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ABSTRACT.

We present a new, combinatorial proof of the classical theorem

that the analytic sets are not closed under complement. Possible

connections with questions in complexity theory are discussed,

INTRODUCTION.

A number of recent results in circuit complexity theory have

been stimulated by a new understanding of certain old theorems in
descriptive set theory. The hierarchy theorem for polynomial-size,
constant depth circuits is the finite counterpart to the Borel rank

hierarchy theorem [Sa]. The lower bound for circuits computing the

parity function [FSS, AJ in part stemmed from a result showing that
infinite parity functions are not Borel definable [S1]. In both

cases, the classical proofs do not exhibit enough combinatorial
structure to yield insight into the finitary questions and new proofs

were required.

The link between circuits and Borel sets stems from an analogy

between polynomial growth and countability [S1]. In this paper, we

propose a further link suggested by this analogy, one between NP
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and the analytic sets [K, M]. Several observations support this

connection., NP sets are exactly those which are accepted by

polynomiai-size, nondeterministic circuits (ignoring uniformity
issues). A Nondeterministic circuit is one with inputs that are

nondeterministically set as well as ordinary inputs. By the

addition of additional nondeterministic inputs these circuits may be

converted to equivalent polynomial-size, depth-2, nondeterministic
circuits. The infinitary analog to these, the countable, depth-2,
nondeterministic circuits accept exactly the analytic sets.

This analogy suggests that the NP = co-NP question may be

illuminated by the theorem stating that the class of analytic sets

is not closed under complementation. The classical proof by

diagonalization of this theorem does not seem to have a corresponding
finitary argument., We give here a new purely combinatorial proof of

this theorem.

PRELIMINARIES,

Let © = {0,1} and z* be the set of infinite 0,1 sequences

or reals. An interval is the set of reals extending a finite
sequence. An open set is a union of intervals., Closing the open
sets under countable union and intersection gives the Borel sets.

An analytic set is a projection of a Borel set, (j.e., A is analytic

if A = {a: <a.B8> € B for some 8} where B 1is Borel and <a,B>

is any pairing function).
Definition. A literal is a member of {x],'x‘1,x2,?2,...}. A

Yy-circuit is a collection of literals and an A,-circuit is a
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countable collection of V1-circuits. These naturally represent

w

functions from 3 to . A nondeterministic circuit has additional

nondeterministic inputs represented by literals drawn from {yi,§;}.
It accepts a given real if there is some setting of the nondeter-

ministic inputs which causes evaluation to 1. [If a nondeterministic

A2~circuits accepts a real p, then a setting = of the x and y
inputs causing evaluation to 1 is calied a proof. If ( 1is a member

V1-circuit then « satisfies ([ at 3j 1if the jth Titeral of C

is 1 in =

The nondeterministic circuits accept exactly the class of

analytic sets.

Let N = {1,2,...)} and N* be the set of finite sequences over N.
A tree is a subset of N* closed under prefix, Let T be the set
of all trees, We fix any enumeration of N* and obtain a natural

correspondence between trees and reals. Hence we may speak of, say,

an analytic set of trees, A tree is well-founded if it has no
infinite branch, {i.e., tree 1 1is well-founded every o« ¢ N* con-
tains a prefix b # 1), Let W be the set of all weli-founded trees.

It is easy to verify that W, the complement of W, is analytic.
(nondeterministically guess the branch). We show that W ditself is
not,

We introduce some additional notation. If s,t are seguences
in N* them st is the concatenation of s and t. If A is a set
of sequences then sA = {st: t e A}.

The Proof.

Theorem. There is an analytic set W whose complement is not
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analytic.
Proof, Let W be the set of all well-founded trees. We first
establish the following Ramsey-like property of collections of trees,

Definition. For any tree =+, collection of trees A, and s € N*

we say the detail of T at s, > = {t: st € r}. The detail of A

at S AS = («°: v e Al}. Say A is large at s if Wc A or

simply large if it is large for some s. For example, W 1is large
at e, the sequence of length o.

Claim. If A dis Targe at s and is divided into a countable

union of sets, A = B] u 82 Ueew then for some i and j, Bi is

large at sj,
Proof. Assume to the contrary that for each i,] Bi is not

large at sj. So each detail of Bi at any sj Tlacks a tree T4 j

in W. By pasting these together, one obtains the well-founded
tree g = ]r] 1Y 2T2 o Ut not in B? for any 1 and therefore

not in A°S. But o e W contradicting the largeness of A at s.

0

To show that W 1is not analytic, we construct a seauence

of large sets W > A1 ES A2 5 +++ containing trees which "converge"

to one not in W.

Assume to the contrary that W s analytic, accepted by a
nondeterministic Az—circuited N containing Vl-circuits C1,Cz,...

Let N* = {t1,t .}. We perform a construction in stages. The

95

goal of stage i 1is to construct Ai < W, s,

* *
; € N*, and Py € N

such that Ai is large at s.

i all o e Ai agree on t],...,ti,

and each o e A, has a proof which satisfies Cj at pi(j)
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(the 3™ position of p.) for j < i. Llet A =W, s; = e, and

Py = € Go to Stage 1.
Stage i. Llet Bm = {0 e Ai-l: o has a proof which satisfies Ci at

m}. By the lemma, for some m and n, Bm is large at S;qn-

Fix m and n. Let D = {ca e Bm: a contains ti} and E = Bm - D.

By the lemma, either D or E 1is large at a sequence 51,1“k- Let

Ai be this large set. Let $; < si_]nk and Py = pi_]m. Go to

stage i+1.
It is straightforward to verify that upon completion of alil

stages there is exactly one tree o in every Ai‘ Furthermore o

is not in W since it contains an infinite branch S1u52u--- and
there is a proof 7 = ppuppuc-- which satisfies every Ci. There-

fore o s accepted by N, a contradiction.

CONCLUSION.
The links between topological notions such as open set, Borel

set, and analytic set and their companions in circuit complexity

bear further investigation. Ajtai's theorem [A] that every

polynomial-size, depth-k definable set is well approximable by a

union of cylinders is analogous to the theorem that all Borel sets
are measurable, i.e., well approximable by open sets. There seems
to be a parallel between Baire category theorem type constructions

and constructions involving probabilistic methods. It is interesting

to view these observations in the context of defining a notion of

finite topological space.
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