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1. Introduction

Stability theory is a set of ideas and techniques in model theory that
originated in Morley’s proof in the 60’s of the  Loś conjecture: if a theory
in a countable language is categorical in one uncountable power, then it is
categorical in all uncountable powers. Morley discovered that such a theory
must be omega-stable, which means that its models and their definable sets
have some highly restrictive and therefore useful properties. Shelah then
took up the ambitious problem of describing explicitly all functions I(T,−)
for complete theories T in countable languages, where I(T, κ) is the number
of models of T of size κ (up to isomorphism) with κ ranging over infinite
cardinals. On general grounds (which?) there can only be a limited number
of possibilities for such functions. A full solution was achieved by Shelah
in a remarkable and extensive body of work, but more important than the
precise answer are the intrinsic dividing lines between (complete) theories
exposed in this way. Here “intrinsic” means, roughly speaking, “invariant
under bi-interpretability”. One such dividing line is

stable versus unstable,

and Shelah was able to associate dimension-like quantities to types and
definable sets in models of stable theories.

Later applications in algebra and number theory are closely connected to
the new insights concerning definable sets gained in this way.

It may be surprising that a problem on how many models a theory has of a
given size can be relevant for the structure of definable sets in a given model.
The way this happens is via types: elementary extensions of a given model
M are constructed fromM by realizing types overM; in particular, the size
of various type spaces overM determines more or less how many elementary
extensions of M of various kinds there can be. But a type space over M
is just the Stone dual of a boolean algebra of definable sets in M, and the
size of a type space more or less reflects the complexity of the corresponding
boolean algebra of definable sets. (I am intentionally vague about “size”
and “complexity”; there are various ways to make this precise.) Perhaps
the remarkable properties of definable sets in stable structures could have
been discovered in another way. As a fact of history, however, they came
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to light via the study of type spaces forced by questions on the number of
models of a theory.

Throughout, m,n (sometimes decorated with subscripts or accents) range
over the set N = {0, 1, 2, . . . } of natural numbers. We let κ, κ′, etc., range
over infinite cardinals. For a set X we let |X| be the size (cardinal) of X.

Given sets P , Q and R ⊆ P ×Q, we define for a ∈ P ,

R(a) := {b ∈ Q : (a, b) ∈ R} ⊆ Q (the section of R above a),

and we view R as describing the family
(

R(a)
)

a∈P
of subsets of Q. (Of

course, this notation is only justified when P and Q are clear from the
context.) A partial map f from the set P to the set Q (notation: f : P ⇀ Q)
is a map f : P ′ → Q with P ′ ⊆ P .

For an equivalence relation E on a set P we let P/E be the quotient set (its
elements are the E-classes E(p) with p ∈ P ). Abusing language, we call E
finite if P/E is finite.

2. Boolean algebras with rank

The Cantor rank1 of a definable set X in a model is, roughly speaking, an
ordinal that measures to what extent X can be split up in smaller definable
sets. It behaves as a kind of dimension of X, and

Cantor rank = Morley rank

if the ambient model is ℵ0-saturated, as we shall see later.
A key point is that the Cantor rank of X can be defined purely in terms

of the boolean algebra of definable subsets of X. This suggests introducing
such a notion of rank for elements of any boolean algebra.

We also intend this section as a review of the Stone representation of a
boolean algebra, which underlies our later use of types.

Let Or be the class of ordinals. For convenience we add two extra elements
−∞ and +∞ to Or, and extend the usual linear ordering on Or to a linear
ordering on Or∞ := Or ∪ {−∞,+∞} by letting −∞ < λ < +∞ for each
ordinal λ. Below we let α, β, λ range over ordinals.

Terminology and notations concerning boolean algebras. Recall
that a boolean algebra B is a set with distinguished elements 0 and 1, binary
operations ∨ and ∧ (join and meet), and a unary operation − (complement),
such that certain equational laws are satisfied.

Let B be a boolean algebra. For a, b ∈ B we define

a ≤ b :⇐⇒ a = a ∧ b,

which makes B into a poset (partially ordered set), and we say that a and
b are disjoint if a∧ b = 0. An atom of B is an a > 0 in B such that there is
no b ∈ B with a > b > 0. We let at(B) be the set of atoms of B.

1
The term Cantor-Bendixson rank is more common.
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Given any set X, the (boolean) algebra of subsets of X has the subsets
of X as its elements, with ∅ and X as its 0 and 1, the binary operations
of taking union and intersection as its join and meet operations, and the
unary operation of taking the complement relative to X as its complement
operation. The atoms of this boolean algebra are the singletons {x} with
x ∈ X. These atoms generate the (boolean) subalgebra whose elements
are the finite and cofinite subsets of X. (A cofinite subset of X is the
complement in X of a finite subset of X.) Part of the Stone representation
theorem says that any boolean algebra embeds into the boolean algebra of
subsets of X, for some set X.

We now fix a boolean algebra B, and let a, b, c (with or without subscripts)
denote elements of B. By “b = b1 + · · ·+ bk” we mean that b = b1 ∨ · · · ∨ bk
with pairwise disjoint b1, . . . , bk. We also put a− b := a ∧ (−b).

An ideal of B is a set I ⊆ B such that 0 ∈ I, and for all a, b,

a ≤ b ∈ I ⇒ a ∈ I, a, b ∈ I ⇒ a ∨ b ∈ I.

Let I be an ideal of B. This yields an equivalence relation =I on B by
setting

a =I b⇐⇒ a ∨ i = b ∨ i for some i ∈ I.

Let a/I be the equivalence class of a, and make the set B/I := {a/I : a ∈ B}
into a boolean algebra by requiring that a 7→ a/I : B → B/I is a boolean
algebra homomorphism.

Given any set H ⊆ B, the ideal (H) of B generated by H (i.e. the smallest
ideal of B, under set inclusion, that contains H) is given by

(H) := {x ∈ B : x ≤ h1 ∨ · · · ∨ hn for some h1, . . . , hn ∈ H}.

Thus
(

at(B)
)

is the ideal generated by the atoms of B, and its elements are
the a1 + · · · + am with atoms a1, . . . , am, with m = 0 yielding the element
0 ∈ B. Each a ∈

(

at(B)
)

has a unique representation as a sum of atoms: if

a = a1 + · · ·+ am = b1 + · · ·+ bn

with atoms ai and bj , then m = n and {a1, . . . , am} = {b1, . . . , bn}.

Defining Cantor rank. By transfinite recursion we assign to each ordinal
λ an ideal Iλ of B such that Iλ ⊆ Iµ for λ ≤ µ:

(1) I0 :=
(

at(B)
)

, the ideal generated by the atoms of B;
(2) for λ > 0, assume inductively that Iα is an ideal of B for all α < λ,

and that Iα ⊆ Iβ whenever α ≤ β < λ; put I<λ :=
⋃

α<λ Iα; then Iλ
is defined to be the ideal of B that contains I<λ and whose image in
B/I<λ is

(

at(B/I<λ)
)

, the ideal generated by the atoms of B/I<λ.

For convenience we put I<0 := {0}, the trivial ideal of B.

Lemma 2.1. If b /∈ Iλ, then there is an infinite subset of B whose elements
are pairwise disjoint, < b, and outside I<λ.
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Proof. We first do the case λ = 0. Let b /∈ I0. If there are infinitely many
atoms < b, then the set of such atoms has the desired property. If there
are only finitely many atoms < b, then by subtracting these atoms from b
we reduce to the case that there are no atoms < b. In this case we take
some nonzero b0 < b, then some nonzero b1 < b − b0, next some nonzero
b2 < b− b0 − b1, and so on. Then the set of all bn has the desired property.
The general case follows likewise by considering B/I<λ instead of B. �

Note that if Iλ = Iλ+1, then Iλ = Iµ for all ordinals µ ≥ λ.

We now assign to each b its Cantor rank , an element of Or∞ and denoted
by CR(b), and by CRB(b) if we wish to indicate the dependence on B. We
set CR(0) := −∞; if b 6= 0 and b ∈ Iλ for some λ, then we let CR(b) be the
least such λ; if b 6= 0 and b /∈ Iλ for all λ, then CR(b) := +∞. Thus

Iλ = {b : CR(b) ≤ λ}.

For example, if X is infinite and B is the algebra of finite and cofinite subsets
of X, then the nonempty finite subsets of X have Cantor rank 0, and the
cofinite subsets of X have Cantor rank 1. Note that the lemma above has
the following reformulation:

CR(b) > λ ⇐⇒ there is an infinite sequence a0, a1, a2, . . . with an < b and

CR(an) ≥ λ for all n, and am ∧ an = 0 for all m 6= n.

This equivalence is constantly and tacitly used in inductive proofs below.
Our rank function clearly satisfies

(i) CR(b) = −∞ ⇐⇒ b = 0,
(ii) a ≤ b =⇒ CR(a) ≤ CR(b),

(iii) CR(a ∨ b) = max(CR(a),CR(b)),
(iv) if α < CR(b) < +∞, then α = CR(a) for some a.

Property (iv) says that the ordinals that occur as Cantor ranks of elements
of B form an initial segment of Or. In particular, these ordinals are < |B|+,
the least cardinal > |B|.

We say that b is ranked if −∞ < CR(b) < +∞, that is, CR(b) is an
ordinal. We define the Cantor degree CD(b) (or CDB(b)) of a ranked element
b to be the largest d ≥ 1 such that there are b1, . . . , bd of the same Cantor
rank as b with b = b1 + · · · + bd; in other words, if CR(b) = λ, then CD(b)
is the number of atoms of B/I<λ that are ≤ b/I<λ.

Lemma 2.2. Cantor rank and degree are related as follows:

(v) If −∞ < CR(a) = CR(b) < +∞ and a ≤ b, then CD(a) ≤ CD(b).
(vi) If −∞ < CR(a) = CR(b) < +∞, then CD(a ∨ b) ≤ CD(a) + CD(b)

with equality if a ∧ b = 0,
(vii) If CR(a) < CR(b) < +∞, then CD(a ∨ b) = CD(b).

Call b Cantor irreducible if b is ranked and CD(b) = 1; in that case there
are no b1 and b2 of the same Cantor rank as b such that b = b1 + b2. Clearly:
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(viii) (CR(a) = 0, CD(a) = 1)⇐⇒ a is an atom;
(ix) CR(b) = 0⇐⇒ b = a1+· · ·+ad for some d ≥ 1 and atoms a1, . . . , ad;
(x) if b is ranked of Cantor degree d and b = b1 + · · · + bd with each bi

of the same Cantor rank as b, then each bi is Cantor irreducible.

Cantor rank and degree behave as expected under morphisms:

Proposition 2.3. Let φ : B → C be a boolean algebra morphism and b ∈ B.

(1) If φ is injective, then CR(b) ≤ CR(φ(b)), and in case of equality with
b ranked we have CD(b) ≤ CD(φ(b)).

(2) If φ is surjective, then CR(b) ≥ CR(φ(b)), and in case of equality
with b ranked we have CD(b) ≥ CD(φ(b)).

Proof. Suppose φ is injective. Then an easy induction shows that CR(b) > β
implies CR(φ(b)) > β, from which the first part of (1) follows. The second
part of (1) is then immediate from the definition of degree. We prove (2)
by induction on CR(b). The case CR(b) = −∞ is trivial, so let CR(b) = β,
and assume that the desired result holds for smaller values of CR(b). Let
c := φ(b), and suppose c = c1 + · · · + ck with k ≥ 1 and CR(ci) ≥ β for
i = 1, . . . , k. Take b1, . . . , bk ∈ B with φ(bi) = ci. Replacing bi by bi ∧ b if
necessary, we may assume bi ≤ b for all i. Note that

φ
(

bi −
∨

j 6=i

bj
)

= φ(bi)−
∨

j 6=i

φ(bj) = ci −
∨

j 6=i

cj = ci,

so replacing each bi by bi −
∨

j 6=i bj we may assume b1, . . . , bk are pairwise

disjoint. If CR(bi) < β, then by the inductive hypothesis CR(ci) < β, a
contradiction. Hence CR(bi) = β for all i, and thus k ≤ CD(b). This
bound on k shows that CR(c) cannot be larger than β, and also implies the
inequality on the degrees in case CR(b) = CR(c). �

Let B|b := {a|a ≤ b}, and consider B|b as a boolean algebra in its own right,
by restricting ∨ and ∧ to B|b. Note that B|b has b as largest element, so
B|b is not a boolean subalgebra of B when b 6= 1, but the map a 7→ a ∧ b :
B → B|b is a (surjective) morphism of boolean algebras. The following is
almost obvious from the definitions.

Lemma 2.4. Let a ≤ b. Then CRB(a) = CRB|b(a). If in addition a is
ranked, then CDB(a) = CDB|b(a).

In combination with a previous remark this lemma implies:
If α < CR(b) < +∞, then there is a ≤ b with CR(a) = α.

When is every nonzero element ranked? To answer this question, we
first review filters and the Stone representation. A filter of B is just the
dual of an ideal of B: it is a set F ⊆ B such that 1 ∈ F , and for all a, b we
have a ≥ b ∈ F ⇒ a ∈ F , and a, b ∈ F ⇒ a∧ b ∈ F . Equivalently, it is a set
F ⊆ B such that −F := {−b : b ∈ F} is an ideal of B. Each a determines a
filter Fa := {b : b ≥ a} of B.
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A filter F of B is said to be proper if 0 /∈ F , that is, F 6= B. An ultrafilter
of B is a proper filter F of B such that for each a, either a ∈ F or −a ∈ F .
Note that Fa is an ultrafilter of B iff a is an atom. Using Zorn it is easy to
see that every proper filter of B is contained in a maximal proper filter of
B. One also checks easily that the maximal proper filters of B are exactly
the ultrafilters of B. Finally, each proper filter F of B is the intersection
of the ultrafilters of B that contain F . These facts easily yield the Stone
representation, to which we now turn. The Stone space St(B) of B is the
set of ultrafilters of B. To a we assign

[a] := {F ∈ St(B) : a ∈ F}, a subset of St(B),

and this assignment satisfies [0] = ∅, [1] = St(B), and

[a] ∪ [b] = [a ∨ b], [a] ∩ [b] = [a ∧ b], [−a] = St(B) \ [a].

Thus a 7→ [a] is a morphism of B into the boolean algebra of subsets of St(B).
It is in fact an embedding, called the Stone representation of B. We use
the word “Stone space” because St(B) is given the so-called Stone topology,
which has the sets [a] as basis. It makes St(B) a compact hausdorff space
whose clopen sets are exactly the sets [a]. Thus the Stone representation of
B maps B isomorphically onto the algebra of clopen subsets of St(B).

Next a combinatorial notion: an infinite binary tree in B is a family (aj) of
nonzero elements of B, where j = j1, . . . , jn ranges over the finite sequences
of zeros and ones, with a∅ = 1 (with ∅ the empty sequence), and such that
for each j as above we have aj = aj,0 + aj,1.

This combinatorial notion is related to an algebraic notion: B is said to
be atomless if 1 6= 0 but B has no atom. Note that if (aj) is an infinite
binary tree in B, then the elements aj generate an atomless subalgebra of
B. Conversely, if B has an atomless subalgebra, then B has an infinite
binary tree.

Example of an atomless boolean algebra: take the subsets of [0, 1) ⊆ R

that are finite unions of intervals [a, b) with 0 ≤ a < b ≤ 1; these subsets are
the elements of an atomless subalgebra of the algebra of subsets of [0, 1).

We can now state an answer to the question above:

Theorem 2.5. The following four conditions are equivalent:

(i) B has no infinite binary tree,
(ii) B has no atomless subalgebra,

(iii) each non-zero element of B is ranked,
(iv) St(A) is countable for each countable subalgebra A of B.

Moreover, (i) implies (v), and is equivalent to (v) if B is countable:

(v) |St(B)| ≤ |B|.

Towards the proof of this result we first observe:

Lemma 2.6. Suppose CR(a) = +∞. Then there are a1, a2 such that

a = a1 + a2, CR(a1) = CR(a2) = +∞.
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Proof. Take an ordinal λ > |B|+. From CR(a) > λ it follows that a = a1+a2

with CR(a1),CR(a2) ≥ λ. Then CR(a1) = CR(a2) = +∞. �

For Cantor irreducible a we put F (a) := {b : CR(a ∧ b) = CR(a)}, hence
also F (a) = {b : CR(a− b) < CR(a)}. Clearly F (a) is then an ultrafilter on
B, and if a is an atom, then F (a) = Fa. For Cantor irreducible a, b we have

F (a) = F (b)⇐⇒ CR(a) = CR(b) = CR(a ∧ b).

We say that an ultrafilter on B is ranked if it contains a ranked element.
Given a ranked ultrafilter F on B, take an a ∈ F of minimal Cantor rank,
and of minimal Cantor degree of that rank. Then a is Cantor irreducible,
and one checks easily that then F = F (a). So a 7→ F (a) maps the set of
Cantor irreducible elements of B onto the set of ranked ultrafilters of B.

Proof of the Theorem. We already observed the equivalence of (i) and
(ii). To prove that (i)⇒(iii), assume (i) and suppose B has a nonranked
non-zero element. Then CR(1) = +∞, so by Lemma 2.6 we get an infinite
binary tree (aj) in B such that all aj have Cantor rank +∞, contradicting
(i). To prove (iii)⇒(ii), assume (iii), and let A be a subalgebra of B. We
can assume 1 6= 0. Since 1 is ranked in B, it is ranked in A by (1) of
Proposition 2.3, so CRA(a) = 0 for some a ∈ A, so A has an atom, and
is therefore not atomless. We have now shown that (i), (ii) and (iii) are
equivalent.

Next we prove (iii)⇒(v). Assume (iii). Then each ultrafilter of B is
ranked, hence of the form F (a) for some irreducible a ∈ B, so (v) holds.

Assume B is countable. To show (v)⇒(i), we prove the contrapositive:
Suppose we have an infinite binary tree (aj) in B. Each infinite sequence
j1, j2, j3, . . . of zeros and ones leads to a subset {1, aj1 , aj1,j2, aj1,j2,j3, . . . }
of B that is contained in some ultrafilter on B, and different such infinite
sequences give rise in this way to necessarily different ultrafilters. Thus B
has 2ℵ0 many ultrafilters.

The last two arguments also give the equivalence of (i) with (iv) since
condition (i) is inherited by subalgebras. This concludes the proof of the
theorem.

In the presence of a set of generators. Let our boolean algebra B be
equipped with a distinguished subset G that generates B. It turns out that
we can recover the notion of (un)stability in this setting in a very natural
way. The combinatorial fact behind this is the following:

Lemma 2.7. Suppose H is an infinite set and C is a collection of subsets
of H such that |C| > |H|. Then for each n there are distinct elements
h1, . . . , hn ∈ H and sets C0, . . . , Cn ∈ C such that

{h1, . . . , hn} ∩Cj = {h1, . . . , hj} for j = 0, . . . , n,

in other words: hi ∈ Cj ⇐⇒ i ≤ j, for i = 1, . . . , n, j = 0, . . . , n.
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Proof. For given n the property holds for C iff it holds for the collection
H − C := {H \ C : C ∈ C}: if h1, . . . , hn ∈ H and C0, . . . , Cn witness this
property, then hn, . . . , h1 and H \Cn, . . . ,H \C0 witness it as well. We now
proceed by induction on n. The case n = 0 is obvious. Suppose the desired
result holds for a certain n, for all H and C satisfying the hypothesis of the
lemma. Take a set C ∈ C and put κ := |H|. We make the following case
distinction:

Case 1. C ∩ C := {X ∩ C : X ∈ C} has size > κ. Then there is a c ∈ C
such that more than κ sets Y ∈ C ∩ C do not contain c: otherwise, each
c ∈ C would be outside at most κ many Y ∈ C ∩ C, hence C 6= Y for at
most κ many Y ∈ C ∩C, contradicting the assumption of case 1. Take such
a c, and put D := {Y ∈ C ∩ C : c /∈ Y }, a collection of subsets of C with
|D| > κ. Hence by the inductive hypothesis applied to C and D there are
distinct h1, . . . , hn ∈ C and sets Y0, . . . , Yn ∈ D such that

{h1, . . . , hn} ∩ Yj = {h1, . . . , hj} for j = 0, . . . , n.

We have Yj = Cj ∩ C with Cj ∈ C, j = 0, . . . , n. Put hn+1 := c and
Cn+1 := C. Then

{h1, . . . , hn+1} ∩Cj = {h1, . . . , hj} for j = 0, . . . , n+ 1.

Case 2. C ∩C := {X ∩C : X ∈ C} has size ≤ κ. Then C ∩ (H \C) has size
> κ, so (H − C) ∩ (H \ C) has size > κ. Then case 1 applies to H − C and
H−C in place of C and C, and we are done by the remark at the beginning
of the proof. �

This result of Erdös-Makkai is a perfect example how the uncountable can
reflect combinatorial complexity of a finite nature. (Is there a finite version
of this result?)

To apply Lemma 2.7, we note that different ultrafilters of B have different
intersections with G, because each ultrafilter of B equals {b : φ(b) = 1} for
some boolean algebra morphism φ : B → {0, 1}, and each such morphism is
uniquely determined by its restriction to G.

Corollary 2.8. Suppose CR(1) = +∞. Then for each n there are distinct
elements g1 . . . , gn and ultrafilters F0, . . . , Fn of B such that

{g1, . . . , gn} ∩ Fj = {g1, . . . , gj} for j = 0, . . . , n.

Proof. By the assumption B has a countable atomless subalgebra. Hence
we have a countable subset H of G such that the subalgebra A generated by
H has an atomless subalgebra. Thus A has uncountably many ultrafilters.
Different ultrafilters of A intersect H in different subsets, and each ultrafilter
of A extends to an ultrafilter of B. Now apply the lemma above to H and
the collection C of intersections of ultrafilters of B with H. �
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3. Many-sorted Structures

Model theory is traditionally developed for one-sorted structures, but it is
now generally recognized that the many-sorted setting is better suited for
expressing various basic constructions like adding imaginaries. Also, natural
mathematical structures are often many-sorted to begin with. A many-
sorted (or multi-sorted) structure is a family of sets (Ms)s∈S equipped with
relations

R ⊆Ms1
× · · · ×Msm

, (s1, . . . , sm ∈ S)

and functions

f : Ms1
× · · · ×Msn

→Msn+1
, (s1, . . . , sn+1 ∈ S).

The elements of the index set S are called sorts, and Ms is the underlying
set of sort s. For example, an incidence geometry is a two-sorted structure,
consisting of a set P whose elements are called points, a set Q whose ele-
ments are called lines, and a relation R ⊆ P ×Q between points and lines.
(Depending on the situation this incidence relation R is also assumed to
satisfy certain axioms such as “for any two distinct points p1, p2 there is
exactly one line q such that R(p1, q) and R(p2, q)”.)

We shall need a bit of syntax in connection with many-sorted structures
even though we wish to deal with issues that transcend our choice of syntax.
A many-sorted language L is a triple (S,Lr, Lf) consisting of

(1) a set S whose elements are the sorts of L,
(2) a set Lr whose elements are the relation symbols of L,
(3) a set Lf whose elements are the function symbols of L,

where Lr and Lf are disjoint, each R ∈ Lr is equipped with an arity
(s1, . . . , sm) ∈ Sm, and each f ∈ Lf is equipped with an arity (s1, . . . , sn+1) ∈
Sn+1. A function symbol of L of arity (s) with s ∈ S is also called a con-
stant symbol of L of sort s. The elements of Lr∪Lf are also called nonlogical
symbols of L.

Let from now on L be a language, with S as its set of sorts, unless specified
otherwise. The size of L is the cardinal

|L| := max{ℵ0, |S|, |L
r ∪ Lf|},

and we say that L is countable if |L| = ℵ0.
An L-structure is a many-sorted structure

M =
(

M ; (RM)R∈Lr , (fM)f∈Lf

)

, where M = (Ms)s∈S ,

such that for R ∈ Lr of arity (s1, . . . , sm) its interpretation RM in M is
a subset of Ms1

× · · · × Msm
, and for f ∈ Lf of arity (s1, . . . , sn+1) its

interpretation fM in M is a function Ms1
× · · · ×Msn

→ Msn+1
. For a

constant symbol c of L of sort s the corresponding Ms-valued function cM

is identified with its unique value in Ms, so cM ∈Ms.
From now on M denotes an L-structure (M ; · · · ) with M = (Ms)s∈S ,

unless specified otherwise. If M is understood from the context we often
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omit the superscriptM in denoting the interpretation inM of a nonlogical
symbol of L. Elements of Ms are also called “elements of M of sort s”.
Given any tuple (family) ~s = (si)i∈I of sorts in S, we let M~s denote the
corresponding product set:

M~s :=
∏

i∈I

Msi
.

Variables and Terms. We assume that we have available infinitely many
symbols, called unsorted variables; these are given once and for all, indepen-
dent of the language L we are dealing with. Given any sort s, the variables
of sort s are the pairs vs := (v, s) where v is an unsorted variable. This con-
vention is to guarantee that if s and s′ are different sorts, then no variable
of sort s is a variable of sort s′. We also assume that no variable of any sort
is a nonlogical symbol of any language.

