Lecture 10 | 28.04.2025

Linear regression models
with heteroscedasetic errors
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Normal linear model

Assumptions

1 random sample (Y;, X;) for i =1,...,n from some joint distribution
function F(y x, such that Yi|X; ~ N(X;" B,0?)

[0 regression model of the form Y; = X;" B + ¢;

Inference

[ confidence intervals for 8; € R, confidence regions for 3 € R, and linear
combinations of the form L3 for some L € R™*?

0 parameter estimates 3 (constructed in terms of LSE or MLE) are BLUE
and the follow the normal distribution

B~ Ny(B,0*(XX) ")

The statistical inference is exact and it is based on the normal distribution (if the
variance parameter is known) or the Student’s t-distribution or Fisher's F-distribution
respectively for a2 > 0 unknown
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Linear model without normality

Assumptions (Al)
(1 random sample (Y;, X;) for i =1,..., n from the joint distribution F(y x)
(3 mean specification E[Yi|Xi] = X;" B, respectively E[Y|X] = X8
0 thus, for errors &, = Y; — X' B we have E[;|X;] = E[Y; — X;" B|X;] =0
and Var(ei|X;) = Var[Y; — X;" B|Xi] = Var[Yi|Xi] = o*(X;)
[ and for unconditional expectations, E[e;] = E[E[e;i| Xi]] = 0 and
Var(g;) = Var(E[ei|Xi])+ E[Var(g:|X;)] = Var(0)+E[0°(X;)] = E[0(X)]
Assumptions (A2)
O E|XjXi| < ooforj, ke{l,...,p}
Qa E(XXT) =W € RP*P is a positive definite matrix
Qv=w!
Assumptions (A3a/A3b)
1 Homoscedastic model)
o3(X) = Var(Y|X)=0%>0
[d Heteroscedastic model

o?(X) = Var(Y|X) such that E[0?(X)] < oo and moreover, it also holds
that E[o?(X)X;Xk] < oo for j,k € {1,...,p}
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Inference under (Al), (A2), and (A3b)

Inference (without normality + homoscedastic errors)

[ confidence intervals for 8; € R, confidence regions for 3 € R”, and linear
combinations of the form L3 for some L € R™*?

[ parameter estimates ,B\,, (sometimes also B) constructed in terms of LSE
or MLE, are BLUE, they are consistent (convergence in probability) and
they follow asymptotically the normal distribution

Vi(Ba—B) 5 Ny(0,0°V)

n—oo

The statistical inference is approximate/assymptocal and it is based on the normal
distribution (regardless of whether the variance o > 0 is known or unknown)

Note that
Vi B = VAKTX) KT (XB4€)) = VA ViV B4 iV, = E Xie;
~—— —— =~ V7 -

Y B —V
N———
(%)

< where (%) converges (in distribution) to N,(0, E[c®(X)XX "]) (Central Limit Theorem)
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General linear model (heteroscedasticity)

(1 random sample (Y;, X;) for i =1,..., n from the joint distribution F(y x)
[d mean specification E[Y|X] = X8, for B € R?

O variance specification Var[Y|X] = ¢*W™?, for some known matrix
W e R™" (positive definite)

1 generally, the normal distribution is not assumed, therefore

Y|X ~ (XB,0°W 1)

Example
Consider a linear regression model, where the dependent variables Y; for i =1,...,n

represent some averages across w; € N independent subjects, where for each subject
we assume the same variance (i.e., a homoscedastic model for the subjects)
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General least squares

Consider a general linear model Y|X ~ (X3, 0°W~1) where
rank(X) = p < n (where X € R"*P). Than the following holds:

0 B =(X"WX)"'X"WY is BLUE for 8 € R?

O fi=Y = XB is BLUE for p = E[Y|X]

0 for I € R?, where I £ 0, I" 3 is BLUE for 6 = I3

1 MSec = ﬁ“Wl/z(Y — ?)H% is unbiased estimate of o2 > 0

If, additionaly, Y|X ~ N(X8,52W1) then the estimates 3 € RP follow
the corresponding normal distribution and, moreover,

MSec(n —p)  SSec 5
= 2 ~Y

Xn—
02 o n—=p

and SSe and Y are conditionally, given X, mutually independent
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General linear model — utilization

[d the general linear model is typically used with partially aggregated
data—mostly in a way, that instead of raw observations we observe
independent averages over specific classes (that we can control for with
the set of the regressor variables)

[ if the estimation of the mean structure is of the interest only, the
aggregated data can be also replicated and the correponding mean
estimates will be the same

[ however, if there is also some interest in the variance estimation (e.g.,
there is a need to perform some statistical inference), the model based on
the replicated data will fail (the variance estimates are artificially
underestimated—e.g., too short confidence intervals)

[ the situations described above all refer to a diagonal (weighting) matrix

W. However, in general, the matrix W € R"*" can have all non-zero
entries—meaning that the individual subjects are correlated (dependent)
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More general situations...

