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Regression models
beyond linearity
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Motivation

Linear regression models

❏ Normal linear regression model
❏ generic regression model Y = X⊤β + ε , for ε ∼ N(0, σ2)
❏ random sample {(Yi , X⊤

i )⊤; 1 = 1, . . . , n} from F(Y ,X)
❏ conditional distribution of Y |X is normal, i.e., Y |X ∼ N(X⊤β, σ2)
❏ parameter estimates (LSE/MLE) are BLUE and normaly distributed

❏ Linear regression model without normality
❏ generic regression model Y = X⊤β + ε , ε ∼ (0, σ2), Eε2 = σ2 ∈ (0, ∞)
❏ mean (E [Y |X] = X⊤β) and variance (Var(Y |X) = σ2(X)) specification
❏ conditional distribution of Y |X is left unspecified (LSE only)
❏ parameter estimates (MLE) are BLUE and asymptotically normal

Recall, that linearity + normality = ”lightness of being” but linear regression models
without the assumptions of normality introduce just a minor complication...

Thus, the linearity property is way more crucial!
(linearity of the predictor, linearity of the least squares, linearity of the expectation, linearity of the normal distribution, ...)
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Motivation

Beyond linearity

❏ In practice, however: The truth is (almost) never linear!
(however, the linearity assumption is a good and easy approximation)

❏ What to do, when the linearity assumption fails?
(the answer usually depends on the reason why the linearity fails)

❏ Note that there are a few levels of linearity in the model
(linearity of the predictor, linearity of the expectation, linearity of LS, ...)

❏ the data are too flexibile (higher order approximations/splines)
❏ the data are too irregular (piecewise approximation)
❏ the data are too comples (additive models)
❏ the data are too volatile (robust estimation approaches)
❏ the nature of Y contradicts the linear model (GLM)
❏ and many more reasons (and way more alternatives)
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Motivation

two generalizations beyond linearity

❏ Linearity of the predictor
❏ linear predictor in terms of X⊤β, where β ∈ Rp are unknown parameters
❏ the linear predictor is directly associated with the (theoretical) quantity of

interest – the (conditional) expectation of Y (i.e, E [Y |X] = X⊤β)
❏ however, this direct association may not be realistic in some situations
❏ =⇒ generalized linear models (GLM) & non-linear models (NLS)

❏ Linearity of the expectation
❏ the expectation EY =

∫
R xdFY (x) of some random variable Y ∼ FY is

a linear functional
❏ the expectation is also one of the most important characteristics of some

unknown population (random variable)
❏ on the other hand, the expectation offers only a very limited information

about the behavior of Y ∼ FY
❏ =⇒ quantile regression, expectile regression, or m-regression in general
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Motivation

1. Generalized linear models

So far, all regression models concerned the response variable Y ∈ R that was apriori
assumed to be continuous and the conditional distribution of Y |X was assumed to be
normal or, at least, close to normal...

In practical applications, however, the domain of Y can be also more restricted...

❏ Y ∈ N ∪ {0} (counts)
❏ Y ∈ {1, . . . , K} for K ∈ N (categories/label)
❏ Y ∈ {0, 1} (true/false)
❏ ...

Note, that despite the fact that the domain of Y is restricted, the mean parameter of
Y (the conditional mean if Y |X respectively) is still assumed to be from some
compact subset, M ⊂ R... This is very useful in the following models...

5 / 18
NMFM 334 | Lecture 12

▲



Motivation

1. Generalized linear models

So far, all regression models concerned the response variable Y ∈ R that was apriori
assumed to be continuous and the conditional distribution of Y |X was assumed to be
normal or, at least, close to normal...

In practical applications, however, the domain of Y can be also more restricted...

❏ Y ∈ N ∪ {0} (counts)
❏ Y ∈ {1, . . . , K} for K ∈ N (categories/label)
❏ Y ∈ {0, 1} (true/false)
❏ ...

Note, that despite the fact that the domain of Y is restricted, the mean parameter of
Y (the conditional mean if Y |X respectively) is still assumed to be from some
compact subset, M ⊂ R... This is very useful in the following models...