A variable of L is a variable of sort s for some s ∈ S, and a multivariable
of L is a tuple (xi)i∈I of distinct variables of L, where “distinct” means
that xi 6= xj for i 6= j. The size of the index set I is called the size of x,
and the xi are called the variables in x. Often the index set I is finite, say
I = {1, . . . , n}, so that x = (x1, . . . , xn). Given a multivariable x = (xi)i∈I

of L, with xi of sort si for i ∈ I, we define the x-set ofM to be the product
set

Mx := M~s =
∏

i

Msi
, with ~s = (si)i∈I ,

and we think of x as a variable running over Mx.
Multivariables x = (xi)i∈I and y = (yj)j∈J of L are said to be disjoint if

xi 6= yj for all i ∈ I and j ∈ J , and in that case we put Mx,y := Mx ×My.
If in addition I = J and xi and yi have the same sort for all i ∈ I (so that
Mx = My), then we call x and y disjoint and similar. From now on x and
y denote multivariables of L, unless specified otherwise.

Instead of “x has finite size” we also say “x is finite”. A finite tuple a in
M is a tuple a ∈Mx for a finite x.

We define L-terms to be words on the alphabet consisting of the function
symbols and variables of L, obtained recursively as follows: each variable of
sort s ∈ S is an L-term (of sort s) when viewed as a word of length 1, and
if f is a function symbol of L of arity (s1, . . . , sn, sn+1) and t1, . . . , tn are L-
terms of sort s1, . . . , sn respectively, then ft1 . . . tn is an L-term of sort sn+1.
(In practice we often write f(t1, . . . , tn) to denote ft1 . . . tn, and use similar
devices to increase readability.) Each variable-free L-term t determines in
the usual way an element tM ofM of the same sort as t, and often we drop
the superscriptM in tM if it is clear from the context that we mean to refer
to an element of M.

An (L, x)-term is a pair (t, x) where t is an L-term such that each variable
in t is a variable in x. Such an (L, x)-term is also written more suggestively
as t(x), and referred to as “the L-term t(x)”.
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We extend L to the language LM by adding for each s ∈ S and a ∈Ms a
new constant symbol c(a, s) of arity s, and we expandM to an LM -structure,
also denoted by M for convenience, by setting c(a, s)M := a. When s and
M are clear from context, then we call c(a, s) the name of a and denote it
also just by a. Given an LM -term t(x) and a tuple a ∈Mx we obtain in this
way by substitution a variable-free LM -term t(a) of the same sort as t, so
t(a) defines an element t(a)M of M of the same sort as t, and denoted also
by t(a) whenM is clear from context. In other words, we obtain a function

a 7→ t(a) : Mx →Ms, (t of sort s).

Formulas. There is a slightly annoying problem with variables: to define,
say, the theory Th(M) of M as a set , our usual set theory ZFC seems to
require the variables to be the elements of a set. But for some purposes we
do not want to limit how many variables there are, or even assume that all
variables are elements of a single set. The way out is to assume that bound
(quantified) variables are always taken from a fixed countable set (for each
sort), while free (unquantified) variables are not limited in this way. More
precisely, we assume from now on as given a countably infinite set of unsorted
variables whose elements are called unsorted quantifiable variables. For each
sort s the quantifiable variables of sort s are the variables vs where v is an
unsorted quantifiable variable.

We now fix once and for all the usual eight logical symbols:

⊤ ⊥ ¬ ∧ ∨ = ∃ ∀

These are assumed to be distinct from all relation symbols, function symbols
and variables of every language.

The L-formulas are words on the alphabet consisting of the nonlogical
symbols of L, the variables of L, and the eight logical symbols, and are
defined recursively in the usual way from the atomic L-formulas with the
proviso that every occurrence of ∃ and ∀ in a formula is followed immediately
by a quantifiable variable. The atomic L-formulas are the words = t1t2
(usually written as t1 = t2 for readability) where t1 and t2 are L-terms of
the same sort, together with the words Rt1 . . . tm where R ∈ Lr has arity
(s1, . . . , sm), and t1, . . . , tm are L-terms of sorts s1, . . . , sm, respectively. An
(L, x)-formula is a pair φ, x where φ is an L-formula all whose free variables
are in x. Such an (L, x)-formula is also written more suggestively as φ(x),
and referred to as “the L-formula φ(x)”. Sometimes we separate the free
variables in a formula into two disjoint multivariables: for example, when
referring to an L-formula φ(x, y) we really mean a triple φ, x, y consisting
of an L-formula φ and disjoint multivariables x and y such that each free
variable of φ is in x or in y.

A formula without free variables is called a sentence, so all variables in a
sentence are quantifiable variables. Thus the set of L-sentences has size |L|.

Truth and Definability. We define in the usual recursive way what it
means for an LM -sentence σ to be true in M (notation: M |= σ). The
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theory of M, denoted by Th(M), is the set of all L-sentences true in M. If
we wish to express the dependence on L we call it the L-theory of M and
denote it by ThL(M). Given an LM -formula φ(x) with x = (xi) and a tuple
a ∈ Mx we obtain, by substituting for each i the name of ai for the free
occurrences of xi in φ, an LM -sentence φ(a). Thus each LM -formula φ(x)
defines the subset

φ(Mx) := {a ∈Mx :M |= φ(a)}

of Mx in M. We also use this notation for a set Φ(x) of LM -formula φ(x):

Φ(Mx) := {a ∈Mx :M |= φ(a)for all φ ∈ Φ} =
⋂

φ∈Φ

φ(Mx).

The definable subsets of Mx in M are the subsets of Mx defined in M
by an LM -formula φ(x), and are exactly the elements of a boolean algebra
Defx(M) of subsets of Mx. The 0-definable subsets of Mx inM are exactly
the sets defined in M by an L-formula φ(x), and are exactly the elements
of a boolean algebra Defx(M|0) of subsets of Mx.

A partial map h : Mx ⇀My is said to be definable in M if its graph is a
definable subset of Mx×My inM. Also, 0-definability of such a map refers
likewise to 0-definability of its graph.

A definable set inM is a pair X,~s with ~s ∈ Sn for some n and X a definable
subset of M~s inM. The role of ~s is just to specify the intended ambient set
M~s of X. The reason for this convention should be clear: it may happen
that, for example, Ms = Ms′ where s and s′ are different sorts. In that case,
a set X ⊆ Ms could be a definable subset of Ms in M, according to the
definition above, while not being a definable subset of Ms′ in M. Usually
we refer to a definable set X,~s inM just by its first component X, and ~s is
clear from the context or left implicit.

For an LM -formula φ(x), M |= φ(x) means that M |= φ(a) for all a ∈Mx.
Thus if ψ(x) is a second LM -formula, then M |= φ(x) → ψ(x) means
φ(Mx) ⊆ ψ(Mx), and M |= φ(x)↔ ψ(x) means φ(Mx) = ψ(Mx).

The primitives of M (that is, the interpretations in M of the nonlogical
symbols of L) are secondary in the kind of model theory we are going to do;
their role is just to generate the 0-definable sets in M. (The definable sets
inM can be defined purely in terms of the 0-definable sets inM; how?) To
elaborate on this, define a structure on M = (Ms)s∈S to be a family

(

D(~s)
)

~s
indexed by the finite sequences ~s = s1, . . . , sn in S, such that for each such
~s = s1, . . . , sn:

(1) D(~s) is a boolean algebra of subsets of M~s := Ms1
× · · · ×Msn

;
(2) whenever X ∈ D(~s) and s′ ∈ S, then

Ms′ ×X ∈ D(s′, ~s), X ×Ms′ ∈ D(~s, s′);

(3) whenever s′ ∈ S, then {(a, b, a) : a ∈Ms′ , b ∈M~s} ∈ D(s′, ~s, s′);
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(4) whenever s′ ∈ S and X ∈ D(~s, s′), then π(X) ∈ D(~s) where π :
M~s ×Ms′ →M~s is the obvious projection map.

It is easy to check that the family
(

Def~s(M|0)
)

is a structure on M that
contains the primitives of M, and that it is the smallest structure on M
containing these primitives.

Parameter sets. A parameter set in M is a family A = (As) where
As ⊆Ms for each s. (We omit “inM” ifM is clear from the context.) Such
A gives rise to a sublanguage LA of LM in the obvious way. If X ⊆ Mx is
defined by an LA-formula φ(x), then we also say that X is A-definable in
M, or definable over A inM. The subsets of Mx that are A-definable inM
are the elements of a boolean subalgebra Defx(M|A) of Defx(M). A partial
map h : Mx ⇀My is said to be A-definable in M or definable over A inM
if its graph is an A-definable subset of Mx ×My in M. Given parameter
sets A = (As) and B = (Bs) in M we define

A ⊆ B :⇐⇒ As ⊆ Bs for all s,

AB := (As ∪Bs) (a parameter set in M),

A ∩B := (As ∩Bs) (a parameter set in M).

Given a parameter set A as above, an A-tuple (in M) is a pair a,~s with
~s = (si) ∈ S

I and a ∈ M~s, such that ai ∈ Asi
for all i ∈ I; this A-tuple is

also referred to as “the A-tuple a ∈M~s”, or even “the A-tuple a”.

Let A = (As) be a parameter set in M. One checks easily that for finite
y, a set Y ⊆ My is A-definable iff for some finite x disjoint from y, some
A-tuple a ∈Mx and some 0-definable Z ⊆Mx,y we have Y = Z(a).

A finite tuple a ∈Mx is said to be A-definable in M (or definable over A
in M) if {a} is an A-definable subset of Mx, and is said to be A-algebraic
in M (or algebraic over A in M) if a belongs to a finite A-definable subset
of Mx. (We can omit “inM” ifM is clear from the context.) We let dcl(A)
be the parameter set such that dcl(A)s = {a ∈ Ms : a is definable over A}
for each s, and we define the parameter set acl(A) likewise, with “algebraic”
instead of “definable”. We call dcl(A) (respectively, acl(A)) the definable
closure of A in M (respectively, the algebraic closure of A in M). We say
that A is definably closed in M (respectively, algebraically closed in M) if
dcl(A) = A (respectively, acl(A) = A). It is easy to check that dcl(A) is
definably closed in M, and that acl(A) is algebraically closed in M.

The size of A is the cardinal sum

|A| :=
∑

s

|As|,

so |A| < κ if |S| < κ and |As| < κ for all s. If L, A and x all have size < κ,
then the set of (LA, x)-formulas has size < κ. We say that A is finite if |A|
is finite, infinite if |A| is infinite, and countable if |A| ≤ ℵ0.
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For x = (xi)i∈I where each xi is of sort si, we put

Ax :=
∏

i∈I

Asi
.

The parameter set A with As = ∅ for all s is also denoted by 0, in accordance
with how we have been using terminology like “0-definable”. Sometimes we
shall use a tuple a ∈ M~s with s = (si) ∈ S

I as if it were a parameter set,
for example, when notations like dcl(a) or acl(a) occur. In such a context a
stands for the parameter set (As) such that As is the set of all ai with si = s,
for each s. Thus if B is a parameter set and a ∈M~s as above, then aB and
Ba denote again a parameter set: aB = Ba = AB with A the parameter
set for which a stands. The terminology “a-definable” and “a-algebraic” is
used in the same vein.

Exercises and Definitions. Let a ∈Mx and b ∈My be finite tuples. Show
that b is a-definable iff there is a 0-definable partial function h : Mx ⇀ My

with a in its domain such that h(a) = b. Show that b is a-algebraic iff there
is a 0-definable Z ⊆Mx ×My such that b ∈ Z(a) and Z(a) is finite.

Below, notions such as “a and b are interdefinable” are understood to be
with respect to the ambient structureM, and we add “in M” if we wish to
specifyM as the ambient structure. We say that a and b are interdefinable
if a is b-definable and b is a-definable. Show the equivalence of (i), (ii), (iii):

(i) dcl(a) = dcl(b);
(ii) a and b are interdefinable;

(iii) there is an injective 0-definable partial function h : Mx ⇀ My with
a in its domain such that h(a) = b.

Let in addition A be a parameter set. Then b is said to be a-definable
over A if b is a-definable in the LA-structureM. Show that b is a-definable
over A iff b is Aa-definable. Also, a and b are said to be interdefinable over
A if a and b are interdefinable in the LA-structure M. Show that a and b
are interdefinable over A iff dcl(Aa) = dcl(Ab).

Likewise, b is said to be a-algebraic over A if b is a-algebraic in the LA-
structureM. Show that b is a-algebraic over A iff b is Aa-algebraic. Finally,
a and b are said to be interalgebraic over A if a and b are interalgebraic
in the LA-structure M. Show that a and b are interalgebraic over A iff
acl(Aa) = acl(Ab).

Types. Let A be a parameter set in M. A partial x-type over A in M
is a set Φ(x) of LA-formulas φ(x), each finite subset of which is realized in
M by some element of Mx. An x-type over A in M is a partial x-type
p(x) over A in M such that for each LA-formula φ(x), either φ(x) ∈ p(x)
or ¬φ(x) ∈ p(x). For b ∈ Mx we let tpM

x (b|A) be the x-type over A in M
realized by b (and we leave out the superscript M or subscript x if M or
x are clear from context). The set of x-types over A in M is denoted by
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StMx (A), or Stx(A) if M is clear from context, and we have a bijection

p(x) 7→ {φ(Mx) : φ(x) ∈ p(x)} : Stx(A) −→ St
(

Defx(M|A)
)

of this set of x-types onto the Stone space of the boolean algebra Defx(M|A).
Given parameter sets A and B inM such that A ⊆ B, we have the surjective
restriction map

p 7→ p↾A : Stx(B) −→ Stx(A)

given by p↾A := {φ(x) ∈ p : φ(x) is an LA-formula}.

We declare M to be κ-saturated if for each parameter set A in M of size
< κ and each variable v of L, each v-type over A in M can be realized in
M. The following is proved as in the one-sorted case:

Lemma 3.1. If M is κ-saturated, A a parameter set of size < κ and x of
size ≤ κ, then each partial x-type over A in M can be realized in M, that
is, Φ(Mx) 6= ∅ for each partial x-type over A in M.

Note also that with the assumptions of this lemma, if X is a definable subset
of Mx contained in a union

⋃

j∈J Yj of A-definable subsets Yj of Mx, then

X ⊆
⋃

j∈J0
Yj for some finite J0 ⊆ J .

Exercise. With the assumptions of the last lemma, suppose
⋂

i∈I

Xi ⊆
⋃

j∈J

Yj

where the Xi and Yj are A-definable subsets of Mx. Show that there are
finite I0 ⊆ I and J0 ⊆ J such that

⋂

i∈I0
Xi ⊆

⋃

j∈J0
Yj.

Comment. The result of the last exercise can sometimes be used to prove
that a set X ⊆Mx with finite x is A-definable, whereM is κ-saturated and
|A| < κ: if one manages to represent X both as an intersection X =

⋂

i∈I Xi

and as a union X =
⋃

j∈J Yj of A-definable subsets Xi and Yj of Mx, then
by this exercise there are finite I0 ⊆ I and J0 ⊆ J such that

⋂

i∈I0

Xi = X =
⋃

j∈J0

Yj,

so X is A-definable.

Elementary maps. Let N =
(

(Ns); · · ·
)

be a second L-structure, and f
a partial map from M to N . The latter means that f is a family (fs) with
fs : As → Ns and As ⊆ Ms for each s ∈ S; the parameter set A = (As) is
called the domain of f . Given an A-tuple a ∈M~s, ~s = (si) ∈ S

I , we define
fa = f(a) :=

(

fsi
(ai)

)

∈ N~s. We call f a partial elementary map from M
to N if

M |= φ(a) ⇐⇒ N |= φ(fa)

for every finite A-tuple a ∈ Mx and L-formula φ(x). Note that then each
fs : As → Ns is injective.

Let f be a partial elementary map fromM to N as above. If As = Ms for
all s, then we call f an elementary embedding from M into N . If As = Ms
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and fs(Ms) = Ns for all s, then we call f an isomorphism from M onto N ,
and if in addition M = N , we call f an automorphism of M.

We define M to be strongly κ-homogeneous if any partial elementary map
from M to itself with domain of size < κ can be extended to an automor-
phism of M.

The automorphism group. The automorphisms of M form a group
Aut(M) under the obvious composition operation. A parameter set A inM
yields the subgroup Aut(M|A) of Aut(M) consisting of the automorphisms
f of M such that fs(a) = a for each s ∈ S and a ∈ As. Note that if M
is strongly κ-homogeneous, |A| < κ and a, b ∈ Mx have the same type over
A, with x of size < κ, then there is an f ∈ Aut(M|A) such that fa = b.
For X ⊆ Mx and f ∈ Aut(M) we define f(X) := {fa : a ∈ X} ⊆ Mx,
and we note that if X ∈ Defx(M|A), then f(X) ∈ Defx(M|fA), where
fA =

(

fs(As)
)

. Thus we have a group action

(f,X) 7→ f(X) : Aut(M|A)×Defx(M|A) −→ Defx(M|A).

For an automorphism f of M and a map γ : X → My with X ⊆ Mx we
define the map f(γ) : f(X) → My by f(γ)(fa) = f(γ(a)) for a ∈ X. In
other words, f(graph(γ)) = graph(f(γ)).

Automorphisms also act on types: for f ∈ Aut(M) and p ∈ Stx(A) we
define f(p) ∈ Stx(fA) by

f(p) := {φ(x, fa) : φ(x, y) an L-formula, a ∈ Ay, φ(x, a) ∈ p}.

If we identify these types p ∈ Stx(A) and f(p) ∈ Stx(fA) with the corre-
sponding ultrafilters of the boolean algebras Def(M|A) and Def(M|fA),
this means f(p) = {f(X) : X ∈ p}. In particular, we have a group action

(f, p) 7→ f(p) : Aut(M|A) × Stx(A) −→ Stx(A).

Expansions and Reducts. An extension of L = (S,Lr, Lf) is a language
L′ = (S′, L′r, L′f) such that S ⊆ S′, Lr ⊆ L′r, and Lf ⊆ L′f. In that case, an
L′-structure M′ =

(

(M ′
s)s∈S′ ; · · ·

)

is said to be an L′-expansion of M (and
M is said to be the L-reduct of M′) if Ms = Ms′ for all s ∈ S, and each
nonlogical symbol of L has the same interpretation in M as in M′. Given
such an L′-expansion M′ of M we sometimes abuse notation by letting a
parameter set A = (As) inM denote also the parameter set (As)s∈S′ inM′,
where As = ∅ for s ∈ S′ \ S.

Exercise. Let L1 and L2 be languages with disjoint sets of sorts S1 and
S2, and let L be the disjoint union of L1 and L2, defined in the obvious way,
in particular, with S = S1 ∪ S2 as set of sorts. Let M1 = (M1; . . . ) be an
L1-structure and M2 = (M2; . . . ) an L2-structure. Let M = (M ; . . . ) be
the L-structure such that

• Ms = M1
s for s ∈ S1, and Ms = M2

s for s ∈ S2;
• each nonlogical symbol of L1 (respectively, L2) has the same inter-

pretation in M as in M1 (respectively, as in M2).



17

(So M is like a disjoint sum of M1 and M2.) Let x be a multivariable of
L1 and y a multivariable of L2 (so x and y are disjoint multivariables of L),
and let Z ⊆ Mx,y. Show: Z is 0-definable in M iff Z is a finite union of
cartesian products X ×Y where X ⊆Mx is 0-definable inM1 and Y ⊆My

is 0-definable in M2. (When y is the empty multivariable of L2, this says
that a subset of Mx is 0-definable in M iff it is 0-definable in M1.)

4. Imaginaries

Let E be a 0-definable equivalence relation on M~s, where ~s = (s1, . . . , sn) ∈
Sn, that is, E is an equivalence relation on M~s, and is 0-definable as a subset
of M~s ×M~s. It is often useful to treat the equivalence classes of E on an
equal footing with the elements of M. This can be done as follows. Let
f : M~s →ME be a surjective map onto a set ME such that for all a, b ∈M~s,

f(a) = f(b) ⇐⇒ aEb.

(For example, take ME = M~s/E and f(a) = E(a), the E-equivalence class
of a ∈ M~s.) Extend L by a new sort s′ /∈ S and a new function symbol
f ′ of arity (s1, . . . , sn, s

′) to give the language L′, and expand M to an L′-
structure M′ =

(

(M ′
s)s∈S′ ; . . .

)

by setting M ′
s = ME and interpreting f ′ in

M′ as the function f .
For our purposes this is an innocuous way of expandingM, and to explain

this, let x = (x1, . . . , xn) and y = (y1, . . . , yn) be disjoint with xi and yi

quantifiable of sort si for i = 1, . . . , n, and let φ(x, y) be an L-formula that
defines E ⊆M~s ×M~s in M.

Let T := Th(M) and let T ′ be the L′-theory axiomatized by T together
with the L′-sentence

∀v∃x
(

v = f ′(x)
)

∧ ∀x∀y
(

φ(x, y)←→ f ′(x) = f ′(y)
)

,

where v is a quantifiable variable of sort s′.

Lemma 4.1. Let N be a model of T . Then

(1) N has an expansion to a model N ′ of T ′;
(2) if N ′ is an expansion of N to a model of T ′, then any isomorphism
M→N expands uniquely to an isomorphism M′ → N ′;

(3) for any L′-formula θ(u, v1, . . . , vk) with u a multivariable of L and
each variable vj of sort s′, there is an L-formula θ′(u, v1, . . . , vk)

such that T ′ |= θ
(

u, f ′(v1), . . . , f ′(vk)
)

←→ θ′(u, v1, . . . , vk) where

vj = (vj
1, . . . , v

j
n) and vj

i is of sort si for i = 1, . . . , n and j = 1, . . . k.
(4) if N ′ is an expansion of N to a model of T ′, then any elementary

embedding M → N expands uniquely to an elementary embedding
M′ → N ′.

Items (1) and (2) are almost obvious, (3) follows by an easy induction on
formulas, and (4) is a consequence of (3). As a special case of (3), each
L′-sentence is T ′-equivalent to an L-sentence. Thus T ′ is complete. Another
consequence of (3) is that M′ induces no new structure on M: for any
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parameter set A inM, a set X ⊆Mx is A-definable inM iff it is A-definable
in M′.

Expanding M to Meq. We now carry out the above for all 0-definable
equivalence relations simultaneously. For each ~s = (s1, . . . , sn) ∈ Sn and
0-definable equivalence relation E on M~s, we pick an L-formula φ = φ(x, y)
with quantifiable x, y that defines E in M, and introduce a new sort sφ,
put Msφ := M~s/E, and let fE : M~s → Msφ be the function that assigns to
each a ∈M~s its E-equivalence class fE(a) = E(a). Let Leq be the language
obtained from L by adding, for each E and corresponding φ as above, sφ as
a new sort and a function symbol fφ of arity (s1, . . . , sn, sφ). Let Seq ⊇ S
be the set of sorts of Leq. We then expand M to the Leq-structure

Meq :=
(

(Ms)s∈Seq ; · · ·
)

by interpreting each new function symbol fφ in Meq as the function fE

defined above. For each E and corresponding φ as above and v a quantifiable
variable of sort sφ we call the sentence

∀v∃x
(

v = fφ(x)
)

∧ ∀x∀y
(

φ(x, y)←→ fφ(x) = fφ(y)
)

the defining axiom of fφ. We let T eq be the Leq-theory axiomatized by T
and the defining axioms for the new function symbols. Thus Meq |= T eq,
but Leq and T eq depend really only on the theory T of M, rather than on
the model M of T . In particular, every model N of T expands likewise to
an Leq-structure N eq |= T eq.

Lemma 4.2. Any expansion of M to a model of T eq is isomorphic toMeq

via a unique isomorphism that is the identity on M. If N is a model of
T , then any isomorphism M → N expands uniquely to an isomorphism
Meq → N eq.

In particular, each automorphism f ofM expands uniquely to an automor-
phism of Meq, which we also denote by f . In this way the group Aut(M)
gets identified with the group Aut(Meq).

Lemma 4.3. Let θ(u, v1, . . . , vk) be an Leq-formula with u a multivariable
of L and each vj a variable of sort sφj ∈ Seq \ S corresponding to a 0-
definable equivalence relation E(j) on M~s(j), ~s(j) = (s1(j), . . . , sn(j)(j)) ∈

Sn(j). Then there is an L-formula θeq(u, v1, . . . , vk) such that

T eq |= θ
(

u, fφ1
(v1), . . . , fφk

(vk)
)

←→ θeq(u, v1, . . . , vk)

where vj = (vj
1, . . . , v

j
n(j)) and vj

i is of sort si(j) for j = 1, . . . k and i =

1, . . . , n(j).

In particular, T eq is complete. The lemma also yields that if N is a model
of T , then any elementary embedding M → N expands uniquely to an
elementary embeddingMeq → N eq. One more consequence of the lemma is
that Meq induces no new structure on M: for any parameter set A in M,
a set X ⊆Mx is A-definable in M iff it is A-definable in Meq.
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Elimination of Imaginaries and Coding Definable Sets. First some
terminology in connection with an arbitrary map g : P → Q. The kernel of
g is the equivalence relation Eg on its domain P defined by

aEgb ⇐⇒ g(a) = g(b).