[ General least squares represent a class of linear models for heteroscedastic
data, however, with the known heteroscedastic structure—the matrix W is
known from the experiment

[d More general scenario involves situations where heteroscedastic data have
some unknown variance structure (which needs to be estimated)

(1 Recall Assumption (A3) that specified the following conditions:

[J Heteroscedastic model
%(X) = Var(Y|X) such that E[c?(X)] < oo and moreover, it also holds
that E[o?(X)X;Xk] < oo for j, k € {1,...,p}

[J The assumption above implies, that the matrix W* = E[¢?(X)XX ] is
a real matrix with all elements being finite

[J Thus, under the heteroscedastic model, we have E[Y;|X;] = X;' 8 and
Var[Yi|Xi] = Var[ei| Xi] = o*(X;)
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Consistency of the LSE estimates

The underlying model can be either assumed within the normal model
framework or, alternatively, no normality is needed
(some moment conditions are assumed instead)

[ Again, we are interested in the following parameters:

a BeRP

d62>0

1 0 =178 eR, for some nonzero vector | € RP

1 © =LB € R™, for some matrix L € R™*P with linearly independent rows

[ The corresponding estmates are defined straightforwardly and it holds
(under (A1), (A2), and (A3a/A3b)) that

Dﬂn—>ﬁas (in P), for n — oo
Clﬁn—l ,Bn—>ﬁas (in P), for n — oo
A @,, = ]L,B,, — ©, ass. (in P), for n — oo
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Assymptotic normality under heteroscedasticity
Under the assumptions stated in (A1), (A2), and (A3b) and, additionally,
for E[e2X;Xk] < oo for j, k =1,...,p the following holds:

Q \/ﬁ(ﬁn - B) N Ny(B, >VW*V) for n — oo
u f(é\n — ) i> N(0, a2 ITVW*VI), as n — oo
O /n(©, — ©) 25 Nm(0, PPLYW*VLLT), as n — oo

where V = [E(xxT)] " and W* = E[02(X)XXT]

Note that Var(Xe) = E[¢*(X)XXT] which equals to 02 E[XXT] = 0?W under
homoscedasticity (A3a) and it equals to W* under heteroscedasticity (A3b)
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Sandwich estimate of the variance

Consider the assumptions in (A1), (A2), and (A3b). Let, moreover, the
following holds

O E|e?X;Xk| < o0
O EleXiXiXs| < o0
O E[XXeXsXi| < 00
all for j, k,s,l € {1,...,p}. Then the following holds:

VW, YWY, for n o 0o

where W2 = 327 U2X: X, = X[ Q,X,, where U; = Y; — Y; and
Q, = diag(U2,...,U?)
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Sandwich estimate

[ the estimate for the variance covariance matrix VW*V is the so-called
sandwich estimate of the form
VWiV, = (X, X)X, Qn X(X) X))
—— N S—_—,|—,——
bread meat bread
which is a (heteroscedastic) consistent estimate of the variance-covarance
of the least squares estimate 3,

[ if we replace the matrix €2, with —Q for some sequence {vn}, such that
n/v, — 1 as n — oo the convergence still holds and v, is called the
degrees of freedom of the sandwich estimate

[ different options are used in the literature to define the sequence {v,}n
(White (1980); MacKinnon and White (1985); etc.)
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Asymptotic inference under heteroscedasticity

(1 for a consistent sandwich estimate V¢ = (X X,) 71X Q,X, (X! X,)™*
of the covariance matrix of 8, we can define

TG T
O 7T, — ! Bzl B
! \/ITVHE]

WBo-18)" (LVLT) 1B -18)

m

0 Q=

[ The statistic T, follows (asymptotically) the normal distribution N(0, 1)
and the statistic mQ, follows (again asymptotically) the x? distribution
with m = rank(L) degrees of freedom (for n — co)

1 Note that the results are analogous to those obtained for the
homoscedastic situation where MSe(X"X) ™! is replaced by the sandwich
estimate VHC¢

[ the statistics T, and Q, can be directly used to perform statistical
inference—i.e., to constract a confidence interval /region or to test some
set of hypotheses
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Summary

[ Linear regression models

1 Normal linear model with homoscedastic errors
[ Linear model without normality assumptions (A3a/A3b)
[d General linear model (with and without the normality assumption)

1 Consistent LSE/MLE estimates

1 consistent estimates of the mean and variance parameters

(1 the mean parameter estimates are normally distributed (normal model)
1 the mean estimates are asymptotically normal (model without normality)
[J consistent estimates of the variance parameter/parameters

[ Statistical inference

[ primarily about the mean parameters and their linear combinations
[d exact and approximate (asymptotic) confidence intervals (regions)
[ statistical tests (hull and alternative hypotheses)
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