5 / 18
NMFM 334 | Lecture 12

▲



Motivation

Linear models with a flavour of nonlinearity
❏ in a standard linear model, the conditional mean is modelled as

E [Y |X] = X⊤β, for β ∈ Rp

while the variance structure Var [Y |X] is modeled separately from the
mean structure (e.g., Var [Y |X] = σ2I)

❏ in a generalized linear model, the conditional mean is modelled as

g(E [Y |X]) = X⊤β, for β ∈ Rp

for some non-linear link function g : M → R (typically continuous,
smooth, regular, but nonlinear)

❏ moreover, the variance structure typically depends on the mean structure

Var [Y |X] = v(E [Y |X])

where v : M → (0, ∞) is some known (variance) function
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Motivation

Example 1: Logistic regression

❏ Logistic regression
❏ the response variable Y ∈ R takes only two possible values, Y ∈ {0, 1}
❏ the conditional distribution of Y |X is alternative, with px = E [Y |X = x]
❏ the conditional mean µx = E [Y |X = x] is modeled with the linear

predictor X⊤β using the logit link function g(x) = log[x/(1 − x)]
❏ the model assumes the mean structure

logit(µx) = log
E [Y |X = x]

1 − E [Y |X = x]
= log

P[Y = 1|X = x]
1 − P[Y = 1|X = x]

= x⊤β

❏ the model assumes the variance structure which depends on the mean µx

Var [Y |X = x] = v(µx) = µX (1 − µX )

❏ the model is interpreted in terms of multiplicative comparisons and the
parameters are interpreted in terms of the odds ratios
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Motivation

Example 2: Poisson regression

❏ Poisson regression
❏ the response variable Y ∈ N ∪ {0} represents integer counts (including 0)
❏ the conditional distribution of Y |X is Poisson, with λx = E [Y |X = x]
❏ the conditional mean λX = E [Y |X = x] is modeled with the linear

predictor X⊤β using the log link function g(x) = log x
❏ the model assumes the mean structure

log(λx) = log E [Y |X = x] = x⊤β

❏ the model assumes the variance structure which depends on the mean
λX > 0 and some additional dispersion parameter ϕ > 0

Var [Y |X = x] = v(λx)ϕ = ϕλx

❏ the model is interpreted in terms of multiplicative comparisons and the
parameters are interpreted in terms of the proportional changes of the
conditional expectations
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Motivation

Example 3: Special cases

❏ Classical linear regression model
❏ continuous response Y ∈ R
❏ identity link function g(x) = x
❏ constant variance function v(x) = 1 and ϕ = σ2

❏ Multinomial regression model
❏ Exponential data model
❏ ...
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Motivation

2. Nonlinear regression models

❏ In linear models and generalized linear models as well, the conditional
mean is modeled (using a proper link function) as a linear combination of
the response variables and the subset of unknown parameters...

❏ if the class of available models is not reach enough (and we still prefer
a parametric model structure) then nonlinear regression models can serve
a a good alternative...

❏ the idea in nonlinear models is to use a general parametric (but nonlinear)
regression function f : Rp×q → R, such that

E [Y |X] = f (X , β),

where X ∈ Rp and β ∈ Rq

❏ Note that the nonlinear element (the nonlinear function f ) is now
introduced on the other side of the classical regression model formula and
typically it is not assumed that f should be regular (or continuous, etc.)
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Motivation

Nonlinear regression: Some examples
There are, of course, plenty of different models with various analytical structure and
different regularity properties—smoothness, continuity. Typical nonlinear models are,
for instance, various population models...

❏ Exponential growth model

f (x , β, α) = α exp{Xβ}

→ for some parameters a > 0 and β > 0;
❏ Logistic growth model

f (X , β, α, K) = K
1 + be−Xβ

;

→ for some parameters α, β, K > 0;
❏ Gomertz growth model

f (X , β, α, K) = K · exp{−βe−αt};

→ for some parameters α, β, K > 0;
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Motivation

Solutions for nonlinear regression models

❏ Note, that all three nonlinear models above can not be solved by using
classical method of the least squares... (no explicit solution can be
obtains)

❏ Thus, different computation strategies must be used to obtain the model
solution—the estimates for the unkown parameters α, β, K > 0

❏ Such computational methods may involve:
❏ reparametrization into a linear model and applying least squares
❏ model approximation and least squares
❏ various iterative solutions

❏ Note, that as far as the unknown regression function is unspecified, the
corresponding minimization problem may not even be convex!
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Motivation

Generalized nonlinear models

❏ Advanced, but still possible....

g(E [Y |X]) = f (X , β)

where two additional sources of nonlinearity are introduced at the same
time—the nonlinear link function g and the nonlinear predictor function f

❏ Some challenges
❏ mostly, the interpretation of β ∈ R is not straightforward
❏ due to nonlinearity, various computational issues and solution instability
❏ difficult statistical inference typically perfomed by simulations
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Motivation