More generally, given an equivalence relation E on its codomain Q, the pull
back of E by g is the equivalence relation g−1E on P defined by

a(g−1E)b ⇐⇒ g(a)Eg(b).

We say that T has elimination of imaginaries (EI, for short) if each 0-
definable equivalence relation E on a set Mx with finite x is the kernel of
some 0-definable map f : Mx →M~s, ~s = s1, . . . , sn.

While this definition refers to the particular modelM of T , any model of
T instead of M would give the same notion of EI. We say that M has EI
if its theory T has EI. If M has EI, then the eq-construction is superfluous
(for most purposes), by the following lemma.

Lemma 4.4. SupposeM has EI. Let A be a parameter set inM and X an
A-definable set in Meq. Then there is an A-definable bijection ι : X → ιX
between X and an A-definable set ιX in M.

Proof. Since X is given as a subset of a cartesian product ME(1) × · · · ×
ME(k) where E(1), . . . , E(k) are 0-definable equivalence relations on the sets

M~s(1), . . . ,M~s(k), respectively, with ~s(i) ∈ Sn(i) for i = 1, . . . , k, it is enough
to establish the following. Let E be a 0-definable equivalence relations on
M~s with ~s ∈ Sn; then there is a 0-definable bijection ιE : ME → Y onto a
0-definable set Y inM. BecauseM has EI, we have a 0-definable f : M~s →
Mx with finite x such that the kernel of f is E; setting Y := f(M~s) ⊆ Mx

this yields a 0-definable bijection fE(a) 7→ f(a) : ME → Y as desired. �

Exercise. Show that if M has EI and A is a parameter set, then M as an
LA-structure also has EI.

Lemma 4.5. T eq has EI.

Proof. Let E(1), . . . , E(k) be 0-definable equivalence relations on the sets

M~s(1), . . . ,M~s(k), with ~s(i) ∈ Sn(i) for i = 1, . . . , k. Let E be an equivalence
relation on M~s ×ME(1) × · · · ×ME(k) that is 0-definable in Meq. It suffices

to find an ~s∗ ∈ SN with N ∈ N, an equivalence relation E∗ on M ~s∗ that is
0-definable in M, and a map

h : M~s ×ME(1) × · · · ×ME(k) →ME∗

that is 0-definable in Meq and has E as kernel. Put

~s∗ := (~s,~s(1), . . . , ~s(k)) ∈ Sn+n(1)+···+n(k), so

M ~s∗ = M~s ×M~s(1) × · · · ×M~s(k).
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Then the map g : M ~s∗ →M~s ×ME(1) × · · · ×ME(k) given by

g(a, b1, . . . , bk) := (a,E(1)(b1), . . . , E(k)(bk))

is 0-definable in Meq, and the pull back of the equivalence relation E by g
is an equivalence relation E∗ on M ~s∗ that is 0-definable in M. The map h
with the domain and codomain indicated above and given by

h(a,E(1)(b1), . . . , E(k)(bk)) = E∗(a, b1, . . . , bk), (a, b1, . . . , bk) ∈M ~s∗,

is easily seen to have the desired property. �

Given finite x, y, a tuple a ∈ Mx is said to code the set Y ⊆ My (in M) if
there is a 0-definable Z ⊆ Mx ×My such that Y = Z(a) and Y 6= Z(b) for
all b 6= a in Mx. The reader should check that then any finite tuple c ∈Mz

that is interdefinable with a (in M) also codes Y .

Lemma 4.6. If T has EI, then every definable set in M has a code.

Proof. Let x and y be finite and Y = Z(a) ⊆ My where Z ⊆ Mx ×My is
0-definable. The equivalence relation E on Mx defined by

aEb ⇐⇒ Z(a) = Z(b),

is 0-definable. Hence, if T has EI, then E is the kernel of a 0-definable
g : Mx →M~s, ~s = (s1, . . . , sn), and then g(a) codes Y . �

The converse of this lemma is also true under some natural assumptions.
One of these assumptions is that T has a home sort. By a home sort of
T we mean a sort s0 ∈ S such that for every s ∈ S there is an n and a
surjective 0-definable map Mn

s0
→ Ms. While this definition refers to the

particular modelM of T , any model of T instead ofM would give the same
notion of homesort. In many cases, a many-sorted structure M is either
one-sorted, or arises from a one-sorted structure by adding a few carefully
chosen quotient sets, and then a homesort comes for free.

Lemma 4.7. Let T have home sort s0 with two distinct 0-definable elements
in Ms0

. Then, given any 0-definable sets P and Q inM, there is an ~s ∈ Sn

and there are 0-definable injective maps i : P → M~s and j : Q → M~s with
disjoint i(P ) and j(Q).

Proof. Let P ⊆ Mx and Q ⊆ My be 0-definable with finite x and y. The
assumption on T yields 0-definable elements p0 ∈ Mx, q0 ∈ My, and 0, 1 ∈
Ms0

with 0 6= 1. Then define i : P → Mx × My × Ms0
and j : Q →

Mx ×My ×Ms0
by i(p) = (p, q0, 0) and j(q) = (p0, q, 1). �

Lemma 4.8. Suppose T has a home sort s0 with two distinct 0-definable
elements in Ms0

. Assume also that M is ℵ0-saturated and every definable
set in M has a code. Then T has EI.
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Proof. Let x be finite and E a 0-definable equivalence relation on Mx. For
each equivalence class E(a) there is a 0-definable Z ⊆ M~s(a) × Mx with

~s(a) ∈ Sn(a) such that E(a) = Z(c) for exactly one c ∈ M~s(a) (so this c
codes E(a)). A standard saturation argument shows that as a varies over
Mx we can choose such ~s(a) and Z from fixed finite collections, with the code
c a piecewise 0-definable function of a. More precisely, there are 0-definable
X1, . . . ,Xk ⊆ Mx that cover Mx, tuples ~s(1) ∈ Sn(1), . . . , ~s(k) ∈ Sn(k), and
0-definable sets

Z1 ⊆M~s(1) ×Mx, . . . , Zk ⊆M~s(k) ×Mx

with for each i ∈ {1, . . . , k} a 0-definable function ci : Xi →M~s(i), such that
if a ∈ Xi, then E(a) = Zi(ci(a)) and E(a) 6= Zi(c) for all c 6= ci(a) in M~s(i).
To keep notations simple we assume k = 2 in what follows. First we increase
X1 to the 0-definable set X ′

1 ⊆Mx consisting of the elements of Mx that are
E-equivalent to some element of X1, and extend c1 to a 0-definable function
c′1 : X ′

1 → M~s(1) by c′1(a) := c1(b) if b ∈ X1 and aEb. We then decrease X2

to X ′
2 = Mx \X

′
1 and let c′2 : X ′

2 →M~s(2) be the restriction of c2 to X ′
2.

Up to this point we have not used the home sort assumption. This comes
into play in producing from c′1 and c′2 a single 0-definable function

g : Mx →M~s, ~s ∈ Sn,

such that E is the kernel of g. The previous lemma gives an ~s ∈ Sn and
0-definable injective maps i : M~s(1) →M~s and j : M~s(2) →M~s with disjoint

images. Now define g : Mx → M~s by g(a) := i
(

c′1(a)
)

if a ∈ X ′
1 and

g(a) := j
(

c′2(a)
)

if a ∈ X ′
2. Then c has the desired property. �

Exercise. Let x, y be finite, and suppose a ∈ Mx codes an A-definable set
Y ⊆My. Show that the tuple a is A-definable.

5. The Monster Model

From now on we fix a complete L-theory T . By the completeness of T ,
any two models of T can be elementarily embedded into a third model of T .
More generally, any commutative diagram of models of T and elementary
embeddings between them can be realized inside a single model of T , where
the embeddings become inclusions among elementary submodels. (Try to
formulate this precisely, and prove it!) For our purpose there is indeed no
serious loss of generality to have all action take place in a single “big” model
of T , and there are advantages in doing so. For example, we can in this way
import Galois-theoretic ideas.

We refer to basic texts in model theory for the fact that for any κ there
is a model of T that is κ-saturated and strongly κ-homogeneous.

In what follows we fix a model M =
(

(Ms); · · ·
)

|= T and a cardinal κ(M) >
|L| such that M is κ(M)-saturated and strongly κ(M)-homogeneous. We
also call M the monster model of T . In particular, every model of T of size
≤ κ(M) has an elementary embedding into M.
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The following conventions are in force, unless specified otherwise. Notions
of “definable” and “algebraic” for sets and tuples will be relative to M, in
the same way they were relative toM in earlier sections. “Small” will mean
“of size < κ(M)”. Multivariables are assumed to be small and in L, and
A,A′, B denote small parameter sets in M. An elementary submodel of M

is completely determined by its underlying family of sets, and this family is
also a parameter set in M. We let M , M ′ and N denote small parameter
sets underlying an elementary submodel of M, and we denote this elementary
submodel also by M , M ′ and N ; usually we signal this by phrasing like “the
model M”. On the other hand, if we use the more elaborate notation M,
then M can be any structure, not necessarily a small elementary submodel
of M, and in that context M will denote the underlying family of sets of
M, as before. Likewise with N and N . (We hope this does not confuse the
reader.)

Thus a partial x-type over A is a small set of formulas according to these
conventions. We shall write “ |= θ(x)” to indicate that θ(x) is an LM-formula
and M |= θ(x). Likewise, “Φ(x) |= θ(x)” will mean that Φ(x) is a small set
of LM-formulas φ(x), and θ(x) is an LM-formula such that every a ∈ Mx

realizing Φ(x) also realizes θ(x). Note that in that case there is a finite
subset Φ0(x) of Φ(x) such that Φ0(x) |= θ(x). (This is how compactness is
built into the monster model via saturation.)

Note that M
eq is also κ(M)-saturated and strongly κ(M)-homogeneous,

and κ(M) > |Leq| = |L|, so M
eq can serve as the corresponding monster

model of T eq. Likewise, given any A, our M remains κ(M)-saturated and
strongly κ(M)-homogeneous as an LA-structure, so M can serve as monster
model of TA, the theory of the LA-structure M.

Relative definability and automorphisms. Given a partial type Φ(x)
over A, its set Φ(Mx) of realizations is a nonempty subset of Mx. Note that
if p(x) is a type over A realized by a ∈Mx, then

p(Mx) = {fa : f ∈ Aut(M|A)}

that is, p(Mx) is the orbit of a under the action of Aut(M|A) on Mx.

Lemma 5.1. Given A and a finite tuple a, we have:

(1) a is A-definable if and only if fa = a for each f ∈ Aut(M|A);
(2) a is A-algebraic if and only if {fa : f ∈ Aut(M|A)} is finite;
(3) a is A-algebraic if and only if {fa : f ∈ Aut(M|A)} is small.

Proof. Let a ∈ Mx, and p(x) := tp(a|A). Suppose fa = a for all f ∈
Aut(M|A). Then p(x) has a as its only realization, so with y disjoint from
and similar to x, we have p(x) ∪ p(y) |= x = y, so there is a φ(x) ∈ p(x)
such that φ(x) ∧ φ(y) |= x = y, so φ(Mx) = {a}. The other direction of (1)
is obvious.

Next, suppose that {fa : f ∈ Aut(M|A)} is finite, say of size m. Then

p(x) ∪ p(y1) ∪ · · · ∪ p(ym) |= x = y1 ∨ x = y2 ∨ · · · ∨ x = ym,
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where x, y1, . . . , ym are pairwise disjoint and similar. Hence there is a φ(x) ∈
p(x) such that

φ(x) ∧ φ(y1) ∧ · · · ∧ φ(ym) |= x = y1 ∨ · · · ∨ x = ym,

so φ(Mx) is finite, A-definable, and a ∈ φ(Mx). The other direction of (2)
is obvious. We leave (3) as an exercise. �

By coding, this lemma yields an analogue for definable sets (instead of finite
tuples). To see this, suppose a ∈ Mx codes the set Y ⊆ My, so we have a
0-definable Z ⊆ Mx ×My such that Y = Z(a) and Y 6= Z(b) for all b 6= a
in Mx. For f ∈ Aut(M) we have f(Y ) = Z(fa) with f(Y ) 6= Z(b) for
all b 6= fa in Mx, so fa codes f(Y ), in particular, fa = a if and only if
f(Y ) = Y . A definable set Y ⊆My with finite y is said to be A-algebraic if
there is a finite A-definable equivalence relation E on My such that Y is a
union of E-classes.

Corollary 5.2. Given A and definable Y ⊆My with finite y, we have:

(1) Y is A-definable if and only if f(Y ) = Y for each f ∈ Aut(M|A);
(2) Y is A-algebraic if and only if {f(Y ) : f ∈ Aut(M|A)} is finite;
(3) Y is A-algebraic if and only if {f(Y ) : f ∈ Aut(M|A)} is small.

Proof. Assume without loss of generality (why?) that T has EI. Then (1)
follows from part (1) of Lemma 5.1 by using a code of Y . In (2), the “if”
direction requires a little argument: Assume {f(Y ) : f ∈ Aut(M|A)} is
finite. Then this finite set generates a finite boolean algebra F of subsets of
My. The sets in F are definable subsets of My, so the equivalence relation
E on My whose equivalence classes are the atoms of F is definable. Since
each f ∈ Aut(M|A)} permutes these atoms, we have f(E) = E for such f ,
so E is A-definable by (1). Now use that Y is a union of atoms of F .

We leave (3) to the reader. �

Corollary 5.3. Suppose T has EI and let Y ⊆ My, with finite y. Then Y
is A-algebraic if and only if Y is acl(A)-definable.

Proof. Take a code a for Y . Then for all f ∈ Aut(M|A) we have the equiv-
alence f(Y ) = g(Y )⇔ f(a) = g(a). By our earlier criteria,

Y is A-algebraic ⇐⇒ a is A-algebraic ⇐⇒ a is acl(A)-definable

⇐⇒ Y is acl(A)-definable,

which contains the desired equivalence. �

The next characterization of acl(A) plays no role in this course, but its proof
nicely illustrates how to use automorphisms in the monster model:

acl(A) =
⋂

M⊇A

M.

To prove this, let a ∈ Ms and a /∈ acl(A)s. It suffices to show that then
there is a model M ⊇ A such that a /∈ Ms. We take any model N ⊇ A,
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and observe that by Lemma 5.1, (3), there is an f ∈ Aut(M|A) such that
fa /∈ N . Then M := f−1(N) has the desired property.

Strong types. For a parameter set C in M
eq, let dcleq(C) and acleq(C)

denote its definable and algebraic closure in M
eq. The strong type stp(a|A)

of a finite tuple a ∈Mx over A, is the x-type of a over acleq(A) in M
eq:

stp(a|A) := tp
(

a| acleq(A)
)

.

Corollary 5.4. Given A, and finite tuples a, b ∈ Mx, we have: stp(a|A) =
stp(b|A) if and only if E(a) = E(b) for each finite A-definable equivalence
relation E on Mx.

Proof. By the above it suffices to prove the following claim: Let E be a finite
A-definable equivalence relation E on Mx, and let f ∈ Aut

(

M
eq| acleq(A)

)

.
Then E(fa) = E(a).

To prove this claim, take a 0-definable Z ⊆ M
eq
~s
×Mx (~s ∈ (Seq)n) such

that E(a) = Z(c) for a unique c ∈ M
eq
~s

. It follows that for this c its orbit
{gc : g ∈ Aut(Meq|A)} is finite, so c is algebraic over A in M

eq, hence fc = c,
and thus E(fa) = E(a). �

Exercises. Let Y ⊆My with finite y be definable and let c be a finite tuple.
Show: c codes Y if and only if for all f ∈ Aut(M), f(Y ) = Y ⇐⇒ f(c) = c.
(This equivalence is used frequently.)

Let h : P → Q be 0-definable and surjective, with P ⊆Mx and Q ⊆My and
finite x, y, let Y ⊆ Q, and let c be a finite tuple. Show that c codes Y ⊆My

if and only if c codes h−1(Y ) ⊆Mx.

Show that if c and d are finite tuples coding the nonempty sets X ⊆ Mx

and Y ⊆My, then (c, d) codes X × Y ⊆Mx,y.

Let g : X → My and h : X → Mz be definable, with X ⊆ Mx and finite
x, y, z. Show: g and h have codes if and only if (g, h) : X → My,z has a
code.

Application to EI. The next lemma basically shows that coding definable
relations can be reduced to coding unary definable functions. (This may
be reminiscent of the fact that proving QE reduces to eliminating a single
existential quantifier in front of a conjunction of atoms and negated atoms.)
In the proof we use the results stated in the exercises above.

Lemma 5.5. Suppose T has a home sort s0, every definable subset of Ms0

has a code, and every definable partial function Ms0
⇀ Ms, s ∈ S, has a

code. Then every definable set in M has a code.

Proof. Assume as an inductive hypothesis that for a certain n > 0 all de-
finable subsets of M

n
s0

have codes. Let Y ⊆ M
1+n
s0

be definable. We shall
prove that Y has a code. For each p ∈ Ms0

the section Y (p) ⊆ M
n
s0

has a
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code. Hence, by saturation, there are tuples ~s(1) ∈ Sm(1), . . . , ~s(k) ∈ Sm(k)

and 0-definable relations

Z1 ⊆M~s(1) ×M
n
s0
, . . . , Zk ⊆M~s(k) ×M

n
s0

such that for each p ∈ Ms0
there is an i ∈ {1, . . . , k} for which there is

exactly one c ∈M~s(i) with Y (p) = Zi(c). Define X1, . . . ,Xk ⊆Ms0
by

Xi := {p ∈Ms0
: Y (p) = Zi(c) for exactly one c ∈M~s(i)},

so we have a definable map γi : Xi → M~s(i) such that if p ∈ Xi, then

Y (p) = Zi

(

γi(p)
)

and Y (p) 6= Zi(c) for all c ∈ M~s(i) with c 6= γi(p). Note
that X1, . . . ,Xk cover Ms0

. Let now f ∈ Aut(M), and identify γi with its
graph, a subset of Ms0~s(i).

Claim. f(Y ) = Y ⇐⇒ f(Xi) = Xi and f(γi) = γi for i = 1, . . . , k.

To prove this claim, let q ∈Ms0
and put p := f−1(q), so q = f(p). Then

q ∈ f(Xi)⇐⇒ p ∈ Xi ⇐⇒ ∃
!c

(

Y (p) = Zi(c)
)

⇐⇒ ∃!c
(

f(Y (p)) = Zi(fc)
)

⇐⇒ ∃!d
(

f(Y )(q) = Zi(d)
)

for i = 1, . . . , k, with c and d ranging over M~s(i). Note also that if q ∈ f(Xi),
then f(Y )(q) = Zi(f(γi)(q)). The claim now follows easily.

By the assumption of the lemma, the sets X1, . . . ,Xk ⊆ Ms0
have codes

a1, . . . , ak. This assumption and one of the exercises above also yield that
the maps γ1, . . . , γk have codes b1, . . . , bk. By the claim and one of the
exercises above it follows that then Y has code (a1, . . . , ak, b1, . . . , bk).

We have now shown that for every n, every definable subset of M
n
s0

has a
code. An earlier exercise then yields the conclusion of the lemma. �

Corollary 5.6. Suppose T has a home sort s0 with two distinct 0-definable
elements in Ms0

, and that every definable partial function Ms0
⇀ Ms, s ∈ S,

has a code. Then T has EI.

Decomposing a type space. We finish this section with a fact on type
spaces. Let u and v be disjoint (small) multivariables. We wish to describe
u, v-types in terms of u-types and v-types. In detail: Each u, v-type p(u, v)
over A yields a v-type pu(v) over A, such that if (a, b) ∈ Mu ×Mv realizes
p(u, v), then b realizes pu(v). (This is clear if one thinks of types as orbits.)
Choose for each type q = q(v) ∈ Stv(A) a realization bq ∈Mv. Then we can
define a map

Stu,v(A)→
⋃

q∈Stv(A)

Stu(Abq) (disjoint union)

as follows: given p = p(u, v) ∈ Stu,v(A), pick a realization (a, b) such that
b = bq for q = pu(v), and assign to p the element tp(a|Ab) ∈ Stu(Ab).
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Lemma 5.7. The above map

Stu,v(A)→
⋃

q∈Stv(A)

Stu(Abq)

is injective.

This injectivity is easily verified, and is useful later in bounding the size of
the type space Stu,v(A) in terms of the size of simpler type spaces.

6. Definable Types

Definability of types is a consequence of stability, as we shall see in the
next section. Definable types, however, also occur significantly in unstable
settings. For example, all types over the field of real numbers are definable,
and this fact has interesting consequences for limit sets of semialgebraic
families. Therefore it makes good sense to introduce definable types before
discussing stability.

Throughout this section, x and y are small multivariables, although there
would be no loss of generality in assuming y to be finite.

Let δ(x, y) be an L-formula. Below we abuse notation by having δ stand for
δ(x, y). By a δ-instance over B we mean a formula δ(x, b) with b ∈ By, and
by a δ-formula over B we mean an LB-formula φ(x) that is equivalent to a
boolean combination of δ-instances over B. The subsets of Mx defined by
δ-formulas over B form a boolean subalgebra Defδ(M|B) of Defx(M|B). By
a partial δ-type over B we mean a partial x-type Φ(x) over B consisting of
δ-formulas over B. By a δ-type over B we mean a partial δ-type p(x) over
B such that for each δ-formula φ(x) over B, either φ(x) ∈ p or ¬φ(x) ∈ p.
Note that a δ-type p(x) over B is uniquely determined by its subset

{δ(x, b) ∈ p : b ∈ By}

of δ-instances. Let Stδ(B) be the set of δ-types over B. Then we have a
bijection

p(x) 7→ {φ(Mx) : φ(x) ∈ p(x)} : Stδ(B)→ St
(

Defδ(M|B)
)

of Stδ(B) with an actual Stone space. Given a ∈Mx we let tpδ(a|B) be the
δ-type over B realized by a.

Let p(x) be a δ-type over B and ψ(y) an LB-formula. We say that ψ(y)
defines p(x) if for all b ∈ By,

δ(x, b) ∈ p(x) ⇐⇒ |= ψ(b).

Note that ψ(y) can define at most one δ-type over B. We say that p(x) is
definable if some LB-formula ψ(y) defines p(x). The following is immediate
from the definitions:

Lemma 6.1. Let a ∈Mx and let M be a model. Then the set δ(a,My) ⊆My

is definable in M if and only if tpδ(a|M) is definable.
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Note that δ(a,My) is defined with a parameter a possibly outside M !

Let p(x) be again a δ-type over B. When A ⊆ B we say that p(x) is definable
over A if some LA-formula ψ(y) defines p(x), that is, for all b ∈ By,

δ(x, b) ∈ p(x) ⇐⇒ |= ψ(b).

When B is a model M , then an LM -formula ψ(y) that defines p(x) is clearly
determined up to equivalence in the LM -structure M by p and δ(x, y), and
we let dpxδ(x, y) denote such a formula ψ(y); one may think of dpx as “for
x realizing p” and should view the x in dpxδ(x, y) as a bound multivariable
and y as free.

Consider now a type p(x) ∈ Stx(B). Given an L-formula δ(x, y) we define

p(x)↾δ := {φ(x) ∈ p(x) : φ(x) is a δ-formula over B},

which is a δ-type over B. Note that p(x) is the union of the p(x) ↾ δ with
δ(x, y) ranging over the L-formulas of the indicated form. A defining scheme
for p(x) is a map assigning to each L-formula δ(x, y) an LB-formula ψ(y)
that defines p(x)↾δ, that is,

ψ(By) = {b ∈ By : δ(x, b) ∈ p(x)}.

We say that p(x) is definable if it has a defining scheme, in other words,
p(x) is definable if and only if p(x)↾δ is definable for each L-formula δ(x, y).
When B is a model M , then an LM -formula ψ(y) that defines p ↾ δ is
determined up to equivalence in the LM -structure M by p and δ(x, y), and
we let dpxδ(x, y) denote such a formula ψ(y).

Lemma 6.2. Let x be finite. Suppose that each x-type over B is definable
and |B| ≥ |L|. Then

|Stx(B)| ≤ |B||L|.

Proof. Use that each x-types over B has a defining scheme. �

This upperbound |B||L| is generally much smaller than the trivial upper

bound 2|B| for |Stx(B)| when |B| ≥ |L|.

Let p(x) ∈ Stx(B), and let A ⊆ B. Then we say that p is definable over A
if for each L-formula δ(x, y) there is an LA-formula ψ(y) such that

δ(x, b) ∈ p(x) ⇐⇒ |= ψ(b), for all b ∈ By,

in other words, for each L-formula δ(x, y) the δ-type p(x) ↾ δ is definable
over A. The following is immediate from the definitions

Lemma 6.3. If p(x) ∈ Stx(B) is definable over A ⊆ B, and f ∈ Aut(M|A)
satisfies f(B) = B, then f(p) = p.

Extending definable types. In this subsection we fix M and B ⊇M .
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Let δ(x, y) be an L-formula and p(x) a definable δ-type over M . We extend
p to a definable δ-type q = p ↿B in Stδ(B) as follows. Pick an LM -formula
ψ(y) defining p, and declare

δ(x, b) ∈ q ⇐⇒ |= ψ(b), for all b ∈ By.

