” by n — p)
O Multiple R? value: R? =1 — RSE/SST = (SST — RSE)/SST
(relative proportion of the variability explained by the model — the value

(SST — RSE) represents the overall variability explained by the model and it is
given relatively wrt the total variability in the denomitator — SST)
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Multiple regression as orthogonal projections

Recall, that a squared matrix P € R"*" is called a projection matrix if it holds that P? = P and

the real matrix P is an orthogonal projection matrix if, moreover, P = PT (i.e., Pis symmetric)

[d For a projection of any x € R" into a p-dimensional subspace spanned by the
columns of X (typical notation M(X) C R"), we can use the projection matrix
(among other choices) H = X(XTX)~!XT (also called a hat matrix)

1 For a projection of any x € R" into an (n — p)-dimensional orthogonal
complement of M(X) (typical notation M(X)=), we can use the projection
matrix (again, among other choices) P = (I — H) = (I — X(XTX)~!XT)
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Gauss-Markov Theorem — formally

[ the vector of fitted values (projection of Y € R" into M(X)) can be
obtained, using the projection matrix H as Y = (Y17 .. Y YT =HY

[ the vector of residuals u = (u1,...,n,)" (projection of Y € R” into
M(X)1) can be obtained by the projection matrix P as u = PY

Gauss-Markov Theorem
For a multiple regression model Y\X ~ (XB, o), where 8 € RP and the modeI matnx

X € R"XP is of a full rank and ﬁ is the LS estimate of 8 € RP, it holds that 0= (C,B is
the best linear unbiased estimate (BLUE) for the parameter 8 = C8 € RY, for any
matrix C € RI*P,

Recall, that a parameter estimate 6 (of some unknown parameter 8 € R¥) based on
a data vector Y € R is BLUE if and only if the following holds:

[d the estimate ais linear in Y, meaning that (/9\: AY

[ the estimate é\is unbiased for every 8 € RX, meaning that Eé\: 2]

4 for any matrix B of the same dimensions as A it holds that VarBY — Varé\z 0, meaning
that the matrix VarBY — Var@ is positive-semi-definite
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Summary

O Multiple linear regression model for Y € R and X = (Xi,...,X,)" € R?

(Y is the dependent variable, the variable of interest; X are explanatory/independent variables)

Linear regression provides a linear functional relationship between Y and X
(it can be denoted as Y = f(X), where f is linear in some parameters (not the regressors in X))

Expression Y = f(X) is approximate, Y is (given X) measured with errors
(using an explicit error term, the population model is expressed as Y = f(X) +¢)

The expression is exact when using some population characteristic of Y € R
(the simplest population characteristic is the mean (given X), thus E[Y|X] = f(X))

OO0 o o

Linear regression means that f(-) is linear in some set of parameters 8 € RY
(the set of parameters 3 € RY is typically unknown and not necessarily it holds that p = q)

1 Example
[d continuous dependent (random) variable Y € R
1 p € N independent covariates X € R” (random variables as well)

[ Linear regression model (with unknown parameters 8 € R9)
Y = Biti(X) + Bota(X) + - -+ + Bqtg(X) + &
for the set of unknown parameters 8 = (81,...,3q) T € R9 and some
known transformation functions t; : RP — R, for j =1,...,q, such that
the transformations t1, ..., ty do not depend on the unknown parameters
(thus, the regression model is, indeed, linear in f31, ..., Bq no matter what is the

underlying functional form of the known transformation functions ti, . . ., ty) and it is
also clear that it is not needed that p = q (but it is typically assumed so for simplicity)
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