3. Regression models beyond expectation
❏ Least squares

In an ordinary linear regression model (without the normality assumption)
the likelihood can not be obtained and the estimates for β′ ∈ Rp are
obtained by minimizing least squares

β̂ = Argmin
β ∈ Rp

N∑
i=1

(Yi − X⊤
i β)2

❏ Maximum likelihood
In a normal linear regression model (under the normality assumption) the
full likelihood for β ∈ Rp and σ > 0 can be formulated and the estimates
are obtained by maximizing the likelihood function

β̂ = Argmax
β ∈ Rp; σ2 > 0

(2πσ2)−N/2 · exp

{
− 1

2σ2

N∑
i=1

(Yi − X⊤
i β)2

}
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Motivation

Expectation and beyond
❏ For some real random variable X ∼ FX (and the density f with respect to

the Lebesgue or count measure) and some measurable function h : R → R
we can obtain the expectation (if the integral exists) as

Eh(X) =
∫
R

h(x)dFX (x) =
∫
R

h(x)f (x)dx

❏ For the random sample X1, . . . , XN drawn from the same distribution as
the distribution of X ∼ FX we can construct the empirical distribution
function FN and the empirical counterpart for Eh(X) (i.e., the empirical
estimate)

Êh(X) =
∫
R

h(x)dFN(x) =
N∑

i=1

h(Xi )

❏ The quantity (parameter) µh = Eh(X) is sometimes called the theoretical
is called the theoretical functional of the distribution FX while the
quantity µ̂h = Êh(X) is called the (empirical) functional of the empirical
distribution FN (different functions can be used in place of h)
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Êh(X) =
∫
R

h(x)dFN(x) =
N∑

i=1

h(Xi )

❏ The quantity (parameter) µh = Eh(X) is sometimes called the theoretical
is called the theoretical functional of the distribution FX while the
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Motivation

Some common choices of the function h
❏ the expectation (theoretical quantity EX) and the average (empirical

quantity X N) can be both obtained by a minimization problem with the
choice of h(x) = (x − a)2 where

❏ EX = Argmina∈R E(X − a)2 = Argmina∈R
∫
R(x − a)2dFX (x)

❏ XN = ÊX = Argmina∈R
∫
R(x − a)2dFN(x) = Argmina∈R

∑N
i=1(Xi − a)2

❏ Note that in both cases we actually formulate the least squares problem
(theoretical and empirical) and the solution is the theoretical mean and
the empirical average (i.e., the estimate for the mean)
This principle can be generalized even further—for the regression
concepts and different forms of the function h

❏ typical choices for h include: median regression for h(x) = |x |; quantile
regression for hτ (x) = τ(x − I{x<0}); expectile regression for
hτ (x) = |τ − I{x<0}|x2; robust regression for h(x) = ρ(x))
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Motivation

Basic properties of the regression variants
❏ Median regression

– more robust than the standard least squares regression
– for symmetric error distributions the median corresponds with the mean
– easy and straightforward intepretation of the estimated parameters

❏ Quantile regression
– generalization of the median regression (which is obtained for τ = 0.5)
– provideds a complex insight about the conditional distribution of Y |X
– relatively easy interpretation but not that much popular in practice

❏ Expectle regression
– generalization of the least squares (which are obtained for τ = 0.5)
– expectiles form elastic and coherent risk measures (unlike quantiles)
– relatively difficult interpretation but very popular in risk theory

❏ Robust regression
– generalization of the regression for outlyiers and heavy-talied distributions
– least squares for ρ(x) = X2; median regression for ρ(x) = |x |; maximum

likelihood for ρ(x) = − log(x)
– other choices are common in practice as well (e.g., Huber function, Tukey

function, Andrew’s function, ...)
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Motivation

Exam terms

❏ Utorok, 20.05.2025 (starting at 10:40 in K4)
❏ Štvrtok, 22.05.2025 (starting at 12:20 in Praktikum KPMS)
❏ Utorok, 27.05.2025 (starting at 9:00 in K5) (!!)
❏ Štvrtok, 29.05.2025 (starting at 9:00 in K11)
❏ Pondelok, 02.06.2025 (starting at 9:00 in K11)
❏ Pondelok, 09.06.2025 (starting at 9:00 in K11)
❏ Štvrtok, 26.06.2025 (starting at 9:00 in K11)

❏ At least one other exam term in September 2025
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