Let us check that this declaration determines indeed a δ-type q over B. Let
b1, . . . , bn ∈ By be such that

|= ψ(b1) ∧ · · · ∧ ψ(bm) ∧ ¬ψ(bm+1) ∧ · · · ∧ ¬ψ(bn).

It is enough to show that then

|= ∃x
(

δ(x, b1) ∧ · · · ∧ δ(x, bm) ∧ ¬δ(x, bm+1) ∧ · · · ∧ ¬δ(x, bn)
)

.

Take disjoint y1, . . . , yn similar to y and disjoint from x, y. Then

M |= ~ψ(~y)→ ∃x~δ(x, ~y), where ~y = (y1, . . . , yn),

~ψ(~y) := ψ(y1) ∧ · · · ∧ ψ(ym) ∧ ¬ψ(ym+1) ∧ · · · ∧ ¬ψ(yn),

~δ(x, ~y) := δ(x, y1) ∧ · · · ∧ δ(x, ym) ∧ ¬δ(x, ym+1) ∧ · · · ∧ ¬δ(x, yn).

Hence |= ~ψ(~y) → ∃x~δ(x, ~y), as desired. Thus the equivalence above does
determine a δ-type q over B. Moreover, q ↾M = p, and any LM -formula
defining p also defines q.

The considerations above can easily be adapted to definable types p ∈
Stx(M): each such p extends to a definable type q = p ↿ B in Stx(B) by
requiring that any defining scheme for p is also a defining scheme for q, in
other words,

q ↾δ = (p↾δ)↿B for each L-formula δ(x, y).

Lemma 6.4. Let p ∈ Stx(M) be definable. Then p has a unique extension
to a type q ∈ Stx(B) that is definable over M .

Proof. The type q := p ↿ B extends p and is definable over M . Suppose
q′ ∈ Stx(B) also extends p and is definable over M . Given an L-formula
δ(x, y), let ψ(y) and ψ′(y) be LM -formulas that define q ↾δ and q′ ↾δ. Then
ψ(My) = ψ′(My), since q and q′ have the same restriction p to M . Hence
ψ(My) = ψ′(My), so q ↾ δ and q′ ↾ δ coincide. As δ is arbitrary, we conclude
q = q′. �

Global types and canonical bases. Let Stx(M) be the set of x-types
over the parameter set (Ms) in M. (This parameter set is in general not
small!) A type in Stx(M) is also called a global x-type, and, depending on
the context, is either viewed as a set of formulas, or as the corresponding
ultrafilter of the boolean algebra Defx(M). A global x-type p is said to be
definable if for each L-formula δ(x, y) there is an LM-formula ψ(y) such that
for all b ∈My,

δ(x, b) ∈ p ⇐⇒ |= ψ(b).
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If in addition we can always choose such ψ(y) to be an LA-formula, then p

is said to be definable over A. For definable p ∈ Stx(M) and any L-formula
φ(x, y) we let dpxδ(x, y) denote an LM-formula ψ(y) as above.

Exercise. Suppose the (global) type p ∈ Stx(M) is definable. Show that p

is definable over some A. Show that for any A,

p is definable over A ⇐⇒ f(p) = p for all f ∈ Aut(M|A).

Definition. Let p ∈ Stx(M). A canonical base for p is a parameter set A
such that for all f ∈ Aut(M) we have

f(p) = p ⇐⇒ f ∈ Aut(M|A).

If A is a canonical base for p, then B is a canonical base for p if and only if
dcl(A) = dcl(B). If p has a canonical base, then it has exactly one definably
closed canonical base, which shall be referred to as the canonical base of p

and denoted by cb(p).

Lemma 6.5. Suppose T has EI and the global type p ∈ Stx(M) is definable.
Then p has a canonical base, and cb(p) is the smallest definably closed
parameter set over which p is definable.

Proof. Here we restrict to finite y. For each L-formula φ(x, y) , let cφ code
the definable set dpxφ(x,My). Then we have for f ∈ Aut(M):

f(p) = p⇐⇒ f(cφ) = cφ for all L-formulas φ(x, y).

Therefore, if A consists of the components of all the cφ, then A is a canonical
base of p. The claim about cb(p) now follows from the exercise at the end
of Section 4 and the exercise in this subsection. �

Heirs. Let p = p(x) ∈ Stx(M). Given M ⊆ B, a heir of p over B is a
son q ∈ Stx(B) of p such that for each LM -formula φ(x, y), if φ(x, b) ∈ q for
some b ∈ By, then φ(x, a) ∈ p for some a ∈My.

Let M ⊆ B ⊆ C, and suppose r ∈ Stx(C) is a son of q ∈ Stx(B) and q is
a son of p. Then it follows easily that if r is a heir of p, then q is a heir of
p, and also that if q is a heir of p and B = N is an elementary submodel of
M and r is a heir of q, then r is a heir of p.

Lemma 6.6. Let p ∈ Stx(M), and M ⊆ B ⊆ C. Then

(1) p has a heir over B;
(2) if q is a heir of p over B, then q extends to a heir of p over C;
(3) if p is definable, then p has exactly one heir over B, namely p↿B.

Proof. Since (1) is a special case of (2) we prove (2). Let q be a heir of p
over B. Claim 1: let φ(x, y) be an LM -formula and let c ∈ Cy be such that
q(x) |= φ(x, c); then φ(x, a) ∈ p for some a ∈ My. To see this, note first
that q(x) ∪ tpy(c|B) |= φ(x, y), since for any realization (d, e) ∈ Mx ×My

of this partial type over B in M there is an f ∈ Aut(M|B) with f(e) = c.
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Compactness yields an LM -formula θ(y, z) and a tuple b ∈ Bz such that
θ(y, b) ∈ tpy(c|B) and q(x) ∪ {θ(y, b)} |= φ(x, y). Hence

q(x) |=
(

∃yθ(y, b)
)

∧ ∀y
(

θ(y, b)→ φ(x, y)
)

.

Since q is a heir of p this gives b′ ∈Mz such that

p(x) |=
(

∃yθ(y, b′)
)

∧ ∀y
(

θ(y, b′)→ φ(x, y)
)

.

Hence M |= ∃yθ(y, b′), so we have a ∈My with |= θ(a, b′), and thus φ(x, a) ∈
p(x). This proves Claim 1.

Let Φ(x) be the set of LC-formulas ¬φ(x, c) where φ(x, y) is an LM -formula
such that ¬φ(x, a) ∈ p(x) for every a ∈My, and c ∈ Cy. Claim 2: q(x)∪Φ(x)
is a partial x-type over C. If Claim 2 holds, then we can take r(x) ∈ Stx(C)
containing this partial type, and then r is heir of p that extends q. Suppose
Claim 2 is false. This gives LM -formulas φ1(x, y), . . . , φn(x, y) and c ∈ Cy

such that

(1) ¬φi(x, a) ∈ p(x) for i = 1, . . . , n and all a ∈My;
(2) q(x) ∪ {¬φ1(x, c), . . . ,¬φn(x, c)} cannot be realized over C.

Then q(x) |= φ1(x, c)∨· · ·∨φn(x, c), and thus by Claim 1 there is an a ∈My

such that φ1(x, a) ∨ · · · ∨ φn(x, a) ∈ p(x), a contradiction. �

Coheirs. Let p ∈ Stx(M). Given B ⊇ M , a coheir of p over B is a son
q ∈ Stx(B) of p such that every formula in q(x) is realized by some a ∈Mx.
Note that if a ∈ Mx and b ∈ My and tp(a|Mb) is a coheir of tp(a|M) over
Mb, then tp(b|Ma) is a heir of tp(b|M).

Let M ⊆ B ⊆ C, and suppose r ∈ Stx(C) is a son of q ∈ Stx(B) and q is
a son of p, and r is a coheir of p. Then it follows easily that q is a coheir of
p, and also that r is a coheir of q when B = N is an elementary submodel
of M.

Lemma 6.7. Let p ∈ Stx(M), and M ⊆ B ⊆ C. Then

(1) p has a coheir over B;
(2) if q is a coheir of p over B, then q extends to a coheir of p over C;

Proof. It is enough to prove (2), since (1) is a special case. We shall use
a topological argument. Let q be a coheir of p over B. Let R be the
closure in Stx(C) of {tp(a|C) : a ∈ Mx}. For every φ(x) ∈ q the closed
set [φ(x)] ∈ Stx(C) intersects {tp(a|C) : a ∈ Mx}, and thus R. Hence by
compactness R has a point r(x) that lies in every [φ(x)] with φ(x) ∈ q(x).
Then r extends q and is a coheir of p. �

Lemma 6.8. Let M ⊆ B and suppose every y-type over M is definable, for
every finite y. Then every p ∈ Stx(M) has a unique coheir over B.

Proof. Let p ∈ Stx(M), and suppose that a, a′ ∈ Mx realize different co-
heirs q and q′ of p over B. Take a finite y disjoint from x, b ∈ By, and
an LM -formula φ(x, y) such that |= φ(a, b) ∧ ¬φ(a′, b), and thus φ(a, y) ∈
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tp(b|Ma) and φ(a′, y) /∈ tp(b|Ma′). But tp(b|Ma) and tp(b|Ma′) are heirs
of tp(b|M), which gives a contradiction using (3) of Lemma 11.16 and
tp(a|M) = tp(a′|M). �

7. Indiscernibles and NIP

Let I be a chain, that is, a linearly ordered set. An I-sequence is just a
family (ai)i∈I , and is said to be an I-sequence in the set X if all ai ∈ X.
For I = N, ordered in the usual way, we just say “sequence” instead of
N-sequence. An I-sequence (ai) in Mx, is said to be indiscernible over A
if for every LA-formula φ(x1, . . . , xn), with x1, . . . , xn similar to x, and all
i1 < · · · < in and j1 < . . . , jn in I we have

|= φ(ai1 , . . . , ain) ⇐⇒ φ(aj1 , . . . , ajn
).

For A = ∅ we just say “indiscernible”.

Definable types and coheirs generate indiscernible sequences:

Lemma 7.1. Let q ∈ Sty(M) be definable and a, b ∈ Mx with tp(a|M) =
tp(b|M). Suppose c ∈My realizes q ↿Ma and d ∈My realizes q ↿Mb. Then
tp

(

a, c)|M
)

= tp
(

(b, d)|M
)

.

Proof. Let φ(u, x, y) be an L-formula, e ∈Mu. Then

|= φ(e, a, c, ) ⇔ φ(e, a, y) ∈ q ⇔ |= dqφ(e, a) ⇔ |= dqφ(e, b)

⇔ φ(e, b, y) ∈ q ⇔ |= φ(e, b, d).

�

Corollary 7.2. Let q ∈ Sty(M) be definable, and take a sequence (an) in
My such that a0 realizes q and an+1 realizes q ↿Ma0 . . . an for each n. Then
(an) is indiscernible over M , and for each m the type tp

(

(a0, . . . , am)|M
)

is independent of the choice of the sequence (an).

Proof. Let i0 < · · · < in < in+1 in N , and suppose inductively that

tp
(

(a0, . . . , an)|M
)

= tp
(

(ai0 , . . . , ain)|M
)

.

Since an+1 realizes q ↿Ma0 . . . an and ain+1
realizes q ↿Mai0 . . . ain , it follows

from the previous lemma that

tp
(

(a0, . . . , an, an+1)|M) = tp
(

(ai0 , . . . , ain , ain+1
)|M

)

.

The second claim of the lemma is proved in the same way. �

A sequence (an) as in this lemma is called a Morley sequence of q over M .
For M ⊆ B, a type q ∈ Sty(B) is said to be finitely satisfiable in M if

every formula φ(y) ∈ q is realized by some element of My, in other words, q
is a coheir of its restriction to M .

Let M ⊆ N , and assume in the next lemma and its corollary that N is
κ-saturated with κ > |M |.
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Lemma 7.3. Let q ∈ Sty(B) be finitely satisfiable in M and let a, b ∈ Nx

be such that tp(a|M) = tp(b|M). Suppose c ∈ Ny realizes q|Ma and d ∈ Ny

realizes q|Mb. Then tp
(

(a, c)|M
)

= tp
(

(b, d)|M
)

.

Proof. Let φ(x, y) be an LM -formula such that |= φ(a, c), so φ(a, y) ∈ q;
it suffices to show that then φ(b, y) ∈ q. Towards a contradiction, assume
that ¬φ(b, y) ∈ q. Then φ(a, y) ∧ ¬φ(b, y) ∈ q, so we have e ∈My such that
|= φ(a, e) ∧ ¬φ(b, e), contradicting tp(a|M) = tp(b|M). �

Corollary 7.4. Suppose q ∈ Sty(B) is finitely satisfiable in M . Take a
sequence a0, a1, a2, . . . in Ny such that a0 realizes q|M and an+1 realizes
q|Ma0 . . . an for all n. Then the sequence (an) is indiscernible over M , and
for each n the type tp

(

(a0, . . . , an)|M
)

depends only on M and q, not on
the choice of the sequence (an).

Proof. Let i0 < i1 < · · · < in < in+1 (in N ), and assume inductively that

tp
(

(a0, a1, . . . , an)|M
)

= tp
(

(ai0 , ai1 , . . . , ain)|M
)

.

Now observe that an+1 realizes q|Ma0 . . . an and ain+1
realizes q|Mai0 . . . ain .

Then by the lemma above we have

tp
(

(a0, a1, . . . , an, an+1)|M
)

= tp
(

(ai0 , ai1 , . . . , ain , ain+1
)|M

)

.

The second part of the lemma follows in the same way. �

A sequence (an) as in this lemma is called a coheir sequence of q over M .

Dependence and independence. In this section, x and y are disjoint,
and R ⊆ Mx,y = Mx ×My is a definable relation. We say that R, and any
LM-formula ρ(x, y) that defines R, has the independence property (or IP) if
for every I ⊆ N there are ai ∈Mx for i ∈ N and a bI ∈My such that

R(ai, bI)⇐⇒ i ∈ I, for all i ∈ N.

Equivalently, for each n and I ⊆ {1, . . . , n} there are ai ∈Mx for i = 1, . . . , n
and a bI ∈My, such that

R(ai, bI)⇐⇒ i ∈ I, for all i ∈ {1, . . . , n}.

The ordered index set N in this definition is just for convenience: using the
finite version it is easy to see that in the definition of IP one can replace N

by any small infinite chain.
Note also that in this definition we single out not only a particular product

set Mx ×My but also Mx as its first factor and My as its second factor. In
this connection, recall that an LM-formula ρ(x, y) is formally a triple ρ, x, y;
let ρ̆(y, x) be the triple ρ, y, x, so if ρ(x, y) defines R, then ρ̆(y, x) defines

the reversed relation R̆ ⊆My ×Mx given by

R(a, b) ⇐⇒ R̆(b, a), for a ∈Mx, b ∈My.

Our main interest here is when R is dependent (that is, R does not have
IP), in which case also any LM-formula ρ(x, y) that defines it is said to be
dependent.
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Lemma 7.5. Let ρ(x, y) be a dependent LM-formula. Then

(1) the formula ρ̆(y, x) is dependent;
(2) the formula ¬ρ(x, y) is dependent;
(3) if the LM-formula ρ′(x, y′) is dependent with y′ disjoint from x and

y, then (ρ ∨ ρ′)(x, (y, y′)) and (ρ ∧ ρ′)(x, (y, y′)) are dependent;
(4) if y = (u, v) and c ∈Mv, then ρ1(x, u) := ρ(x, u, c) is dependent.

8. Stability

In this section, x and y are disjoint and finite, and R ⊆Mx,y = Mx×My is a
definable relation. We say that R, and any LM-formula δ(x, y) that defines
R, is unstable if there are ai ∈Mx and bi ∈My for i ∈ N such that

R(ai, bj)⇐⇒ i < j, for all i, j ∈ N.

Equivalently, for each n there are ai ∈Mx and bi ∈My for i = 1, . . . , n, such
that

R(ai, bj)⇐⇒ i < j, for all i, j ∈ {1, . . . , n}.

The ordered index set N in this definition is just for convenience: using
the finite version it is easy to see that in the definition of unstable one can
replace N by any small infinite linearly ordered set.

Note also that in this definition we single out not only a particular product
set Mx ×My but also Mx as its first factor and My as its second factor. In
this connection, recall that an LM-formula δ(x, y) is formally a triple δ, x, y;

let δ̆(y, x) be the triple δ, y, x, so if δ(x, y) defines R, then δ̆(y, x) defines the

reversed relation R̆ ⊆My ×Mx given by

R(a, b) ⇐⇒ R̆(b, a), for a ∈Mx, b ∈My.

As the terminology suggests, our main interest here is when R is stable
(that is, not unstable), in which case also any LM-formula δ(x, y) that defines
it is said to be stable.

Lemma 8.1. Let δ(x, y) be a stable LM-formula. Then

(1) the formula δ̆(y, x) is stable;
(2) the formula ¬δ(x, y) is stable;
(3) if the LM-formula δ′(x, y′) is stable with y′ finite and disjoint from

x and y, then (δ ∨ δ′)(x, (y, y′)) and (δ ∧ δ′)(x, (y, y′)) are stable;
(4) if y = (u, v) and c ∈Mv, then δ1(x, u) := δ(x, u, c) is stable.

To prove these items, consider the contrapositives. For example, in (3),
suppose (δ ∨ δ′)(x, (y, y′)) is unstable. Take ai ∈ Mx, bi ∈ My, b

′
i ∈ My′ for

i ∈ N, such that for all i, j ∈ N: |= δ(ai, bj) ∨ δ
′(ai, b

′
j) ⇐⇒ i < j. Let

P := {(i, j) ∈ N
2 : i < j and |= δ(ai, bj)},

P ′ := {(i, j) ∈ N
2 : i < j and |= δ′(ai, b

′
j)}.

Then P ∪ P ′ = {(i, j) ∈ N
2 : i < j}, hence by Ramsey’s theorem there is an

infinite subset I of N such that either all pairs (i, j) ∈ I2 with i < j belong
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to P , in which case δ(x, y) is unstable, or all pairs (i, j) ∈ I2 with i < j
belong to P ′, in which case δ′(x, y′) is unstable.

Exercise. Let f : Mx′ → Mx and g : My′ → My be definable, with disjoint
finite x′, y′, and define the relation R′ ⊆Mx′ ×My′ by

R′(a, b) ⇐⇒ R(fa, gb).

Show that if R is stable, then R′ is stable. Show that if f and g are surjective
and R′ is stable, then R is stable.

Let δ(x, y) be an L-formula, not just an LM-formula, and let M = (M ; · · · )
be any model of T . Then δ(x, y) is unstable if and only if for each n there
are ai ∈Mx and bi ∈My for i = 1, . . . , n, such that

M |= δ(ai, bj) ⇐⇒ i < j, for all i, j ∈ {1, . . . , n}.

It follows that the stability of δ(x, y) depends only on the theory T , not on
the particular monster model M of T used in the definition.

The next results show how unstability relates to linear orderability.

Lemma 8.2. Suppose R is unstable. Define R∗ ⊆Mx,y ×Mx,y by

R∗(a, b; a′, b′) ⇐⇒ R(a, b′), (a, a′ ∈Mx, b, b
′ ∈My).

Then there are ci ∈Mx,y for i ∈ N such that for all i, j ∈ N,

R∗(ci, cj)⇐⇒ i < j.

Lemma 8.3. Let δ(x, y) be an unstable L-formula, and κ ≥ |L|. Then there
is a model M =

(

M ; · · ·
)

of size κ such that StMx (M) has size > κ.

Proof. First construct a linearly ordered set I of size κ with more than κ
upward closed subsets (see exercise below). With i and j ranging over I, we
use compactness to obtain a model M =

(

M ; · · ·
)

with elements ai ∈ Mx

and bi in My such that

M |= δ(ai, bj) ⇐⇒ i < j, for all i, j.

Using Löwenheim-Skolem, arrange that M has size κ. To each upward
closed set U ⊆ I with U 6= I we associate the set of LM -formulas

ΦU(x) := {δ(x, bj) : j ∈ U} ∪ {¬δ(x, bj) : j /∈ U}.

One checks easily that ΦU (x) is a partial x-type over M in M. Let pU (x)
be an x-type over M in M that extends ΦU (x). Then pU (x) 6= pU ′(x) if
U 6= I and U ′ 6= I are distinct upward closed subsets of I. �

Exercise. Let κ be given, and let λ be the smallest cardinal such that
2λ > κ, so λ ≤ κ. We order the set G of all functions g : λ → 2 = {0, 1}
lexicographically, that is, g < h iff for some ordinal β < λ we have

g(β) < h(β), g(α) = h(α) for all ordinals α < β.

Observe that this makes G a linearly ordered set. Let I be the (ordered)
subset of G consisting of those i ∈ G that are eventually constant. For
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g ∈ G, put U(g) := {i ∈ I : i ≥ g}. Show that I has size ≤ κ, and that if
g, h ∈ G, g 6= h, then U(g) 6= U(h).

If δ(x, y) is stable, then for some positive integer N there are no ai ∈ Mx

and bi ∈My for i = 1, . . . , N such that

|= δ(ai, bj) ⇐⇒ i ≤ j, for i, j = 1, . . . ,N,

and below N(δ) denotes a positive integer N with this property. (Here we
abuse language by letting δ stand for δ(x, y).) The next result is crucial.

Lemma 8.4. Let δ(x, y) be a stable L-formula, a ∈ Mx, and M a model.
Then there are positive integers I, J and elements ai

j ∈ Mx for 1 ≤ i ≤ I
and 1 ≤ j ≤ J , such that for each b ∈My,

|= δ(a, b) ←→
I

∨

i=1

(

J
∧

j=1

δ(ai
j , b)

)

.

Proof. Put J := N(δ), and let ψ(x) ∈ tp(a|M).

Claim. There are a1, . . . , an ∈ Mx realizing ψ(x), with 1 ≤ n ≤ J , such
that for all b ∈My we have |=

(
∧n

i=1 δ(ai, b)
)

−→ δ(a, b).

To prove this claim, define a ψ-sequence of length n to be a sequence

(a1, . . . , an, b1, . . . , bn), (a1, . . . , an ∈Mx, b1, . . . , bn ∈My)

such that for all i, j ∈ {1, . . . , n},

|= δ(ai, bj) ⇐⇒ i ≤ j, |= ψ(ai) ∧ ¬δ(a, bi).

Note that we have a ψ-sequence of length 0. Let (a1, . . . , an, b1, . . . , bn) be a
ψ-sequence, so n < J . The LM -formula ψ(x) ∧

∧

i ¬δ(x, bi) is realized by a,
and thus realized by an element an+1 ∈ Mx. If there is a b ∈ My such that

|=
∧n+1

i=1 δ(ai, b)∧¬δ(a, b), then we let bn+1 be such a b, and we have extended
our sequence to a longer ψ-sequence (a1, . . . , an+1, b1, . . . , bn+1). If there is
no such b, then the claim holds for a1, . . . , an+1 ∈ Mx. Since ψ-sequences
have length < J , the extension process must come to a halt. Thus the claim
is established. Note that in this claim we can arrange n = J . For use in the
second part of the proof, we say that a tuple ~a = (a1, . . . , aJ ) ∈MJ

x satisfies
the claim if for all b ∈My we have

|=
(

J
∧

j=1

δ(aj , b)
)

−→ δ(a, b).

Now the second part of the proof. Introduce a multivariable ~x = (x1, . . . , xJ)
where the xj are multivariables similar to x, pairwise disjoint, and disjoint
from y. Consider the L-formula

δJ(~x, y) := δ(x1, y) ∧ · · · ∧ δ(xJ , y).
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Then δJ(~x, y) is stable, and so is ¬δJ(~x, y). Put I := N(¬δJ). Suppose the
tuples ~a1,~a2, . . . ,~an ∈ MJ

x = M~x satisfy the claim, and b1, . . . , bn ∈ My are
such that for all i, j ∈ {1, . . . , n}

|= δJ(~ai, bj) ⇐⇒ i > j, |= δ(a, bj).

Let us express this by saying that (~a1,~a2, . . . ,~an, b1, . . . , bn) is a δ-sequence.
Note that then n < I, and that for n = 0 there exists a δ-sequence. We now
try to extend our δ-sequence. Applying the claim with ψ(x) :=

∧n
j=1 δ(x, bj)

yields a tuple ~an+1 ∈ M~x such that |= δJ (~an+1, bj) for j = 1, . . . , n, and for
each b ∈ My, |= δJ (~an+1, b) → δ(a, b). If there is a b ∈ My such that
|= δ(a, b) and |= ¬δJ(~ai, b) for i = 1, . . . , n+ 1, then we let bn+1 be such a b,
and we have constructed a longer δ-sequence

(~a1,~a2, . . . ,~an+1, b1, . . . , bn+1).

If there is no such b, then for all b ∈My we have |= δ(a, b)→
∨n+1

i=1 δJ (~ai, b),
and thus

|= δ(a, b) ←→
n+1
∨

i=1

δJ(~ai, b).

Then the lemma holds for the above values of I and J by taking the ai
j such

that ~ai = (ai
1, . . . , a

i
J ) for i = 1, . . . , n + 1, and ai

j = a1
j for n + 1 < i ≤ I.

The process of extending a δ-sequence must come to a halt. �

Remarks. The proof shows that we can take I and J to depend only on
δ(x, y), not on a or M . In addition, if ψ(x) ∈ tp(a|M), we can take the ai

j

to realize ψ(x). Also, if the model M is κ-saturated and A ⊆ M has size
< κ, then we can choose the ai

j to realize tp(a|A).

A striking consequence of the lemma is that the subset δ(a,My) of My is
definable in the model M , although a might not be an M -tuple!

Corollary 8.5. Given the L-formula δ(x, y), the following are equivalent:

(1) δ(x, y) is stable;
(2) every δ-type over any M is definable;
(3) |Stδ(M)| ≤ κ, for each κ ≥ |L| and each M of size κ.
(4) for some small κ ≥ |L| we have |Stδ(M)| ≤ κ for each M of size κ.

Proof. For (1) ⇒ (2), assume (1) and let p(x) be a δ-type over M . Take
a ∈ Mx realizing p(x). Then Lemma 8.4 yields an LM -formula ψ(y) such
that δ(a,My) = ψ(My), that is, ψ(y) defines p(x).

The implications (2) ⇒ (3) and (3) ⇒ (4) are clear. The implication
(4)⇒ (1) is clear from the proof of Lemma 8.3. �

We say that T is stable if each L-formula δ(x, y) is stable. To prove that
stability of T is equivalent to other conditions on T we use that a type is
determined by the δ-types contained in it for relevant δ. It follows that if T
is stable, then each x-type over M has a defining scheme, hence |Stx(M)| ≤
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κ|L| for M of size κ ≥ |L|. Here is a useful consequence of stability for global
types.

Corollary 8.6. If T is stable and has EI, then every global x-type has a
canonical base.

Proof. Stability of T implies that global types are definable, since we may
view M as a “small” elementary submodel of an even bigger monster. Now
apply Lemma 6.5. �

From now on we shall also assume (as we may) that

κ(M) > 2|L|.

This will be used in proving some of the implications below.

Corollary 8.7. The following are equivalent:

(1) T is stable;
(2) no 0-definable binary relation R ⊆ Mx ×Mx with finite x linearly

orders any infinite subset of Mx when restricted to that subset;
(3) whenever Y ⊆My with finite y is definable, then the subset Y ∩My

of My is definable in the model M ;

(4) |Stx(M)| ≤ κ|L|, for each finite x, κ ≥ |L| and M of size κ;
(5) for some small κ ≥ |L| we have |Stx(M)| ≤ κ for each finite x and

M of size κ;
(6) for some small κ ≥ |L| we have |Stv(M)| ≤ κ for each variable v

and M of size κ;
(7) each L-formula φ(v, y) where v is a variable and y is finite, is stable.

Proof. The equivalence of (1) and (2) is clear from the definition of “stable”
and Lemma 8.2. The equivalence of (1) and (3) follows from the equivalence
of (1) and (2) in Corollary 8.5. The implication (1) ⇒ (4) was already

noted. From (4) we obtain (5) with κ = 2|L|, since this κ satisfies κ|L| = κ.
The implication (5)⇒ (6) is obvious. The implication (6)⇒ (5) follows by
induction on the number of variables in x from Lemma 5.7, and (5) ⇒ (1)
follows from (3) ⇒ (1) of Corollary 8.5. It remains to show that (7) is
equivalent to (6). The implication (6) ⇒ (7) follows from (4) ⇒ (1) of
Corollary 8.5. Assume (7), and let v be a variable. Then each v-type over

any M has a defining scheme, hence |Stv(M)| ≤ κ|L| for M of size κ ≥ |L|,
and thus (6) holds with κ = 2|L|. �

Remark. The reader may find it annoying that some of the above conditions
refer implicitly or explicitly to the monster model. Since M and κ(M) can
be chosen as large as we want, it is easy to see that if T is stable, then
(3) actually holds with M and M replaced by any M and N such that
M � N |= T , and that (4) holds with M replaced by arbitrary models M
of T . Likewise, (6)⇒ (1) holds without κ restricted to being small and with
M replaced by arbitrary models M of T .
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Exercise. Suppose T is stable. Show that for each A the LA-theory TA of
M is stable. Show that T eq is stable.

Suppose now that δ(x, y) is a stable L-formula and p(x) is a δ-type over

M defined by ψ(y). Lemma 8.4 shows that ψ(y) is a δ̆-formula over M , in

particular, either ψ(y) ∈ q or ¬ψ(y) ∈ q whenever q is a δ̆-type over M .
This remark is relevant in connection with the following symmetry result.

Lemma 8.8. Let δ(x, y) be a stable L-formula and A ⊆ M . Let p(x) be a

δ-type over M defined by the LA-formula ψ(y), and let q(y) be a δ̆-type over
M defined by the LA-formula χ(x). Then

ψ(y) ∈ q(y) ⇐⇒ χ(x) ∈ p(x).

Proof. Suppose towards a contradiction that ψ(y) ∈ q(y) but χ(x) /∈ p(x).
Let κ := max{|A|, |L|}+. By working in a big enough monster model we
can pass to a κ-saturated N ⊇ M and replace p and q by p ↿N and q ↿N
we reduce to the situation that M is κ-saturated. Take a0 ∈ Mx realizing
p(x) ↾ A, so |= ¬χ(a0), hence ¬δ̆(y, a0) ∈ q(y), that is, ¬δ(a0, y) ∈ q(y).
Next, take b0 ∈My realizing q(y)↾Aa0, so |= ¬δ(a0, b0) and |= ψ(b0), hence
δ(x, b0) ∈ p(x). Now, take a1 ∈ Mx realizing p(x) ↾Ab0, so |= δ(a1, b0) and
|= ¬χ(a1), and thus ¬δ(a1, y) ∈ q(y). Continuing this way, we construct
infinite sequences a0, a1, a2, . . . in Mx and b0, b1, b2, . . . in My, with an+1

realizing p(x) ↾ Ab1 . . . bn and bn realizing q(y) ↾ Aa1 . . . an, for all n. One
shows by induction that |= ¬χ(an) ∧ ψ(bn), and thus, for all m,n:

|= δ(am, bn) ⇐⇒ m > n,

contradicting the stability of δ(x, y). �

Indiscernibility. Let (ai)i∈N be a sequence in Mx. We say that (ai) is
indiscernible over A if

tp((ai1 , . . . , ain)|A) = tp((aj1 , . . . , ajn
)|A)

for all n and all n-element sets {i1, . . . , in}, {j1, . . . , jn} ⊆ N. We say that
(ai) is order-indiscernible over A if the displayed identity holds for all n and
i1 < · · · < in and j1 < · · · < jn in N. In the presence of stability these two
notions coincide:

Lemma 8.9. Suppose T is stable and the sequence (ai)i∈N in Mx is order-
indiscernible over A. Then (ai) is indiscernible over A.

Proof. To keep notation simple, assume A = 0. We first prove the special
case tp(a0, a1, a2) = tp(a1, a0, a2). Suppose tp(a0, a1, a2) 6= tp(a1, a0, a2).
Then we have an L-formula φ(x, y, z) with y and z similar to x such that

|= φ(a0, a1, a2) and |= ¬φ(a1, a0, a2), hence

|= φ(ai, aj , ak) and |= ¬φ(aj , ai, ak) for all i < j < k.
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By saturation we can take a ∈Mx such that |= φ(ai, aj , a) and |= ¬φ(aj, ai, a)
for all i < j, contradicting stability. Having now established the special case,
it follows that tp(ai, aj , ak) = tp(aj , ai, ak) for all i < j < k in N.

For the general case, proceed likewise, and use that the permutations of
{1, . . . , n} are generated by the transpositions (i, i + 1) with 1 ≤ i < n. �

9. Rank and degree in model theory

From now on x, y, z are finite multivariables, unless specified otherwise.
Let M be an L-structure and Y a definable set in M, say Y ⊆ My.

Then we define the Cantor rank of Y (in M) to be the Cantor rank of Y
as an element of the boolean algebra Defy(M) of definable subsets of My,
equivalently, it is the Cantor rank of Y as an element of the boolean algebra
of definable subsets of Y . We denote it by CR(Y ), and by CRM(Y ) if we
wish to indicate the ambient structureM. If CR(Y ) is an ordinal, then we
call Y ranked, and define CD(Y ) (the Cantor degree of Y ) to be the Cantor
degree of Y as an element of the boolean algebra of definable subsets of My.
(If we wish to indicate the ambient structure M we write this degree as
CDM(Y ).) Suppose now that X is also a definable set in M, say X ⊆Mx,
and that the map f : X → Y is definable. Then

(i) if f(X) = Y , then CR(X) ≥ CR(Y ), and in case of equality with X
ranked we have CD(X) ≥ CD(Y ).

(ii) if f is injective, then CR(X) ≤ CR(Y ), and in case of equality with
X ranked we have CD(X) ≤ CD(Y ).

To see this, note that U 7→ f−1(U) is a morphism from the boolean algebra
of definable subsets of Y into the boolean algebra of definable subsets of X,
and that this morphism sends Y to X. If f(X) = Y , then this morphism is
injective, so we can apply part (1) of Proposition 2.3. If f is injective, then
this morphism is surjective, so we can apply part (2) of that proposition.

Unfortunately, the Cantor rank of a definable set may change in passing
to an elementary extension of M. Take for example M = (N, <) and let
N = (N,<) be an ℵ0-saturated elementary extension of M. The definable
subsets of N inM are exactly the finite and cofinite subsets of N (exercise),
so N has Cantor rank 1 as a definable set in M. But N as a definable set
in N has Cantor rank > 1, as is easily verified.

More generally, let M� N , so we have a boolean algebra embedding

ι : Defy(M)→ Defy(N ), φ(a,My) 7→ φ(a,Ny),

where φ(x, y) ranges over L-formulas of the indicated form with a ∈ Mx.
By Proposition 2.3 we have CR(Y ) ≤ CR(ιY ) for Y ∈ Defy(M). With a
mild saturation assumption we have equality:

Lemma 9.1. Let M be ℵ0-saturated. Then for all Y ∈ Defy(M),

CR(Y ) = CR(ιY ), CD(Y ) = CD(ιY ) in case Y is ranked.
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Proof. By increasing N we can assume N is strongly ℵ1-homogeneous. Let
Y ∈ Defy(M). The rank equality follows from

CR(ιY ) > λ =⇒ CR(Y ) > λ, for all λ,

which we prove by induction on λ. Suppose CR(ιY ) > λ. Then we have
disjoint definable sets Yn ⊆ ιY of Cantor rank ≥ λ in N . Take a finite tuple
a inM such that Y is a-definable inM. Take a tuple b in N of countable size
such that all Yn are b-definable in N . By the saturation and homogeneity
assumptions on M and N we have an automorphism f ∈ Aut(N|a) such
that fb is an M -tuple. Then f(ιY ) = ιY and f(Yn) is definable over M , so
f(Yn) = ιXn with Xn ⊆ Y definable in M. Since

CR(ιXn) = CR f(Yn) = CR(Yn) ≥ λ,

we can assume inductively that CR(Xn) ≥ λ. The Xn being disjoint subsets
of Y , we obtain CR(Y ) > λ. The degree equality follows in a similar way. �

Let Y ∈ Defy(M) be given. Choose an ℵ0-saturated elementary extension
N of M and let ι be as above. Then by the lemma CR(ιY ) is independent
of the choice of N , so we can now define the Morley rank of Y by

MR(Y ) = MRM(Y ) := CR(ιY )

In case this rank is an ordinal, the Morley degree of Y is defined likewise by

MD(Y ) = MDM(Y ) := CD(ιY ).

Often M is already ℵ0-saturated, and then MR(Y ) = CR(Y ), and in case
MR(Y ) is an ordinal, MD(Y ) = CD(Y ); this applies in particular to the
definable sets in our monster model M.

Exercise. Suppose X ⊆ Mx is M -definable (so the set X(M) := X ∩Mx

is definable in the model M). Prove that

CRM
(

X(M)
)

≤ MR(X).

Totally transcendental theories. We define T to be totally transcenden-
tal if every nonempty definable set in M is ranked. By Lemma 9.1 this is
indeed a property of T , that is, it does not depend on the particular monster
model M of T .

Lemma 9.2. Suppose T is totally transcendental. Then

(1) the theory TA of the LA-structure M is totally transcendental;
(2) T eq is totally transcendental;
(3) |Stx(M)| ≤ |M | for |M | ≥ |L|;
(4) T is stable.
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Proof. Item (1) is obvious, and (2) follows from the fact that every definable
set in M

eq is the image of a definable set in M under a definable map. Item
(3) follows from the implication (iii)⇒(iv) of Theorem 2.5 applied to the
subalgebras B = Defx(M|M) of Defx(M) for |M | ≥ |L|, since |B| ≤ |M | for
such M . Item (4) follows from (3) and Corollary 8.7. �

When the language is countable we can say a bit more:

Corollary 9.3. Let L be countable. The following are equivalent:

(1) T is totally transcendental;
(2) |Stx(M)| ≤ |M | for each x and infinite M ;
(3) |Stx(M)| ≤ ℵ0 for each x and countable M ;
(4) |Stv(M)| ≤ ℵ0 for each variable v and countable M ;
(5) each nonempty definable subset of Mv is ranked, for each variable v.

Proof. The implication (1) ⇒ (2) is part of the previous lemma. The im-
plications (2) ⇒ (3) and (3) ⇒ (4) are obvious. The equivalence (4) ⇔ (5)
follows from the equivalence (3) ⇔ (4) of Theorem 2.5 by noting that each
countable subalgebra of Defv(M) is contained in a subalgebra of the form
Defv(M|M) with countable M . The implication (4) ⇒ (3) follows by in-
duction on the size of x from Lemma 5.7, and (3) ⇒ (1) is again an easy
consequence of Theorem 2.5. �

By Theorem 2.5, all nonzero elements in a boolean algebra are ranked if
each countable subalgebra has this property. Thus:

Corollary 9.4. The following are equivalent:

(1) T is totally transcendental;
(2) for each countable sublanguage L0 of L the theory of the L0-reduct

of M is totally transcendental;
(3) each nonempty definable subset of Mv is ranked, for each variable v.

Proof. The equivalence of (1) and (2) follows easily from Theorem 2.5. We
already know that (1) implies (3), and the implication (3) ⇒ (2) follows
from the previous corollary. �

For countable L, a totally transcendental T is also said to be omega-stable
(or ω-stable).

Stability and rank. Let δ(x, y) be an L-formula, and consider the boolean
subalgebra Defδ(M) of Defx(M) that is generated by the sets δ(Mx, b) with
b ∈My. For X ∈ Defδ(M) we define the δ-rank Rδ(X) of X to be its Cantor
rank in this boolean algebra, and if this rank is an ordinal, we let Dδ(X) be
the Cantor degree of X in this boolean algebra.

Proposition 9.5. The formula δ(x, y) is stable if and only if each nonempty
X ∈ Defδ(M) is ranked.
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Proof. We prove the contrapositives. Suppose δ(x, y) is unstable. Then we
have a modelM of size κ ≥ |L| such that Stδ(M) > κ. Then by Theorem 2.5,
the rank of Mx as an element of the boolean subalgebra Defδ(M) of Defδ(M)
is +∞, and thus Rδ(Mx) = +∞.

For the converse, suppose Rδ(Mx) = +∞. Then we take an M of size
κ ≥ |L| such that Mx as an element of the boolean algebra Defδ(M) has
rank +∞. For each n, Corollary 2.8 yields elements b1, . . . , bn ∈ My and
types p0(x), . . . , pn(x) ∈ Stx(M) such that

δ(x, bi) ∈ pj(x) ⇐⇒ i ≤ j, for i = 1, . . . , n, j = 0, . . . , n.

With such bi and pj we take aj ∈Mx realizing pj and obtain

|= δ(aj , bi) ⇐⇒ i ≤ j, for i = 1, . . . , n, j = 0, . . . , n.

Hence δ(x, y) is unstable. �

10. Basic facts on Morley rank

From now on we restrict our attention mainly to Morley rank and totally
transcendental theories, although much will go through, by similar argu-
ments, for δ-rank and stable theories. We begin with improving the result
that MR(X) ≤ MR(Y ) if there is an injective definable map from X to Y .

Lemma 10.1. Let the sets X,Y and the map f : X → Y be definable in M

such that f−1(b) is finite for all b ∈ Y . Then MR(X) ≤ MR(Y ).

Proof. By induction on MR(Y ). The case that MR(Y ) ∈ {−∞, 0,+∞} is
obvious, so we can assume MR(Y ) = λ ≥ 1, and make a further reduction
to MD(Y ) = 1. Saturation gives an n such that |f−1(b)| ≤ n for all b ∈ Y .
Suppose that MR(X) > λ. Take disjoint definable subsets X1, . . . ,Xn+1 of
X with MR(Xi) ≥ λ for all i. If MR f(Xi) < λ for some i, then by the
induction hypothesis,

MR(Xi) ≤ MR f(Xi) < λ

for such i, a contradiction. Hence MR f(Xi) = λ for all i. As MD(Y ) = 1,
we have a b ∈ f(X1) ∩ · · · ∩ f(Xn+1), contradicting |f−1(b)| ≤ n. �

Corollary 10.2. Let the sets X, Y , and R ⊆ X×Y be definable in M such
that for each a ∈ X the section R(a) is finite and for each b ∈ Y there is an
a ∈ X with (a, b) ∈ R. Then MR(X) ≥ MR(R) ≥ MR(Y ).

Proof. All fibers of the map (a, b) 7→ a : R → X are finite, so MR(X) ≥
MR(R) by the previous lemma. The map (a, b) 7→ b : R → Y is surjective,
so MR(R) ≥ MR(Y ). �

Exercise. Show that if X ⊆ Mx, Y ⊆ My and f : X → Y are definable,
and MR

(

f−1(y)
)

≤ 1 for all y ∈ Y , then MR(X) ≤ MR(Y ) + 1.
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For definable X,Y ⊆Mx we set

X =λ Y :⇐⇒ MR(X△Y ) < λ,

X ⊆λ Y :⇐⇒ MR(X \ Y ) < λ,

−X := Mx \X,

or in terms of the boolean algebra Defx(M) and its ideal I := I<λ:

X =λ Y ⇐⇒ X =I Y, X ⊆λ Y ⇐⇒ X/I ≤ Y/I.

Let X be a definable set in M. Clearly, MR(X) = 0 iff X is finite and
nonempty. If MR(X) = 0, then MD(X) = |X|. The next possible “size”
is when MR(X) = 1, MD(X) = 1, and such X is called strongly minimal
(in M), and this is equivalent to X being infinite such that each definable
subset of X is finite or cofinite in X. We say that X is A-irreducible if X is
A-definable and ranked, and X is not the union of two disjoint A-definable
subsets of the same Morley rank. For example, if X is A-definable and
ranked with MD(X) = 1, then X is A-irreducible.

Exercise. Show that if X, Y and R ⊆ X × Y are definable sets in M and
Y is strongly minimal, then there is an m such that for all a ∈ X, either
|R(a)| ≤ m or |Y \R(a)| ≤ m.

Types over A and A-irreducible sets. Let p(x) be an x-type over A. We
shall identify p(x) with the corresponding ultrafilter {φ(Mx) : φ(x) ∈ p(x)}
of the boolean algebra Defx(M|A), so for each A-definable X ⊆ Mx, either
X ∈ p or −X ∈ p.

If p does not contain any ranked set we put MR(p) = +∞. If p contains
a ranked set, we choose X ∈ p of minimal Morley rank λ and of minimal
Morley degree d among the sets in p of Morley rank λ, and put MR(p) = λ,
MD(p) = d. This set X is then A-irreducible, and

p = {Y ∈ Defx(M|A) : X ⊆λ Y }.

Lemma 10.3. Suppose X ⊆Mx is ranked with MR(X) = λ. Then

(1) If X is A-irreducible, then p := {Y ∈ Defx(M|A) : X ⊆λ Y } is an
x-type over A with MR(p) = MR(X), MD(p) = MD(X).

(2) MR(X) = max{MR(p) : p ∈ Stx(A),X ∈ p}.
(3) The set {p : p ∈ Stx(A),X ∈ p,MR(p) = λ} is finite and

MD(X) =
∑

p

MD(p) where the sum is over the p in this finite set.

Proof. For (1), use that if X is A-irreducible, then for each A-definable
Y ⊆My, either MR(X∩Y ) < λ (in which case X ⊆λ −Y ), or MR(X\Y ) < λ
(in which case X ⊆λ Y ). To obtain (2) and (3), decompose X as X1∪· · ·∪Xn

with n ≥ 1 and disjoint A-irreducible X1, . . . ,Xn of Morley rank λ. Now
apply (1) to each Xi. �
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We say that an A-irreducible set X ⊆Mx determines the type p defined in
(1) of Lemma 10.3. Let p(x) ∈ Stx(A); then

MR(p) = 0 ⇐⇒ p(Mx) is finite;

we say that p is algebraic if MR(p) = 0; in that case, MD(p) = |p(Mx)|.

For a ∈Mx we define

MR(a|A) := MR
(

tp(a|A)
)

.

Thus MR(a|A) = 0 ⇐⇒ a is A-algebraic. Note that if MR(a|A) = λ, then
there is an A-irreducible X ⊆ Mx such that a ∈ X and MR(X) = λ and
there is no A-definable X ⊆ Mx with a ∈ X and MR(X) < λ. Conversely,
if X ⊆ Mx is A-irreducible, then there is an a ∈ X such that MR(a|A) =
MR(X), and such an a is called a generic element of X over A (or just a
generic of X over A).

From now on we let a, a′, a1, a2, b, b
′, c denote finite tuples in M.

Lemma 10.4. Suppose b is a-algebraic over A. Then MR(b|A) ≤ MR(a|A).

Proof. Let a ∈ Mx and b ∈ My, and take an A-definable X ⊆ Mx with
a ∈ X and MR(X) = MR(a|A). Take an A-definable R ⊆ Mx ×My such
that b ∈ R(a) and R(a) is finite. By shrinking R we can arrange that
R ⊆ X ×My and |R(a′)| ≤ |R(a)| for all a′ ∈ X. Let

Y := {b′ ∈My : R(a′, b′) for some a′ ∈ X}.

Then Y is A-definable and R ⊆ X × Y satisfies the conditions of Corol-
lary 10.2, so MR(b|A) ≤ MR(Y ) ≤ MR(X) = MR(a|A). �

In particular, if a and b are interalgebraic over A, then MR(a|A) = MR(b|A).

Definable types again. Following Ziegler we shall give another proof of
definability of types in the case of totally transcendental theories.

Lemma 10.5. Suppose the model M is ℵ0-saturated, and X ⊆Mx is defin-
able and ranked, and contained in an M -definable subset of Mx of the same
Morley rank. Then X ∩Mx 6= ∅.

Proof. Let Y ⊆ Mx be M -definable with MR(X) = MR(Y ) = λ. We
proceed by induction on λ. If λ = 0, then Y is finite, so X ⊆ Y ⊆Mx. Let
λ > 0 and decompose Y as a disjoint union Y1 ∪ · · · ∪Yd of M -definable sets
of Morley rank λ and Morley degree 1. (This is possible by Lemma 9.1.)
Then MR(X ∩ Yi) = λ for some i, so by replacing X and Y by X ∩ Yi and
Yi for suitable i we have made a reduction to the case that MD(Y ) = 1.
We can also assume that X 6= Y . So MR(Y \X) = α < λ. Take disjoint
M -definable sets Y0, Y1, Y2, · · · ⊆ Y of Morley rank ≥ α and < λ. Not all Yn

can be contained in Y \X, so we can take n such that X ∩ Yn 6= ∅. Since
MR(Yn) < λ we can assume inductively that X ∩ Yn ∩Mx 6= ∅. �
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Given M and an M -definable X ⊆Mx we put

X(M) := X ∩Mx (the set of M -points of X).

Theorem 10.6. Let φ(x, y) be a stable L-formula and let X ⊆ Mx be de-
finable with MR(X) = λ. Then the subset

{b ∈My : X ⊆λ φ(Mx, b)}

of My is definable.

Proof. By decomposing X into irreducible sets of Morley rank λ we can
assume that MD(X) = 1. Take an ℵ0-saturated model M such that X is
M -definable.

Claim 1. X(M) has a finite subset ∆ such that for all b ∈My,

∆ ⊆ φ(Mx, b) =⇒ X ⊆λ φ(Mx, b).

To prove this claim, suppose there is no such ∆. Then we obtain a contra-
diction by constructing infinite sequences a1, a2, · · · ∈ X(M) and b1, b2, · · · ∈
My such that for all i, j

|= φ(ai, bj) ⇐⇒ i ≤ j.

We obtain such sequences as follows: Assume a1, . . . , an ∈ X(M) and
b1, . . . , bn ∈ My are such that this equivalence holds for i, j = 1, . . . , n and
such that X 6⊆λ φ(Mx, bi) for i = 1, . . . , n. Then

X 6⊆λ φ(Mx, b1) ∪ · · · ∪ φ(Mx, bn),

so by the previous lemma we have an an+1 ∈ X(M) outside each φ(Mx, bi).
Since {a1, . . . , an+1} cannot serve as ∆, we obtain bn+1 ∈ My such that
{a1, . . . , an+1} ⊆ φ(Mx, bn+1) and X 6⊆λ φ(Mx, bn+1), so the displayed
equivalence holds for i, j = 1, . . . , n+ 1.

Claim 2. Suppose that X ⊆λ φ(Mx, c), c ∈ My. Then there exists a ∆ as
in Claim 1 such that ∆ ⊆ φ(Mx, c).

The proof is a variant of that of Claim 1: take the ai ∈ φ(Mx, c).

For each ∆ as in Claim 1, let Y∆ := {b ∈ My : ∆ ⊆ φ(Mx, b)}, so Y∆ ⊆ My

is definable. Claims 1 and 2 yield that

{b ∈My : X ⊆λ φ(Mx, b)} =
⋃

∆

Y∆

where the union is over the small set of ∆’s as in Claim 1. Since X is
irreducible, the complement in My of the set on the left is

{b ∈My : X ⊆λ ¬φ(Mx, b)},

which is likewise a union of a small number of definable sets. Now use an
exercise from Section 2. �

In Section 5 we proved that if T is stable, then types over a model M are
definable over M . Here we extend this to types over parameter sets, for
totally transcendental T .
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Corollary 10.7. Assume T is totally transcendental, and let p(x) ∈ Stx(A).
Then p is definable over A: for each L-formula φ(x, y) there is an LA-
formula ψ(y) such that for all b ∈ Ay:

φ(x, b) ∈ p(x) ⇐⇒ |= ψ(b).

Proof. Take an A-irreducible set X ⊆ Mx that determines p, so MR(X) =
MR(p) = λ, say. Then for all b ∈ Ay,

φ(x, b) ∈ p(x)⇐⇒ φ(Mx, b) ∈ p⇐⇒ X ⊆λ φ(Mx, b).

Now apply Theorem 10.6. �

Morley rank of global types. Let p ∈ Stx(M) be a global type, viewed
as an ultrafilter of Defx(M). If p does not contain any ranked set, we put
MR(p) = +∞. Suppose that p contains a ranked set. Then we choose
X ∈ p of minimal Morley rank λ, and put MR(p) = λ. Such an X can be
chosen to have Morley degree 1, and then determines p in the sense that

p = {Y ∈ Defx(M) : X ⊆λ Y }.

Conversely, if X ⊆ Mx is definable, MR(X) = λ, MD(X) = 1, then X
determines the global type p = {Y ∈ Defx(M) : X ⊆λ Y } of Morley rank λ.

11. Forking and Independence

In this section we assume that T is totally transcendental.

Let p ∈ Stx(A), A ⊆ B and suppose q ∈ Stx(B) extends p, that is, p ⊆ q,
equivalently, q ↾A = p. Then MR(p) ≥ MR(q), and in case of equality we
say that q is a nonforking extension of p (to B). We also say that q does
not fork over A if it is a nonforking extension of p; this terminology makes
sense, since q determines p by p = q ↾A.

For example, if p is algebraic, then q is necessarily a nonforking extension
of p, and if MR(p) = 1, then q is a nonforking extension of p iff q is not alge-
braic. We also say that a global type p ∈ Stx(M) is a nonforking extension
of p if p ⊆ p and MR(p) = MR(p).

Lemma 11.1. Let p ∈ Stx(A), A ⊆ B. Then p has a nonforking extension
to B, and has at most MD(p) such extensions:

MD(p) =
∑

q

MD(q),

where the sum is over the nonforking extensions q of p to B.

Proof. Take an A-irreducible set X that determines p, so MR(X) = MR(p)
and MD(X) = MD(p). Take disjoint B-irreducible sets X1, . . . ,Xn of the
same Morley rank as X such that X = X1 ∪ · · · ∪Xn, n ≥ 1. Then each Xi

determines a nonforking extension pi ∈ Stx(B) of p, with MD(Xi) = MD(pi).
Also each nonforking extension of p to B contains an Xi, and thus equals a
pi. It remains to note that MD(X) =

∑

i MD(Xi). �
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Almost the same proof, with “irreducible” in place of “B-irreducible”, yields
a similar result for global nonforking extensions:

Lemma 11.2. Each p ∈ Stx(A) has exactly MD(p) global nonforking exten-
sions in Stx(M).

Corollary 11.3. Let p ∈ Stx(A). Then MD(p) = 1 if and only if p has
exactly one nonforking extension to every B ⊇ A.

Proof. The forward direction is immediate from Lemma 11.1. For the con-
verse, suppose n := MD(p) > 1. Take an A-irreducible set X that deter-
mines p, so MD(X) = n. Then X is a disjoint union of definable subsets
X1, . . . ,Xn of the same Morley rank. Take a B ⊇ A such that X1, . . . ,Xn

are B-definable, hence B-irreducible. Then X1, . . . ,Xn determine distinct
types q1, . . . , qn ∈ Stx(B), and all are nonforking extensions of p. �

A type p ∈ Stx(A) with MD(p) = 1 is also said to be stationary, because
it has the property expressed in this corollary. Note that if p ∈ Stx(A) is
stationary, then p has also a unique global nonforking extension p ∈ Stx(M).

It is obvious that nonforking is monotone and transitive:

Lemma 11.4. Let A ⊆ B ⊆ C and p ∈ Stx(A), q ∈ Stx(B), r ∈ Stx(C) be
such that p ⊆ q ⊆ r. Then r is a nonforking extension of p if and only if r
is a nonforking extension of q and q is a nonforking extension of p.

Nonforking is also continuous:

Lemma 11.5. Let q ∈ Stx(B). Then

(1) there is a finite B0 ⊆ B such that q does not fork over B0 and q is
the only nonforking extension of q ↾B0 to B;

(2) if A ⊆ B and q forks over A, then there is a finite B0 ⊆ B such that
q ↾(A ∪B0) forks over A.

Proof. Take a set X ∈ q with MR(X) = MR(q), and MD(X) = MD(q).
Take a finite B0 ⊆ B such that X is B0-definable. Then B0 witnesses (1) by
Lemma 11.1. For (2), assume A ⊆ B and q forks over A, and put p := q ↾A.
Then we can take X ∈ q such that MR(X) = MR(q) < MR(p). Take a
finite B0 ⊆ B such that X is (A ∪ B0)-definable. Then B0 witnesses the
conclusion of (2). �

We say that a is independent from B over A, notation:

a |⌣
A

B,

if MR(a|AB) = MR(a|A), in other words, tp(a|AB) does not fork over A.
In this notation, Lemma 10.4 and the lemmas above in this section yield:

a is A-algebraic =⇒ a |⌣
A

B,

if a and b are interalgebraic over A, then: a |⌣
A

B ⇔ b |⌣
A

B,
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p ∈ Stx(A) =⇒ p has a realization a such that a |⌣
A

B,

a |⌣
A

B and B′ ⊆ B =⇒ a |⌣
A

B′,

(

a |⌣
A

B and a |⌣
AB

C
)

⇐⇒ a |⌣
A

BC,

a |⌣
A

B ⇐⇒ a |⌣
A

b for each finite B-tuple b.

We shall use these rules freely from now on. Note the special case

a |⌣
A

BC =⇒ a |⌣
AB

C.

Symmetry. In the next symmetry lemma, a and b also stand for certain
parameter sets, according to the convention in Section 2.

Lemma 11.6. a |⌣
A

b ⇐⇒ b |⌣
A

a.

Proof. We first assume that A = M is an ℵ0-saturated model. Set α :=
MR(a|M) and β := MR(b|M). Let a ∈ Mx and b ∈ My with disjoint x, y,
and take M -definable X ⊆ Mx and Y ⊆ My that determine tp(a|M) and
tp(b|M). Suppose that b is not independent from a over M . Then

MR(b|Ma) < MR(b|M) = β,

so we have an M -definable Z ⊆Mx ×My such that

(a, b) ∈ Z, MR
(

Z(a)
)

< β.

We can assume that Z ⊆ X × Y . We have

{a′ ∈ X : MR
(

Z(a′)
)

< β} = {a′ ∈ X : Y 6⊆β Z(a′)},

so by Theorem 10.6, the set X ′ := {a′ ∈ X : MR
(

Z(a′)
)

< β} is M -
definable, and contains a. After replacing Z by Z ∩ (X ′×Y ) we can assume

that MR
(

Z(a′)
)

< β for all a′ ∈ X. Hence Z̆(b)∩Mx = ∅, so by Lemma 10.1

we have MR
(

Z̆(b)
)

< MR(X) = α. So a is not independent from b over A.
We now consider any A, and take an ℵ0-saturated model M ⊇ A. Take a

b′ ∈My such that

b′ realizes tp(b|A), b′ |⌣
A

M.

Take f ∈ Aut(M|A) with fb = b′, and take an a′ ∈Mx such that

a′ realizes tp(fa|Ab′), a′ |⌣
Ab′

Mb′,

and take g ∈ Aut(M|Ab′) with g(fa) = a′. Then h := gf ∈ Aut(M|A)
satisfies h(a) = a′ and h(b) = b′, so

a |⌣
A

b ⇐⇒ a′ |⌣
A

b′, b |⌣
A

a ⇐⇒ b′ |⌣
A

a′,
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Suppose now that a is independent from b over A. Then a′ |⌣
A

b′, so a′ |⌣
A

Mb′

(since a′ |⌣
Ab′

Mb′), so a′ |⌣
M

b′. By the first part of the proof, this gives b′ |⌣
M

a′,

which in view of b′ |⌣
A

M yields b′ |⌣
A

a′, so b is independent from a over A. �

Corollary 11.7. a |⌣
A

acl(A).

Proof. For A-algebraic b we have b |⌣
A

a, hence a |⌣
A

b. �

The next result is needed in dealing with one-basedness in Section 13.

Corollary 11.8. Suppose a |⌣
A

b. Then acl(Aa) ∩ acl(Ab) = acl(A).

Proof. Let c be algebraic over Aa and over Ab. Then

MR(a|Abc) = MR(a|Ab) = MR(a|A),

and thus MR(a|Ac) = MR(a|A). Hence a |⌣
A

c, so c |⌣
A

a, that is, MR(c|A) =

MR(c|Aa) = 0, so c is algebraic over A. �

Lemma 11.9. Let p ∈ Stx(A). Then

(1) each q ⊇ p in Stx(acl(A)) is a nonforking extension of p;
(2) any two extensions of p in Stx(acl(A)) are conjugate over A.

Proof. Item (1) is immediate from Corollary 11.7 by taking a realization
a ∈Mx of q. For (2) we take an A-irreducible X that determines p, and take
an acl(A)-irreducible Y ⊆ X with MR(X) = MR(Y ). Take an A-algebraic b
such that Y is b-definable. Then clearly {f(b) : f ∈ Aut(M|A)} is finite, and
whenever f(b) = g(b), then f(Y ) = g(Y ), for f, g ∈ Aut(M|A), so Y has only
finitely many conjugates over A. Let Y1, . . . , Yn be the distinct conjugates
of Y over A. Then Y1 ∪ · · · ∪ Yn ⊆ X is A-definable by Corollary 5.2, so
X =λ Y1 ∪ · · · ∪ Yn where λ = MR(X). The sets Y1, . . . , Yn determine
extensions q1, . . . , qn ∈ Stx(acl(A)) of p, and q1, . . . , qn are conjugate over A
the same way Y1, . . . , Yn are.

Suppose that q ∈ Stx(acl(A)) extends p. Since Y1 ∪ · · · ∪ Yn ∈ p we have
an i ∈ {1, . . . , n} with Yi ∈ q. Since MR(q) = λ by (1), this Yi determines
q, so q = qi. �

Theorem 11.10. Suppose T has EI and A is algebraically closed. Let A ⊆
M , and let p, p1, p2 ∈ Stx(M). Then

(1) if p does not fork over A, then p is definable over A;
(2) if p1, p2 are definable over A, and p1 ↾A = p2 ↾A, then p1 = p2;
(3) each x-type over A is stationary.

Proof. For (1), assume p does not fork over A. Take a global nonforking
extension p ∈ Stx(M) of p. The conjugates f(p) with f ∈ Aut(M|A) are
all nonforking extensions of p ↾ A, so there are only finitely many such
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conjugates. Let φ(x, y) be an L-formula, and Y := dpxφ(x,My). Then by
the above, Y has only finitely many conjugates over A, so Y is A-algebraic
by Corollary 5.2, hence Y is A-definable by Corollary 5.3.

For (2), let p1, p2 be definable over A, and p1 ↾A = p2 ↾A. Let φ(x, y)
be an L-formula, and let ψ1(y) and ψ2(y) be LA-formulas that define p1 ↾φ
and p2 ↾ φ. It is enough to show that then ψ1(My) = ψ2(My). Let b ∈
ψ1(My), and let q ∈ Sty(M) be a nonforking extension of tp(b|A). Then q is

definable over A by (1), so we have an LA-formula χ(x) defining q ↾ φ̆. Since

ψ1(y) ∈ q(y) we can apply Lemma 8.8 to p1 ↾φ and q ↾ φ̆ to get χ(x) ∈ p1(x),

hence χ(x) ∈ p2(x). Now apply the same lemma to p2 ↾ φ and q ↾ φ̆ to get
ψ2(y) ∈ q, that is, b ∈ ψ2(My).

Item (3) follows from (1) and (2). �

In the next three corollaries we do not assume that T has EI.

Corollary 11.11. Every x-type over a model M is stationary.

Proof. Each p ∈ Stx(M) extends uniquely to a type peq ∈ Stx(M eq) in
M

eq. Since T eq has EI, and M eq is algebraically closed in M
eq, the type peq

is stationary, that is, MD(peq) = 1. But Defx(M|M) and Defx(Meq|M eq)
are the same boolean algebra, and, viewed as ultrafilters on these boolean
algebras, p and peq are also the same, so MD(p) = 1, so p is stationary. �

Exercises. Show that if X ⊆Mx is M -definable, MR(X) = λ, MD(X) = d,
then there are M -definable disjoint X1, . . . ,Xd ⊆Mx such that

X = X1 ∪ · · · ∪Xk, and MR(Xi) = λ, MD(Xi) = 1 for i = 1, . . . , d.

Show that for a, b ∈Mx, stp(a|A) = stp(b|A) if and only if there is a model
M ⊇ A such that tp(a|M) = tp(b|M).

Elaborating on the proof of Corollary 11.11 we note that each x-type over
A in M, as an ultrafilter of the boolean algebra Defx(M|A) is also an x-
type over A in M

eq since Defx(M|A) and Defx(Meq|A) are the same boolean
algebra. In view of Aut(M|A) = Aut(Meq|A) (see Section 3), this yields

Corollary 11.12. Any two global nonforking extensions of p ∈ Stx(A) are
conjugate over A.

Proof. By the observation preceding the statement of this corollary it suffices
to prove this for types in M

eq instead of M, that is, we can assume that T
has EI. Let p1 and p2 be nonforking extensions of p ∈ Stx(A), and let
pi := pi ↾acl(A) for i = 1, 2. By Lemma 11.9, (2), we have an f ∈ Aut(M|A)
such that f(p1) = p2. Then by Theorem 11.10, (3), we have f(p1) = p2. �

Corollary 11.13. Suppose M ⊆ B and q ∈ Stx(B) does not fork over M .
Then q is definable over M .

Proof. As subalgebras of the boolean algebra Defx(M) = Defx(Meq) we have

Defx(M|B) = Defx(Meq|B), Defx(M|M) = Defx(Meq|M eq).
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Viewing in this way q as an x-type over B in M
eq, Theorem 11.10, (1), yields

that q is definable over M eq. It follows that q is definable over M . �

Corollary 11.14. Suppose T has EI, and p ∈ Stx(M). Then

(1) p does not fork over A if and only if cb(p) ⊆ acl(A);
(2) p does not fork over A and p↾A is stationary if and only if

cb(p) ⊆ dcl(A).

Proof. Assume cb(p) ⊆ acl(A). Then p is defined over acl(A). Take a
nonforking extension q ∈ Stx(M) of p ↾ acl(A). Then q is also defined over
acl(A) by Theorem 11.10, (1), so p = q by part (2) of that theorem, so p

does not fork over acl(A), and therefore does not fork over A by Lemma 11.9.
Conversely, if p does not fork over A, then p does not fork over acl(A), hence
is definable over acl(A) by Theorem 11.10, and thus cb(p) ⊆ acl(A). This
proves (1).

For (2), if cb(p) ⊆ dcl(A), then p does not fork over A by (1), and has no
conjugates over A different from itself, hence p↾A is stationary. Conversely,
if p does not fork over A and p ↾ A is stationary, then f(p) = p for all
f ∈ Aut(M|A), and thus cb(p) ⊆ dcl(A). �

Corollary 11.15. Suppose T has EI, and p ∈ Stx(M). Then cb(p) = dcl(a)
for some a.

Proof. Let A := cb(p). Then by (2) of the previous corollary, p is the unique
nonforking extension of p := p ↾ A, and MD(p) = 1. Take an irreducible
A-definable X ⊆ Mx that determines p, and let a be a code of X. Then
X is a-definable, so X ∈ p ↾ a, so p ↾ a is stationary, and p is a nonforking
extension of p↾a. Hence by (2) of the previous corollary we have A ⊆ dcl(a).
But a is A-definable, so dcl(a) = A. �

Suppose T has EI, and p ∈ Stx(A) is stationary. Then we put

cb(p) := cb(p),where p ∈ Stx(M) is the nonforking extension of p.

Also, given a ∈Mx such that tp(a|A) is stationary, we put

cb(a|A) := cb(tp(a|A)).

Theorem 11.16. Let p ∈ Stx(M), M ⊆ B and p ⊆ q ∈ Stx(B). Then

q is a nonforking extension of p ⇐⇒ q is a heir of p.

Proof. Let q be the nonforking extension of p to B. Then q is definable
over M by Corollary 11.13. Let φ(x, y) be an LM -formula, b ∈ By, and
φ(x, b) ∈ q. Take an LM -formula ψ(y) that defines q ↾ φ. Then |= ψ(b),
which in view of M � M gives a ∈ My such that |= ψ(a), so φ(x, a) ∈ q,
and thus φ(x, a) ∈ p. This proves =⇒. For ⇐=, note that p is definable, so
p has exactly one heir over B. �

Morley sequences. This material will be needed in Section 13. Given a
stationary p ∈ Stx(A), a Morley sequence in p is a sequence (ai)i∈N in Mx
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such that ai realizes the unique nonforking extension of p to Aa0 . . . ai−1

for each i. (In particular, all ai realize p.) Note that there exists a Morley
sequence in p.

Lemma 11.17. Let p ∈ Stx(A) be stationary, and let (ai) be a Morley
sequence in p. Then

(1) ai |⌣
A

(a0, . . . , ai−1) for all i;

(2) the sequence (ai) is indiscernible over A;
(3) if (bi) is also a Morley sequence in p, then there is an f ∈ Aut(M|A)

such that f(ai) = bi for all i;
(4) suppose T has EI; then cb(p) ⊆ dcl({ai : i ∈ N});

Proof. Item (1) is evident from the definition of Morley sequence. For (2) it
is enough, by Lemma 8.9, to show that for all i0 < · · · < in,

tp((a0, . . . , an)|A) = tp((ai0 , . . . , ain)|A).

We prove this by induction on n. The case n = 0 is clear. Let i0 < · · · < in <
in+1. Now an+1 realizes p↿Aa0 . . . an and ain+1

realizes p↿Aa0 . . . aN where
N = in+1 − 1, hence ain+1

realizes p↿Aai0 . . . ain . Assuming inductively the
displayed identity above, it follows that

tp((a0, . . . , an, an+1)|A) = tp((ai0 , . . . , ain , ain+1
)|A).

For (3), let (bi) be a Morley sequence in p. Induction on n as in the proof of
(2) yields tp((a0, . . . , an)|A) = tp((b0, . . . , bn)|A), and (3) follows. To prove
(4), let p be the global nonforking extension of p. Consider an L-formula
δ(x, y). The proof of Lemma 8.4 shows that p ↾ δ is defined over (bi) for
some Morley sequence (bi) in p. But p and thus p↾δ is also defined over A.
Then by (3) p↾δ is defined over (ai). Since δ is arbitrary, it follows that p,
and thus p is defined over {ai : i ∈ N}. �

There is a problem with this proof since we only defined p ↿ B for types p
over models. For stationary p it should be defined in general.
Independence of parameter sets. For use in Section 13 we extend our
notion of independence from finite tuples to parameter sets: A is indepen-
dent from B over C, notation: A |⌣

C

B, if for each A-tuple a we have a |⌣
C

B.

It is easily checked that if A and B are the parameter sets corresponding
to tuples a and b, then A |⌣

C

B is equivalent to a |⌣
C

b as defined previously.

Thus our notation for independence of parameter sets agrees with the con-
vention of letting a tuple in M stand for the corresponding parameter set
when it suits us.

12. Combinatorial Geometries and Strongly Minimal Sets

Strongly minimal sets are basic building blocks of totally transcendental
structures. As we shall see, some very robust features of a strongly minimal
set are in turn controlled by something more primitive: a pregeometry. We
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begin with discussing pregeometries. As the name suggests, a pregeometry
can be turned into a geometry.

Pregeometries. A pregeometry is a set Ω with an operation

cl : P(Ω) −→ P(Ω)

such that for all E ⊆ Ω and a, b ∈ Ω:

(1) E ⊆ clE;
(2) clE =

⋃

{clF : F a finite subset of E};
(3) cl(clE) = clE;
(4) a ∈ cl(E ∪ {b}), a /∈ clE =⇒ b ∈ cl(E ∪ {a}).

In most cases (1) and (2) are trivially satisfied, and (3) and (4) may require
a little work. Condition (4) is called the Steinitz Exchange Axiom and is
the most significant of the four conditions.

Examples.

(1) Let Ω be any set. For E ⊆ Ω, let clE := E. This makes Ω into a
(rather trivial) pregeometry.

(2) Let V be a (left) vector space over a division ring k. For E ⊆ V ,
put clE := k-linear span of E. This makes V into a pregeometry.

(3) Let K be a field. For E ⊆ K, let clE be the set of all a ∈ K that
are algebraic over the subfield of K generated by E. This makes K
into an pregeometry.

Let Ω be a pregeometry as above, and E ⊆ Ω. Condition (2) yields

E ⊆ E′ ⊆ Ω =⇒ clE ⊆ clE′.

We call E closed if clE = E. The intersection (inside Ω) of any collection
of closed subsets of Ω is also closed, and clE is the smallest closed subset of
Ω that contains E.

We say that E is independent if a /∈ cl(E \ {a}) for all a ∈ E, that E
generates or spans Ω if clE = Ω, and that E is a basis of Ω if E is both
independent and generates Ω. It is easy to show that the following three
conditions are equivalent:

(1) E is a maximal independent subset of Ω;
(2) E is a minimal generating set of Ω;
(3) E is a basis of Ω.

For example, to show that (2) =⇒ (3), prove first that if E spans Ω and
F ⊆ E is independent, then Ω has a basis B such that F ⊆ B ⊆ E. (Use
Zorn.) Special cases: if F is independent, then it is a subset of a basis of Ω,
and if E spans Ω, then E has a subset that is a basis of Ω. In particular,
Ω has a basis. We leave the proof of the following exchange lemma as an
exercise.

Lemma 12.1. Let E and F be bases of Ω and e ∈ E \ F . Then there is an
f ∈ F such that (E \ {e}) ∪ {f} is also a basis of Ω.
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Now a key result:

Proposition 12.2. All bases of Ω have the same size.

Proof. Let E and F be bases of Ω. Consider first the case that F is finite.
We claim that then E is finite. To see why, note that each f ∈ F lies
in cl(Ef ) for some finite Ef ⊆ E, so F ⊆ cl(E′) with finite E′ ⊆ E, so
E ⊆ Ω = cl(F ) ⊆ cl(E′). Since E is independent, this gives E = E′, so E
is finite. With E and F both finite, one uses the exchange lemma above to
obtain |E| = |F |. It remains to consider the case that E and F are both
infinite. Then we argue as before: for each f ∈ F we take a finite Ef ⊆ E
such that f ∈ cl(Ef ). Then

F ⊆
⋃

f∈F

clEf ⊆ cl
(

⋃

f∈F

Ef

)

= clE′, E′ :=
⋃

f∈F

Ef ,

so E ⊆ Ω = clF ⊆ clE′ with E′ ⊆ E, so E′ = E. Hence |E| = |E′| ≤
|F | · ℵ0 = |F |. Likewise, |F | ≤ |E|. �

The rank of the pregeometry, denoted by rk Ω, is the size of any basis of Ω.
Some people call it the dimension of the pregeometry, but in some cases, like
projective geometry, this conflicts with more natural notions of dimension,
so the neutral term “rank” is to be preferred.

Note that in example (1) the set Ω is itself a basis, so rk Ω = |Ω|, and
in example (2), the notions of spanning set, independent set, and basis are
the familiar ones in vector spaces, and thus rk Ω = dimk Ω. In example (3),
independent means algebraically independent, so rk Ω is the transcendence
degree of the field Ω over its prime field.

Let X ⊆ Ω. Then we consider X as a pregeometry with respect to the
closure operation E 7→ cl(E) ∩X : P(X) → P(X). Note that a set E ⊆ X
is independent in the pregeometry X if and only if E is independent in Ω,
so, with harmless ambiguity:

rkX = size of any maximal independent subset of X.

We also have the pregeometry Ω|X (“Omega over X”) which has Ω as its
underlying set, and closure operation

E 7→ cl(E ∪X) : P(Ω)→ P(Ω).

A set F ⊆ Ω that is independent in the pregeometry Ω|X is also said to be
independent over X or X-independent. If E is a basis of X and F a basis
of Ω|X, then E ∩ F = ∅, and E ∪ F is a basis of Ω. Thus

rk Ω = rkX + rk Ω|X (additivity of rank)

We also define rk(E|X) to be the rank of the pregeometry (E ∪ X)|X.
Note that any maximal X-independent subset of E is a basis of (E ∪X)|X,
so rk(E|X) is the size of any maximal X-independent subset of E. The
pregeometry Ω|X is also referred to as the localization of Ω at X.
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From a pregeometry to a geometry. A (combinatorial) geometry is a
pregeometry Ω such that cl ∅ = ∅ and cl{a} = {a} for each a ∈ Ω. The
pregeometry on a set Ω with clE = E for each E ⊆ Ω is a geometry. But
the pregeometry of a vector space over a division ring is not a geometry,
since it has cl ∅ = {0}.

Let Ω be a pregeometry. By a line of Ω we mean a set cl{a} with a ∈
Ω \ cl ∅. Note that any two distinct lines of Ω have the trivial intersection
cl ∅. The sets E,F ⊆ Ω are said to intersect nontrivially if their intersection
contains an element outside cl ∅.

To the pregeometry Ω we associate a geometry Ω′ with closure operation
cl′ as follows: The points (elements) of Ω′ are the lines of Ω; for X ⊆ Ω′, the
union ∪X is the set of all elements of Ω that lie on some line p ∈ X, and we
define cl′X ⊆ Ω′ to be the set of all lines of Ω that are contained in cl∪X.

Let E ⊆ Ω, and put E′ := {cl{a} : a ∈ E \ cl ∅}, that is, E′ ⊆ Ω′ is the
set of lines of Ω that intersect E nontrivially. It is easy to see that cl′E′

is the set of lines of Ω that intersect clE nontrivially. Note that we have a
bijection E 7→ E′ from the set of closed subsets E of Ω onto the set of closed
subsets of Ω′. Note also that if E is independent, then E′ is independent.
In particular, rkE = rkE′ for all E.

Let Ω be the pregeometry of a vector space over a division ring k. Then the
points of Ω′ are the lines ka (a ∈ Ω, a 6= 0), that is Ω′ = P(Ω), the projective
space associated to the vector space Ω. Note also that if E ⊆ Ω is closed,
that is, E is a k-linear subspace of Ω, then E′ = P(E) := {ka : 0 6= a ∈ E}.
Thus our construction of a geometry from a pregeometry generalizes the
construction of the projective space associated to a vector space. We call
Ω′ the projective geometry associated to the vector space Ω. Note that if
Ω as a vector space over k has dimension n, then rk Ω = n = rk Ω′, but
the projective space P(Ω) is regarded as a space of dimension n − 1 for
n > 0. So our combinatorially defined rank does not always agree with
more geometrically inspired notions of dimension.

We also associate to a vector space V over a division ring k another com-
binatorial geometry, namely its affine geometry: define a flat to be either
a translate a + E of a linear subspace E or the empty subset of V . Then
the flats are the closed sets of the affine geometry of V , which has V as its
underlying set. Localizing this geometry at {0} we get back the pregeometry
of the vector space V .

The pregeometry on a strongly minimal set. We now return to the
setting of our monster model M of T , but we do not assume that T is totally
transcendental unless we say so.

Let Ω ⊆Mx be infinite and type-definable over A, such that for each definable
X ⊆Mx, either Ω∩X is finite, or Ω \X is finite. (For A-definable Ω ⊆Mx

this just says that Ω is strongly minimal, but there are situations of interest
where the weaker assumption is relevant.)
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Then we have the following exchange lemma:

Lemma 12.3. Let a ∈ Ω, b ∈ My, and suppose b is Aa-algebraic, but not
A-algebraic. Then a is Ab-algebraic.

Proof. Take an A-definable relation R ⊆ Mx ×My such that R(a) is finite,
say |R(a)| ≤ n, and b ∈ R(a). By shrinking R we can arrange that |R(a′)| ≤

n for all a′ ∈Mx. If the set R̆(b) ∩Ω is finite, then it is Ab-definable, which

in view of a ∈ R̆(b) ∩ Ω yields that a is Ab-algebraic, and we are done.

Assume R̆(b) ∩ Ω is infinite, so |Ω \ R̆(b)| = m, say. Representing Ω as an
intersection of A-definable subsets of Mx, one of these A-definable sets, call
it X, satisfies

X ⊆Mx, X ⊇ Ω, |X \ R̆(b)| = m.

By shrinking R further we can arrange that for all b′ ∈My,

either |X \ R̆(b′)| ≤ m, or R̆(b′) = ∅.

The set Y := {b′ ∈ My : |X \ R̆(b′)| ≤ m} is A-definable and contains b, so
Y is infinite. Take distinct b1, . . . , bn+1 ∈ Y . Then the sets

R̆(b1) ∩Ω, . . . , R̆(bn+1) ∩ Ω

are cofinite in Ω, so have a common element a′, hence |R(a′)| ≥ n + 1 > n,
a contradiction. �

This allows us to introduce a pregeometry on Ω, but to do this we need to
view a set E ⊆ Mx as a parameter set. More precisely, we assign to such
E the parameter set [E] consisting of the components of the elements of
E; that is, if x = (xi)i∈I with each variable xi of sort si, then [E] is the
parameter set given by

[E]s :=
⋃

{i∈I:si=s}

{ei : e ∈ E}.

(Note that if E is not small, then [E] is not small.) When using terminology
like “E-definable” and “E-algebraic” for E ⊆ Mx we regard E as standing
for the parameter set [E]. Likewise, AE is the parameter set A[E].

For the rest of this section E ranges just over subsets of Ω, and we define
the closure operation clA : P(Ω)→ P(Ω) by

clA(E) := {a ∈ Ω : a is algebraic over AE}.

Here we have fixed the (small) parameter set A over which Ω is type-
definable. Of course, Ω is then also type-definable over any B ⊇ A, and
this yields likewise a closure operation

clB : P(Ω)→ P(Ω).

Theorem 12.4. The set Ω with the closure operation clA is a pregeometry,
denoted by ΩA. For any a, b ∈ Ω outside clA(E) there is an f ∈ Aut(M|AE)
such that f(a) = b.
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Proof. The first three axioms defining pregeometries are obviously satisfied,
and the Exchange Axiom is satisfied because of Lemma 12.3 applied to AE
instead of A. Let a, b ∈ Ω be outside clA(E). It clearly suffices to show:

Claim. tp(a|AE) = tp(b|AE). Suppose this claim fails. Then we have an
AE-definable X ⊆ Mx such that a ∈ X and b /∈ X. We can assume that
Ω ∩ X is finite. (Otherwise, interchange the roles of a and b, replacing X
by its complement in Mx.) Then Ω ∩X is AE-definable, so a ∈ clA(E), a
contradiction. �

We let rkAE denote the rank of E in the pregeometry ΩA, that is, rkAE
is the size of any maximal independent subset of E (“independent” in the
sense of the pregeometry ΩA).

We have a global type p ∈ Stx(M) associated to Ω:

p := {X ∈ Defx(M) : Ω \X is finite }.

If Ω is strongly minimal, then p is the global type determined by Ω, and
MR(p) = 1. By the result above and its proof, an element a ∈ Ω realizes
p ↾ AE iff a /∈ clA(E). An n-tuple (a1, . . . , an) ∈ Ωn is said to be E-
independent if a1, . . . , an are distinct and {a1, . . . , an} ⊆ Ω is E-independent
in the pregeometry ΩA that is, independent in the pregeometry ΩA|E. For
E = ∅ we write “independent” instead of “∅-independent”.

Lemma 12.5. Let n ≥ 1, and suppose (a1, . . . , an) ∈ Ωn is E-independent
and (b1, . . . , bn) ∈ Ωn is E-independent. Then there is an f ∈ Aut(M|AE)
such that f(ai) = bi for i = 1, . . . , n.

Proof. By the theorem above we can take a g ∈ Aut(M|AE) such that
g(a1) = b1. By replacing (a1, . . . , an) by its image under g (and renaming)
we reduce to the case that a1 = b1. If n > 1, use that (a2, . . . , an) and
(b2, . . . , bn) are E ∪ {a1}-independent, and proceed inductively. �

Note that for each n there are a1, . . . , an ∈ Ω such that (a1, . . . , an) is inde-
pendent: just take ai ∈ Ω to be outside clA({a1, . . . , ai−1}) for i = 1, . . . , n.
Thus the pregeometry ΩA has infinite rank.

We now continue with the more restrictive strongly minimal case, that is,
in the rest of this section we assume:

Ω is A-definable , MR(Ω) = 1, MD(Ω) = 1.

(But we do not assume that T is totally transcendental.) It follows by
induction on n and an exercise in Section 2.3 that MR(Ωn) ≤ n.

Lemma 12.6. Let E be small. Then for all (a1, . . . , an) ∈ Ωn,

MR((a1, . . . , an)|AE) = n ⇐⇒ (a1, . . . , an) is E-independent.
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Proof. By induction on n. The case n = 0 is trivial. Assume the lemma
holds for a certain n, and let a = (a1, . . . , an, an+1) ∈ Ωn+1.

To obtain the direction ⇐, let a be E-independent, and let X ⊆ Ωn+1

be AE-definable with a ∈ X; it remains to show that MR(X) = n + 1. By
identifying Ωn+1 with Ω× Ωn we make X into a binary relation:

X ⊆ Ω× Ωn.

The set X(a1) ⊆ Ωn is definable over AEa1 and contains the n-tuple
(a2, . . . , an+1), which is (E ∪ {a1})-independent, so MR

(

X(a1)
)

= n by the

inductive assumption. Hence MR
(

X(b)
)

= n for b ∈ Ω outside clA(E), and
there are infinitely many such b. These b produce infinitely many disjoint
definable subsets {b}×X(b) of X of Morley rank n. Hence MR(X) = n+ 1.

For the direction ⇒, suppose a is not E-independent. By permutating
the coordinates of the (n + 1)-tuple a we arrange that an+1 is algebraic
over AEa′ where a′ := (a1, . . . , an), so we have an AE-definable relation
Y ⊆ Ωn × Ω = Ωn+1 such that a ∈ Y and Y (a′) is finite, say |Y (a′)| = m.
We can shrink Y to arrange that |Y (b′)| ≤ m for all b′ ∈ Ωn. It follows that
MR(Y ) ≤ MR(Ωn) ≤ n, and thus MR(a|AE) ≤ n. �

Corollary 12.7. Given any a1, . . . , an ∈ Ω, we have

MR
(

(a1, . . . , an)|A
)

= rkA{a1, . . . , an}.

Proof. Suppose rkA{a1, . . . , an} = k. By permutating the coordinates of the
tuple (a1, . . . , an) we can arrange that (a1, . . . , ak) is independent, and that
ak+1, . . . , an are algebraic over A(a1, . . . , ak). Then MR

(

(a1, . . . , an)|A
)

=

MR
(

(a1, . . . , ak)|A
)

= k by Lemma 10.4 and Lemma 12.6. �

Corollary 12.8. Let a = (a1, . . . , am) ∈ Ωm and b = (b1, . . . , bn) ∈ Ωn, so
(a, b) := (a1, . . . , am, b1, . . . , bn) ∈ Ωm+n. Then

MR((a, b)|A) = MR(a|bA) + MR(b|A).

Proof. Let E = {a1, . . . , am} and F = {b1, . . . , bn}. Then MR((a, b)|A) =
rkA(E ∪ F ), MR(a|bA) = rkbA(E), and MR(b|A) = rkA(F ). Now use that

rkA(E ∪ F ) = rkbA(E) + rkA(F ).

�

For definable Y ⊆ Ωn we can determine MR(Y ) inductively. To see how,
let n > 0 and use the identification Ωn = Ωn−1 × Ω to view Y as a binary
relation: Y ⊆ Ωn−1 × Ω. By an exercise in Section 10 we have an m such
that for all b ∈ Ωn−1, either |Y (b)| ≤ m or |Ω \ Y (b)| ≤ m. Put

Y ′ := {b ∈ Ωn−1 : 1 ≤ |Y (b)| ≤ m},

Y ′′ := {b ∈ Ωn−1 : |Ω \ Y (b)| ≤ m}.

Then Y ′ and Y ′′ are definable, and Y is the disjoint union of (Y ′×Ω)∩Y and
(Y ′′×Ω)∩Y , whose Morley ranks are MR(Y ′) and MR(Y ′′)+1, respectively.
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(Why?) Thus

MR(Y ) = max{MR(Y ′), MR(Y ′′) + 1}.

This argument can be done “with parameters” to obtain the definability of
Morley rank within definable families of subsets of Ωn:

Corollary 12.9. Let X be a definable set in M and R ⊆ X×Ωn a definable
relation. Then {a ∈ X : MR

(

R(a)
)

≥ d} is definable for d = 0, . . . , n.

Proof. We proceed by induction on n. The case n = 0 being obvious, assume
n > 0. Identify Ωn with Ωn−1 × Ω and take m such that for all a ∈ X and
b ∈ Ωn−1, either |X(a)(b)| ≤ m or |Ω \X(a)(b)| ≤ m. Put

R′ := {(a, b) ∈ X ×Ωn−1 : 1 ≤ |X(a)(b)| ≤ m} ⊆ X × Ωn−1,

R′′ := {(a, b) ∈ X ×Ωn−1 : |Ω \X(a)(b)| ≤ m} ⊆ X × Ωn−1.

By the argument preceding this corollary we have for each a ∈ X:

MR
(

R(a)
)

= max{MR
(

R′(a)
)

, MR
(

R′′(a)
)

+ 1}.

The desired result now follows by applying the inductive assumption to the
definable relations R′ and R′′. �

Extension to algebraic elements. In this subsection we assume

T is totally transcendental.

An element h ∈ My is said to be A-algebraic over Ω if h is algebraic over
AE for some (finite) E. We extend some of our results on tuples in Ω to
elements that are A-algebraic over Ω.

Lemma 12.10. Suppose that h ∈My is A-algebraic over Ω. Then there are
a = (a1, . . . , am) ∈ Ωm and b = (b1, . . . , bn) ∈ Ωn such that the tuple

(a, b) := (a1, . . . , am, b1, . . . , bn) ∈ Ωm+n

is independent in the pregeometry ΩA, h is independent from a over A, and
h and b are interalgebraic over Aa (so MR(h|A) = MR(h|Aa) = n).

Proof. Take a finite E of minimal size such that h is algebraic over AE.
Note that then E is independent in ΩA. Let a1, . . . , am ∈ E be distinct
such that {a1, . . . , am} is a basis of E in the pregeometry ΩAh, and let E =
{a1, . . . , am, b1, . . . , bn} with |E| = m+ n. Then each bi ∈ clAh{a1, . . . , am},
so (b1, . . . , bn) is algebraic over Aa1 . . . amh. Hence h and (b1, . . . , bn) are
interalgebraic over Aa1 . . . am. Also,

MR
(

(a1, . . . , am)|Ah
)

= m = MR
(

(a1, . . . , am)|A
)

,

hence (a1, . . . , am) |⌣
A

h, and thus h |⌣
A

(a1, . . . , am), as desired. �

In this lemma, with n = MR(h|A), we can take for (b1, . . . , bn) any element
of Ωn that is independent in the pregeometry ΩAh, since all such n-tuples
are conjugate under Aut(M|Ah).
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Lemma 12.11. Let g ∈My and h ∈Mz be A-algebraic over Ω. Then

MR
(

(g, h)|A) = MR(g|hA) + MR(h|A).

Proof. By the previous lemma we can take a ∈ Ωp and b ∈ Ωm such that

g |⌣
A

a and g is interalgebraic with b over Aa,

and we can take c ∈ Ωq and d ∈ Ωn such that

h |⌣
A

c and h is interalgebraic with d over Ac.

We arrange that for (g, h) ∈My ×Mz and (a, c) ∈ Ωp+q we have

(g, h) |⌣
A

(a, c).

This is done as follows: Take an automorphism of M over Ag that sends a
to a realization of a nonforking extension of tp(a|Ag) to Agh, and replace a
and b by their images under this automorphism; this achieves

MR(a|Agh) = MR(a|Ag) = MR(a|A).

Next, take an automorphism of M over Ah that sends c to a realization of
a nonforking extension of tp(c|Ah) to Agha and replace c and d by their
images under this automorphism; this guarantees

MR(c|Agha) = MR(c|Ah) = MR(c|A).

Hence

MR((a, c)|A) = MR(c|Aa) + MR(a|A) = MR(c|Agha) + MR(a|Agh)

= MR((a, c)|Agh),

so (a, c) |⌣
A

(g, h), and thus (g, h) |⌣
A

(a, c) by symmetry. Then

MR
(

(g, h)|A) = MR
(

(g, h)|Aac
)

= MR((b, d)|Aac)

= MR(b|Aacd) + MR(d|Aac)

= MR(b|Aacd) + MR(h|Aac).

From (g, h) |⌣
A

(a, c) we obtain g |⌣
Ah

(a, c), so MR(g|Ah) = MR(g|Aach) =

MR(b|Aach) = MR(b|Aacd). Likewise, using h |⌣
A

(a, c) we get

MR(h|A) = MR(h|Aac).

�

A set Z ⊆ Mz is said to be almost strongly minimal with respect to Ω, A if
Z is definable and each element of Z is A-algebraic over Ω.

An easy saturation argument yields:
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Lemma 12.12. A definable set Z ⊆ Mz is almost strongly minimal with
respect to Ω, A if and only if there are k,N ∈ N and A-definable relations
R1 ⊆ Ωn1 ×Mz, . . . , Rk ⊆ Ωnk ×Mz whose sections are all finite of size at
most N , such that each element of Z lies in a section of some Ri.

With Lemmas 12.11 and 12.12 some properties of almost strongly minimal
sets follow easily from similar properties of definable subsets of Ωn:

Exercises. Let Z ⊆ Mz be almost strongly minimal with respect to Ω, A.
Show that MR(Z) < ω. Let also Y ⊆ My and R ⊆ Y × Z be definable.
Prove:

(1) {g ∈ Y : MR
(

R(g)
)

≥ d} is definable;

(2) if MR
(

R(g)
)

= d for all g ∈ Y , then MR(R) = MR(Y ) + d.

13. Modularity

In this section we view the collection of closed sets in a pregeometry Ω as a
lattice with respect to inclusion. The meet and join operations of this lattice
are given by

E ∧ F := E ∩ F, E ∨ F := cl(E ∪ F ).

We begin with a short excursion on (modular) lattices in general.

Modular Lattices. A poset (partially ordered set) is said to be a lattice
if any elements a, b in it have a least upperbound a ∨ b (their join) and
a greatest lowerbound a ∧ b (their meet). For example, a boolean algebra
viewed as a poset is a lattice.

In this subsection P is a lattice, and a, b, c range over P . The partial
ordering of P can be recovered from its join operation as well as from its
meet operation:

a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∧ b = b.

The join and meet operations of P are idempotent (a ∨ a = a ∧ a = a),
commutative, associative, and satisfy the absorption identities:

a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

A sublattice of P is just a subset of P closed under ∨ and ∧, and is thus a
lattice with respect to the induced partial ordering. For example, given a, c
we have the sublattice [a, c] := {b : a ≤ b ≤ c} of P . Note that for all a, b, c:

a ≥ c =⇒ a ∧ (b ∨ c) ≥ (a ∧ b) ∨ c.

The lattice P is said to be modular if for all a, b, c

a ≥ c =⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c.

This identity implies its own dual: if P is modular, then for all a, b, c

a ≤ c =⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c.

Of course, a sublattice of a modular lattice is modular as well.
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Example. Let G be an abelian (additively written) group and consider the
lattice of all subgroups of G with respect to inclusion. Its join and meet
operations are given by A ∨ B = A + B, A ∧ B = A ∩ B. It is easy to
check that this lattice is modular. Thus the lattice of linear subspaces of a
vector space over a division ring is modular.

There are many results about modular lattices, but we develop here only
what is needed for our purpose. Let N5 be the lattice with exactly five
distinct elements o, p, q, r, i with o as least element, i as the greatest element,
and p < q, p ∨ r = i, q ∧ r = o. This pentagon shaped lattice N5 is not
modular: q ≥ p, but q ∧ (r ∨ p) = q and (q ∧ r) ∨ p = p. The significance of
N5 is that modularity of P is equivalent to P not containing a copy of N5:

Proposition 13.1. The following conditions on P are equivalent:

(1) P is modular;
(2) a ∧ (b ∨ c) = a ∧

(

(b ∧ (a ∨ c)) ∨ c
)

for all a, b, c;
(3) P has no sublattice isomorphic to N5.

Proof. For (1)⇒ (2), assume P is modular. Since a ∨ c ≥ c, this yields

(b ∧ (a ∨ c)) ∨ c = (b ∨ c) ∧ (a ∨ c),

hence a ∧
(

(b ∧ (a ∨ c)) ∨ c
)

= a ∧
(

(b ∨ c) ∧ (a ∨ c)
)

= a ∧ (b ∨ c).
For (2)⇒ (3), note that the identity of (2) fails in N5:

q∧ (r∨ p) = q∧ i = q and q∧
(

(r∧ (q∨ p))∨ p = q∧ ((r∧ q)∨ p) = q∧ p = p.

For (3) ⇒ (1), suppose P is not modular. Take a, b, c such that a ≥ c but
a ∧ (b ∨ c) 6= (a ∧ b) ∨ c. We leave it as an exercise to show that

a ∧ b, (a ∧ b) ∨ c, a ∧ (b ∨ c), b ∨ c, b

are distinct, and are the elements of a sublattice of P isomorphic to N5. �

Given a second lattice Q, we make the cartesian product set P ×Q into
a lattice by defining (for d, e ∈ Q):

(a, d) ≤ (b, e) ⇐⇒ a ≤ b and d ≤ e,

so that (a, d) ∨ (b, e) = (a ∨ b, d ∨ e), (a, d) ∧ (b, e) = (a ∧ b, d ∧ e). The
following isomorphisms are very useful, and easily verified:

Proposition 13.2. Let P be modular. Then we have an isomorphism

s 7→ s ∨ b : [a ∧ b, a]→ [b, a ∨ b],

of sublattices, with inverse isomorphism

t 7→ t ∧ a : [b, a ∨ b]→ [a ∧ b, a].

Moreover, the map

(s, s′) 7→ s ∨ s′ : [a ∧ b, a]× [a ∧ b, b]→ [a ∧ b, a ∨ b]

is an isomorphism of the product lattice [a∧ b, a]× [a∧ b, b] onto a sublattice
of [a ∧ b, a ∨ b], with inverse given by c 7→ (c ∧ a, c ∧ b).
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We now return to the setting of a pregeometry with its lattice of closed sets.

Modular pairs. In this subsection E and F are closed sets of finite rank
in a pregeometry Ω. Consider the inclusion diagram

.........................

Take bases B,C,D of E ∧ F , E|E ∧ F and F |E ∧ F , respectively. Then
B,C,D are finite, pairwise disjoint, B ∪ C is a basis of E, B ∪D is a basis
of F , and B ∪ C ∪D generates E ∨ F . Hence

rkE ∨ F ≤ rk(E ∧ F ) + rk(E|E ∧ F ) + rk(F |E ∧ F ).

In view of

rk(E|E ∧ F ) = rk(E)− rk(E ∧ F ) and rk(F |E ∧ F ) = rk(F )− rk(E ∧ F ),

this inequality becomes

rkE + rkF ≥ rk(E ∨ F ) + rk(E ∧ F ),

in other words, rk(E|E ∧ F ) ≥ rk(E ∨ F |F ). This argument also shows:

rkE + rkF = rk(E ∨ F ) + rk(E ∧ F ) ⇐⇒ C is independent in Ω|F

⇐⇒ rk(E|E ∧ F ) = rk(E ∨ F |F ).

Let us call the pair E,F modular if

rkE + rkF = rk(E ∨ F ) + rk(E ∧ F ),

equivalently, rk(E|E ∧ F ) = rk(E ∨ F |F ). Note that if rk(E|E ∧ F ) ≤ 1,
then E,F is modular. (This is because C ∩ F = ∅.)

Next, let E ∧ F ⊆ D ⊆ E with D closed. Then the inclusion diagram
above consists of two subdiagrams:

.............

Take a basis C1 of E|D, and a basis C2 of D|E ∧F , and let C = C1 ∪C2 (a
disjoint union) be the corresponding basis of E|E ∧ F . Note that then C1

generates E ∨ F |D ∨ F and C2 generates D ∨ F |F . Hence E,F is modular
if and only if C1 is a basis of E ∨ F |D ∨ F and C2 is a basis of D ∨ F |F ,
that is, if and only if rk(E|D) = rk(E ∨ F |D ∨ F ) and D,F is modular.

Claim. rk(E|D) = rk(E ∨ F |D ∨ F ) if and only if E ∧ (D ∨ F ) = D and
E,D ∨ F is modular.

The “if” direction is clear, and the “only if” direction follows from

rk(E|D) ≥ rk(E|E ∧ (D ∨ F )) ≥ rk(E ∨ F |D ∨ F ).
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Corollary 13.3. Suppose E,F is modular. Consider the maps

up : [E ∧ F,E]→ [F,E ∨ F ], up(D) := D ∨ F

down : [F,E ∨ F ]→ [E ∧ F,E], down(G) := E ∧G.

Then down ◦up = the identity on [E ∧ F,E], in particular, up is injective.
If in addition E,G is modular for each G ∈ [F,E ∨ F ], then both maps are
isomorphisms between sublattices of the lattice of closed sets in Ω.

Proof. The arguments above proves the first assertion. Let G ∈ [F,E ∨ F ]
and put D = E ∧G. Then D ∨ F ⊆ G, and D,F is modular, so if E,G is
also modular, then necessarily G = D ∨ F , as is easily seen in an inclusion
diagram. �

Modular pregeometries. Let Ω be a pregeometry; we let E,F range over
subsets of Ω. Modularity is a very strong condition, and appears in model
theory in the company of other properties that a pregeometry Ω may or may
not have:

(1) Triviality: clE =
⋃

a∈E cl{a}, for all finite E;
(2) Modularity: E,F is modular for all closed E and F of finite rank;
(3) Local modularity: E,F is modular for all closed E and F of finite

rank with E ∧ F 6= cl ∅;
(4) Local finiteness: clE is finite for all finite E;
(5) Homogeneity: for any finite E and a, b ∈ Ω \ clE the pregeometry

has an automorphism fixing E pointwise and sending a to b.

In the first example of the previous section, where clE = E for all E, the
pregeometry is trivial, modular, locally finite, and homogeneous. The second
example, where Ω is the pregeometry of a vector space over a division ring k,
is modular and homogeneous; it is also locally finite if k is a finite field. If in
the third example the field K is algebraically closed, then the pregeometry
is homogeneous. Note also that the pregeometry ΩA of Theorem 12.4 is
homogeneous. If Ω is the affine geometry of a vector space over a division
ring k, then Ω is homogeneous, and locally finite if in addition k is finite.
Note that if Ω is a geometry, then triviality of Ω means that clE = E for
all E.

Combinatorial geometries became important in model theory when Zilber
conjectured the following theorem, subsequently proved by him and inde-
pendently by Cherlin and by Mills:

Theorem 13.4. Suppose Ω is a homogeneous locally finite geometry of in-
finite rank. Then one of the following happens:

(1) Ω is trivial;
(2) Ω is isomorphic to the projective geometry associated to a vector

space of infinite dimension over a finite field;
(3) Ω is isomorphic to the affine geometry of a vector space of infinite

dimension over a finite field.
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We do not prove this here, and just mention it to give some perspective on
what we are engaged in. The next result has a routine proof.

Lemma 13.5. Each of the five properties listed above is inherited from Ω by
the geometry Ω′ associated to Ω, and by each localization Ω|X with X ⊆ Ω.

Lemma 13.6. Ω is modular if and only if its lattice of closed sets is modular.

Proof. The lattice of closed sets is modular iff its sublattice of closed sets of
finite rank is modular. This follows easily from the definitions and the fact
that a closed set is the directed union of its closed subsets of finite rank.

Suppose now that Ω is modular. To show that the lattice of closed sets of
finite rank is modular, assume towards a contradiction that this lattice has
a sublattice isomorphic to N5. Then we have closed sets E,F of finite rank,
and a closed set D strictly between E ∧F and E such that D ∨F = E ∨F ,
but this contradicts Corollary 13.3.

For the converse, assume the lattice of closed sets is modular, and let E
and F be closed of finite rank. Let n := rk(E|F ), so we have a strictly
increasing sequence

E ∧ F = D0 ⊂ D1 ⊂ · · · ⊂ Dn = E

of closed sets. By Proposition 13.2 this yields a strictly increasing sequence

F = D0 ∨ F ⊂ D1 ∨ F ⊂ · · · ⊂ Dn ∨ F = E ∨ F

of closed sets, hence rk(E ∨ F |F ) ≥ n = rk(E|E ∧ F ). Also

rk(E ∨ F |F ) ≤ rk(E|E ∧ F ),

and thus E,F is modular. �

The next lemma has a routine proof.

Lemma 13.7. Ω is locally modular if and only if each localization Ω|{a}
with a ∈ Ω \ cl ∅ is modular. If Ω is homogeneous and Ω|{a} is modular for
some a ∈ Ω \ cl ∅, then Ω is locally modular.

Lemma 13.8. If E,F is modular for all closed E,F of finite rank with
rk(E|E ∧ F ) = 2, then Ω is modular.

Proof. We prove the contrapositive. Assume Ω is not modular, so E,F is
not modular for certain closed E and F of finite rank; take such E and F
for which n := rk(E|E ∧F ) is minimal, so n ≥ 2 and rk(E ∨ F |F ) < n. Let
C = {c1, . . . , cn} be a basis of E|E ∨ F , and put

E1 := cl((E ∧ F ) ∪ {c1, . . . , cn−1},

so rk(E1|E ∧ F ) = n − 1. Also E1, F is modular by the minimality of n,
hence rk(E1 ∨ F |F ) = n− 1, and thus E1 ∨ F = E ∧ F . Next, let

E2 := cl((E ∧ F ) ∪ {c1, . . . , cn−2},

so rk(E1|E2) = 1, and thus for G := E2 ∨ F we have rk(E ∨ F |G) = 1 and
E1 ∧G = E2, by Corollary 13.3.
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Claim. E ∧G = E2.

To prove the claim, note that E2 ⊆ E∧G. Suppose E2 is properly contained
in E∧G. Then rk(E∧G|E∧F ) = n−1, so E∧G,F is modular by minimality
of n. Hence rk(G|F ) ≥ rk((E ∧ G) ∨ F |F ) = rk(E ∧ G|E ∧ F ) = n − 1,
contradicting rk(G|F ) = n− 2. This proves the claim.

It follows that E,G is not modular, since rk(E|E2) = 2 and rk(E∨G|G) =
rk(E ∨ F |G) = 1. Thus E,G has the desired property. �

We can go further along these lines:

Lemma 13.9. If E,F is modular for all closed E,F of finite rank with
rk(E|E ∧ F ) = 2 = rk(F |E ∧ F ), then Ω is modular.

Proof. Again, we prove the contrapositive, and assume Ω is not modular.
By the previous lemma we can take closed E,F of finite rank such that
E,F is not modular and rk(E|E ∧ F ) = 2. Take such E,F with minimal
m := rk(F |E ∧ F ), so m ≥ 2. Let {b1, . . . , bm} be a basis of F |E ∧ F , let
H := cl(E ∪ {b1}). Then

rk(H|E ∧ F ) = rk(H|E) + rk(E|E ∧ F ) = 3

= rk(H|H ∧ F ) + rk(H ∧ F |E ∧ F ),

so rk(H ∧F |E ∧F ) equals 1 or 2. It it equals 1, then rk(H|H ∧F ) = 2 and
rk(F |H∧F ) = m−1, and H,F is nonmodular, contradicting the minimality
of m. So rk(H ∧ F |E ∧ F ) = 2, and thus E,H ∧ F is nonmodular of the
desired form. �

Lemma 13.10. The following are equivalent:

(1) Ω is modular;
(2) for all closed E and F such that rkE = 2, F has finite rank, and

rk(E ∨ F |F ) = 1 we have E ∧ F 6= cl ∅;
(3) for each nonempty closed E and b ∈ Ω we have

cl(E ∪ {b}) =
⋃

a∈E

cl{a, b};

(4) for all nonempty closed E,F we have

E ∨ F =
⋃

a∈E,b∈F

cl{a, b}.

Proof. The direction (1) =⇒ (2) is clear. For the converse, suppose Ω is not
modular. Then Lemma 13.8 gives closed E,F of finite rank with

rk(E|E ∧ F ) = 2, rk(E ∨ F |F ) = 1.

Let {a, b} be a basis of E|E ∧ F and put E∗ := cl{a, b}. Then rkE∗ = 2
and rk(E∗|E∗ ∧ F ) = 2, so E∗ ∧ F = cl ∅. Also E∗ ∨ F = E ∨ F , so
rk(E∗ ∨ F |F ) = 1. This contradicts (2), and proves (the contrapositive of)
(2) =⇒ (1). For (1) =⇒ (3), assume (1), let E be closed and nonempty,



67

b ∈ Ω and c ∈ cl(E ∪ {b}). To find a ∈ E such that c ∈ cl{a, b} we can
assume E has finite rank and c /∈ cl{b}. By modularity,

rk(E ∪ {b, c}) = rkE + rk{b, c} − rk(E ∧ cl{b, c}), and

rk(E ∪ {b, c}) = rk(E ∪ {b}) = rkE + rk{b} − rk(E ∧ cl{b}).

Also, rk{b, c} = rk{b}+ 1, so E ∧ cl{b} is properly contained in E ∧ cl{b, c}.
Take a ∈ E ∧ cl{b, c} such that a /∈ cl{b}. Then c ∈ cl{a, b} by exchange.

To prove (3) =⇒ (4), assume (3), and let E,F be closed, nonempty, and,
without loss of generality, of finite rank. Let c ∈ E ∨ F . We have to find
a ∈ E and b ∈ F such that c ∈ cl{a, b}. We proceed by induction on rkF .
If rkF = 0, we take any b ∈ F , and apply (2). Next, let F = cl(F0 ∪ {b1})
with closed F0 and rkF = rkF0 + 1. Then by (3) we have an a0 ∈ E ∨ F0

such that c ∈ cl{a0, b1}. The inductive assumption gives a ∈ E and b0 ∈ F0

such that a0 ∈ cl{a, b0}. Then c ∈ cl{a, b0, b1} ⊆ cl(F ∪{a}), so by (3) there
is b ∈ F such that c ∈ cl{a, b}.

We leave (4) =⇒ (1) to the reader. �

14. Modularity, One-basedness, and Linearity

We now return to the setting of a totally transcendental theory T with
monster model M and a strongly minimal A-definable set Ω ⊆ Mz. This
gives the pregeometry ΩA with closure operation clA. We shall prove in this
section that local modularity of ΩA is equivalent to various other conditions.

Given a tuple a = (a1, . . . , an) ∈ Ωn and E ⊆ Ω, we put

clA(a) := clA{a1, . . . , an}, a subset of Ω,

rkA(a|E) := rkA({a1, . . . , an}|E).

Lemma 14.1. The following are equivalent:

(1) ΩA is modular;

(2) for all a ∈ Ωm and b ∈ Ωn: a |⌣
B

b, where B := A
(

clA(a) ∩ clA(b)
)

.

Proof. Recall first that by our notational conventions

rkA(a|E) = rkA

(

clA(a)|E
)

, (a ∈ Ωn, E ⊆ Ω).

Suppose ΩA is modular, and let a ∈ Ωm and b ∈ Ωn. Then

rkA

(

a| clA(a) ∩ clA(b)
)

= rkA

(

(a, b)| clA(b)
)

= rkA

(

a| clA(b)
)

,

hence MR
(

a|A(clA(a) ∩ clA(b))
)

= MR(a|A clA(b)) by Corollary 12.7, that

is, a |⌣
B

b, with B = A
(

clA(a) ∩ clA(b)
)

.

Suppose next that ΩA is not modular. Then by Lemma 13.8 there are a ∈ Ω2

and b ∈ Ωn such that rkA

(

a| clA(a) ∩ clA(b)
)

= 2 but rkA

(

a| clA(b)
)

< 2.
Hence

MR
(

a|A(clA(a) ∩ clA(b))
)

= 2, MR
(

a|A clA(b)
)

< 2,
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so a |⌣
B

b fails, with B as above. �

One-basedness. In the rest of this section T has EI, in addition to being
totally transcendental. This assumption is just for the convenience of having
simpler statements of some definitions and results. (To avoid assuming that
T has EI one would have to work in M

eq instead of M.)
Consider a parameter set P in M that is A-invariant, that is, f(P ) = P

for all f ∈ Aut(M|A). (We do not assume P is small.) We say that P is
one-based over A if for each P -tuple a and each B ⊇ A such that tp(a|B)
is stationary we have cb(a|B) ⊆ acl(Aa). Clearly, if P is one-based over A
and A ⊆ A′, then P is one-based over A′.

Lemma 14.2. The following are equivalent:

(1) P is one-based over A;
(2) for each P -tuple a and each B ⊇ A we have

a |⌣
C

B, where C := acl(Aa) ∩ acl(B).

Proof. Assume (1), let a be a P -tuple, and let B ⊇ A. Since tp(a| acl(B)) is
stationary, we have cb(a| acl(B)) ⊆ C := acl(Aa)∩acl(B). Hence tp(a| acl(B))

does not fork over C, that is, a |⌣
C

acl(B), and thus a |⌣
C

B.

The converse follows by similar reasoning. �

Lemma 14.3. If P is one-based over A, then acl(P ) is also one-based over
A. If A′ ⊇ A and P is one-based over A′, then P is one-based over A.

Proof. Assume P is one-based over A. Let a be an acl(P )-tuple such that
tp(a|B) is stationary, where B ⊇ A. To obtain cb(a|B) ⊆ acl(Aa) we can
assume B is algebraically closed, replacing B by acl(B) if necessary. Take

a P -tuple b such that a is b-algebraic. We can arrange that b |⌣
Aa

B, by

replacing b by a realization of a nonforking extension of tp(b|Aa) to AaB.
Then C := acl(Ab) ∩B ⊆ acl(Aa) by Lemma 11.8, so C = acl(Aa) ∩B. By

the lemma above, b |⌣
C

B, hence a |⌣
C

B, so cb(a|B) ⊆ C ⊆ acl(Aa).

Next, assume P is one-based over A′, where A′ ⊇ A. Let a be a P -tuple
and let B ⊇ A be such that tp(a|B) is stationary. We can arrange that B

is algebraically closed, and that A′ |⌣
A

Ba, so A′ |⌣
AB

a, that is, A′ |⌣
B

a, so

a |⌣
B

A′, that is, tp(a|A′B) does not fork over B. So cb(a|B) = cb(a|A′B).

By assumption, cb(a|A′B) ⊆ acl(A′a), hence cb(a|B) ⊆ acl(A′a) ∩ acl(B).

Since B |⌣
Aa

A′a, it follows that cb(a|B) ⊆ acl(Aa). �

Lemma 14.4. Suppose ΩA is modular. Then Ω is one-based over A.
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Proof. Let a ∈ Ωn and let B ⊇ A be such that tp(a|B) is stationary. Take b
such that cb(a|B) = dcl(b). By Lemma 11.17 the tuple b is definable over a

tuple c ∈ Ωm, and we arrange in the usual way that c |⌣
Ab

a, so a |⌣
Ab

c. Note

that then
cb(a|B) = cb(a|Ab) = cb(a|Abc) = cb(a|Ac).

By the modularity assumption and Lemma 14.1 we have

a |⌣
C

c, where C := A(clA(a) ∩ clA(c)).

Note that Ac ⊆ Cc ⊆ acl(Ac), so

cb(a|Ac) = cb(a|Cc) = cb(a|C) ⊆ dcl(C) ⊆ acl(Aa),

hence cb(a|B) ⊆ acl(Aa). �

Linearity. We say that Ω is A-linear if for all ξ, η ∈ Ω and each algebraically
closed B ⊇ A such that MR((ξ, η)|B) = 1 there is a c such that MR(c|A) ≤ 1
and tp((ξ, η)|B) is defined over c.

Note that if Ω is A-linear, ξ, η ∈ Ω, B ⊇ A is algebraically closed,
MR((ξ, η)|B) = 1, and cb((ξ, η)|B) = dcl(c), then necessarily MR(c|A) ≤ 1.
Note also that if Ω is A-linear and A ⊆ A′, then Ω is A′-linear.

Lemma 14.5. The following are equivalent:

(1) Ω is A-linear;
(2) for all ξ, η ∈ Ω and each algebraically closed B ⊇ A there is a c such

that tp((ξ, η)|B) is definable over c and c is algebraic over Aξη.

Proof. Assume Ω is A-linear, let ξ, η ∈ Ω, and let B ⊇ A be algebraically
closed. The type tp((ξ, η)|B) is stationary, so it has a unique global nonfork-
ing extension p. Take c such that dcl(c) = cb(p). Thus p and its restriction
tp((ξ, η)|B) are definable over c. We shall prove that c is algebraic over Aξη.

If MR((ξ, η)|B) = 2, then MR((ξ, η)|A) = 2, so p does not fork over A,
hence c is algebraic over A by Corollary 10.13(1). If MR((ξ, η)|B) = 0, then
(ξ, η) is the only realization of tp((ξ, η)|B), so c is interdefinable with (ξ, η).
Suppose MR((ξ, η)|B) = 1, the remaining case. Then by the A-linearity of
Ω we have MR(c|A) ≤ 1.

If MR((ξ, η)|A) = 1, then again c is algebraic over A. So we can as-
sume MR((ξ, η)|A) = 2. Then (ξ, η) |⌣/

A

B , hence (ξ, η) |⌣/
A

c : otherwise,

MR((ξ, η)|c) ≥ 2, but p is a nonforking extension of tp((ξ, η)|c), so MR(p) =
2, hence MR((ξ, η)|B) = 2, a contradiction. Therefore, c is not alge-
braic over A, and thus MR(c|A) = 1. Also c |⌣/

A

(ξ, η) by symmetry, so

MR(c|A) > MR(c|Aξη, so MR(c|Aξη) = 0, hence c is algebraic over Aξη.
For the converse, assume (2), let ξ, η ∈ Ω, and let B ⊇ A be a parameter

set in M such that MR((ξ, η)|B) = 1. The type tp((ξ, η)|B) is stationary,
so it has a unique global nonforking extension p. Take c such that dcl(c) =
cb(p). Then p and its restriction tp((ξ, η)|B) are definable over c, so c is
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algebraic over B. By (2) the tuple c is also algebraic over Aξη, so MR(c|A) ≤
MR((ξ, η)|A) ≤ 2. We shall prove that MR(c|A) ≤ 1. Assume towards a
contradiction that MR(c|A) = MR((ξ, η)|A) = 2. By Lemma 11.11,

MR((ξ, η, c)|A) = MR((ξ, η)|Ac) + MR(c|A) = MR(c|Aξη) + MR((ξ, η)|A),

so MR((ξ, η)|Ac) = MR(c|Aξη) = 0. But c is algebraic over B, so

MR((ξ, η)|Ac) ≥ MR((ξ, η)|B) ≥ 1,

a contradiction. �

Lemma 14.6. Suppose Ω is A-linear. Then ΩA is locally modular.

Proof. Take a0 ∈ Ω \ clA ∅. We claim that ΩA|{a0} is modular. By 12.10 is
is enough to show:

Let a1, a2 ∈ Ω and rkA({a1, a2}|{a0}) = 2, and let F ⊆ Ω be closed in ΩA

of finite rank with a0 ∈ F and rkA({a1, a2}|F ) = 1. Then

clA{a0, a1, a2} ∩ F 6= clA{a0}.

By Lemma 11.17 we can take c such that dcl(c) = cb((a1, a2)| acl(AF )),
so c is algebraic over AF . By A-linearity and the previous lemma, c is also
algebraic over Aa1a2. Note that MR((a1, a2)|Ac) = 1 and ai is not algebraic
over Ac for i = 1, 2. So a2 is algebraic over Aca1. Also, a0 is not algebraic
over Aa1a2, so a0 is not algebraic over Ac. Hence a0 and a1 are conjugate
over Ac, so (a0, c) and (a1, c) are conjugate over A. Take a′2 ∈ Ω such that
(a0, a

′
2, c) and (a1, a2, c) are conjugate over A. Then a′2 is algebraic over

Aca0, so a′2 ∈ F and a′2 /∈ clA{a0}. Since a′2 ∈ clA{a0, a1, a2}, this completes
the proof. �

We can summarize most of the above as follows.

Theorem 14.7. The following conditions on Ω, A are equivalent:

(1) there is B ⊇ A such that ΩB is modular;
(2) Ω is one-based over A;
(3) Ω is A-linear;
(4) ΩA is locally modular.

Proof. The direction (1) =⇒ (2) follows from Lemmas 14.3 and 14.4. The
direction (2) =⇒ (3) follows from Lemma 14.5. The direction (3) =⇒ (4) is
Lemma 14.6. For (4) =⇒ (1), assume ΩA is locally modular. Take a ∈ Ω
such that ΩA|{a} is modular. Let B := Aa, and note that the closure
operations of ΩB and ΩA|{a} coincide. Thus ΩB = ΩA|{a} is modular. �

Condition (1) in this theorem raises the question whether ΩB is always of the
form ΩA|E for a suitable E ⊆ Ω. An obvious candidate to try is E = clB ∅.

Linearity and plane curves. A family of curves in Ω2 is a pair (X,C)
where X ⊆ Mx and C ⊆ X × Ω2 are definable such that C(a) is strongly
minimal for all a ∈ X.
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Let (X,C) be a family of curves in Ω2. We think of Ω2 as the plane, and
of each section C(a) ⊆ Ω2 as a plane curve. Note that for all a, b ∈ X, either
C(a) ∩C(b) is finite, or C(a)△C(b) is finite. Thus by saturation, there is a
natural number N such that for all a, b ∈ X, either |C(a) ∩ C(b)| ≤ N , or
|C(a)△C(b)| ≤ N . In the former case we wish to consider C(a) and C(b)
as essentially different curves, and in the latter case as essentially the same
curve. How many essentially different curves are there in this family? To
make sense of this question we introduce the (definable) equivalence relation
∼ on X by:

a ∼ b ⇐⇒ C(a)△C(b) is finite.

Since T has EI we have a definable surjective map f : X → X ′ with X ′ a
definable set in M, such that ∼ is the kernel of f . Thus MR(X ′) does not
depend on the choice of f,X ′. We call MR(X ′) the essential Morley rank of
(X,C) and think of it as a rough measure of how many essentially different
curves there are in the family.

Examples. In these examples we just consider one-sorted M.

(1) Let M = Ω be an infinite set (no further structure), and let C ⊆
Ω×Ω2 be given by C = {(b, ξ, η) ∈ Ω3 : η = b}, so each section C(b)
is a “horizontal” line. Then (Ω, C) is a family of curves in Ω2, the
equivalence relation ∼ on the parameter space Ω is just equality, so
the essential Morley rank of the family is 1.

(2) Let M be an infinite vector space over a division ring k with under-
lying set Ω, fix a scalar λ ∈ k×, and let C ⊆ Ω × Ω2 be given by
C = {(b, ξ, η) ∈ Ω3 : η = λξ + b}. Then (Ω, C) is a family of curves
in Ω2, the equivalence relation ∼ on the parameter space Ω is just
equality, so the essential Morley rank of the family is 1.

(3) Let M be an algebraically closed field with underlying set Ω (so M,
being large, is actually of infinite transcendence degree). Then

C := {(a, b, ξ, η) ∈ Ω2 × Ω2 : η = aξ + b}.

Then (Ω2, C) is a family of curves in Ω2, the equivalence relation ∼
on the parameter space Ω2 is just equality, so the essential Morley
rank of the family is 2.

The significance of A-linearity of Ω is that there are few curves in Ω2. The
following result makes one direction of this precise. (There is also a sort of
converse.)

Proposition 14.8. Suppose Ω is A-linear. Then every family of curves in
Ω2 has essential Morley rank ≤ 1.

Proof. Let (X,C) be a family of curves in Ω2, X ⊆ Mx. To keep notations
simple we assume that Ω, X and C are all 0-definable. (Why is this no
loss of generality?) Let f : X → X ′ be a 0-definable map with kernel ∼
as above. Let a ∈ X, and let (ξ, η) be a generic point of C(a) over a, so
MR((ξ, η)|a) = MR((ξ, η)| acl(a)) = 1. Let cb((ξ, η)| acl(a)) = dcl(c). Then
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MR(c|0) ≤ 1 by linearity. Since tp((ξ, η)| acl(a)) is definable over c, there is
an Lc-formula φ(x) such that for all b ∈ X we have:

C(b) ∈ tp((ξ, η)| acl(a)) ⇐⇒ |= φ(b).

The set C(a) determines the type tp((ξ, η)| acl(a)), in the sense of Section
9, so for all b ∈ X we have:

C(b) ∈ tp((ξ, η)| acl(a)) ⇐⇒ b ∼ a ⇐⇒ f(b) = f(a).

So f(a) is the unique element of X ′ equal to f(b) for some b such that
|= φ(b). Hence f(a) is c-definable, so MR(f(a)|0) ≤ MR(c|0) ≤ 1. Since
a ∈ X was arbitrary, this yields MR(X ′) ≤ 1. �


