Characterization of circuit size in terms of PLS problems and communication complexity

Rocio Xicohténcatl Reza

Recall: Karchmer-Wigderson game

• Let U, V, I be finite sets, and $R \subseteq U \times V \times I$ be a ternary relation such that:

$$\forall u \in U \ \forall v \in V \ \exists i \in I \ ((u, v, i) \in R)$$

• KW-protocol: a finite binary tree T that represents the exchange bits of information

• The communication complexity of R (CC(R)) is the minimum height of a KW-protocol tree that computes R

Local search problems

Definition

A local search problem L consist of a set $F_L(x) \subseteq N$ of solutions for every instance $x \in N$, an integer-valued cost function $c_L(s, x)$ and a neighborhood function $N_L(s, x)$ such that:

```
i) \ 0 \in F_L(x);

ii) \ \forall s \in F_L(x), N_L(s, x) \in F_L(x);

iii) \ \forall s \in F_L(x), \text{ if } N_L(s, x) \neq s \text{ then } c_L(s, x) < c_L(N_L(s, x))
```

Definition

A *local optimum* for the problem *L* on *x* is an *s* such that:

$$s \in F_L(x)$$

and

$$N_L(s,x)=s$$

Polynomial Local Search problems

Definition

A local search problem L is *polynomial*

- i) if the binary predicate $s \in F_L(x)$ and the functions $c_L(s,x)$, $N_L(s,x)$ are polynomially time computable
- ii) there exists a polynomial $p_L(n)$ such that

$$\forall s \in F_L(x) |s| \le p_L(|x|)$$

Considering a Karchmer-Wigderson game

• Local search problems whose instances x are (encondings of) pairs (u, v); $u \in U, v \in V$

For any problem $L = \langle F_L, c_L, N_L \rangle$

• Let $C(F_L, c_L)$ be the communication complexity of computing simultaneously the predicate $s \in F_L(u, v)$ and the function $c_L(s, u, v)$ in the model when the first player gets (s, u), and the second gets (s, v)

s is in the public domain and $C(N_L)$ is defined similarly

Definition

The *size* of L is:

$$\left| \bigcup_{\substack{u \in U \\ v \in V}} F_L(u, v) \right| \cdot 2^{2C(F_L, c_L) + C(N_L)}$$

• Definition

We say that R reduces to L if there exists a polynomial function $p: \mathbb{N} \to I$ such that for any $(u, v) \in U \times V$ and any local optimum s for L on (u, v), we have $(u, v, p(s)) \in R$

We define size(R) as

 $min{size(L)|R reduces to L}$

Theorem

a) For every partial Boolean function f, size $(R_f) = \theta(S(f))$

b) For every monotone partial Boolean function f,

$$size(R_f^{mon}) = \theta(S_{mon}(f))$$

Let:

- *f* be a partial Boolean function in *n* variables
- $t \rightleftharpoons S(f)$
- *C* be a size-t circuit computing *f*

- Denote $f^{-1}(0)$ by U and $f^{-1}(1)$ by V
- We aim to reduce R_f to a local search problem L of size O(t).
- Assume $t \ge n-1$
- Arrange nodes $w_1, ..., w_t$ of C such that a wire go from w_μ to w_ν only when $\mu < \nu$, and f_ν is the function computed at w_ν
- Encode nodes $w_1, ..., w_t$ by integers $n_1, ..., n_t$ so that $n_t = 0$ and $\{1, ..., n\} \cap \{n_1, ..., n_t\} = \emptyset$

We construct *L* as follows:

$$F_L(u,v) \rightleftharpoons \{i \mid 1 \le i \le n \& u_i \ne v_i\} \cup \{n_v \mid 1 \le v \le t \& f_v(u) = 0 \& f_v(v) = 1\}$$

$$c_L(i, u, v) \rightleftharpoons 0 \text{ for } 1 \le i \le n$$

$$N_L(i, u, v) \rightleftharpoons i \text{ for } 1 \le i \le n$$

$$c_L(n_{\nu}, u, v) \rightleftharpoons v \text{ for } 1 \le \nu \le t$$

$$N_L(n_v, u, v) \rightleftharpoons 0$$
 if $n_v \notin F_L(u, v)$

Otherwise, i.e. $f_{\nu}(u) = 0$, $f_{\nu}(v) = 1$

we choose one of the two sons of w_{ν} for which this property is preserved

If this son is a computational node w_{μ}

$$N_L(n_{\nu}, u, v) \rightleftharpoons n_{\mu}$$

If this son is a leaf x_i^{ϵ}

$$N_L(n_v, u, v) \rightleftharpoons i$$

Then it is easy to see that R_f reduces to L

And
$$C(F_L, c_L) \le 2$$
 and $C(N_L) \le 3$

Hence,

$$size(L) \le O(n+t)$$

And $t \ge n - 1$

$$size(L) \leq O(t)$$

For another non-trivial direction:

• Assume that R_L reduces via a function p to a local search problem L

Let

$$h_0 \rightleftharpoons 2^{C(F_L,c_L)}$$

$$h_1 \rightleftharpoons 2^{C(N_L)}$$

• For every fixed $s \in \bigcup_{\substack{u \in U \\ v \in V}} F_L(u, v)$

We have:

 P_S for computing $s \in F_L(u, v)$ $c_L(s, u, v)$ with at most h_0 different histories • h_0 defines a partition of $U \times V$:

$$U_{s,1} \times V_{s,1}; \dots; U_{s,h_0} \times V_{s,h_0}$$

Such that F_L , c_L are fully determined on $U_{s,i} \times V_{s,i}$

That is, for some predicates $\alpha_s \subseteq [h_0]$ and some $\eta_s: [h_0] \to N$, for all $i \in [h_0]$ and for all $(u, v) \in U_{s,i} \times V_{s,i}$:

$$s \in F_L(u, v)$$
 iff $i \in \alpha_s$

$$c_L(s, u, v) = \eta_s(i)$$

"good" rectangle $U_{s,i} \times V_{s,i}$

$$i \in \alpha_s$$

Cost of rectangle $U_{s,i} \times V_{s,i}$

$$\eta_s(i)$$

We order good rectangles, so their costs are non-decreasing:

$$U^1 \times V^1$$
; ...; $U^{H_0} \times V^{H_0}$

Where
$$H_0 \leq \left| \bigcup_{\substack{u \in U \\ v \in V}} F_L(u, v) \right| \cdot h_0$$

• Construct by induction on $\nu \leq H_0$ a circuit C_{ν} :

For every $\mu \leq \nu$ there exists a node ω_{μ} of C_{ν} computing f_{μ} such that:

$$f_{\mu}|_{U^{\mu}} \equiv 0, \qquad f_{\mu}|_{V^{\mu}} \equiv 1$$

Assume we already have $C_{\nu-1}$,

 C_{ν} will be obtained by adding at most h_0h_1 new nodes for computing f_{ν} with required properties from $f_1, \dots, f_{\nu-1}$

• Let

$$U^{\nu} \times V^{\nu} = U_{s,i} \times V_{s,i}$$

Consider the protocol P_s^* of complexity at most $C(F_L, c_L) + C(N_L)$

We run the optimal protocol for computing $N_L(s, u, v)$

$$s' \rightleftharpoons N_L(s, u, v)$$

Then we run $P_{s'}$

- $y_1, ..., y_H$ for those histories of P_s^* which correspond to at least one instance $(u, v) \in U_{s,i} \times V_{s,i}$
- For every $u \in U_{s,i}$ let \bar{u} be the assignment on $\{0,1\}^H$

 $\bar{u}_h = 0$ if there exists $v \in V_{s,i}$ such that P_s^* develops according to h $\bar{u}_h = 1$ otherwise

 $\bar{v}_h = 1$ iff there exists $u \in U_{s,i}$ such that P_s^* develops according to h

• So for every pair $(u, v) \in U_{s,i} \times V_{s,i}$ we have

$$\bar{u}_h=0$$
 , $\bar{v}_h=1$

Hence, the partial Boolean function

$$\hat{f}_{\nu}(y_1, ..., y_H) = 0$$
 on $\{\bar{u}_h | u \in U_{s,i}\}$
 $\hat{f}_{\nu}(y_1, ..., y_H) = 1$ on $\{\bar{v}_h | v \in V_{s,i}\}$
undefined elsewhere

is *monotone* and the protocol P_s^* finds a solution to $R_{\hat{f}_v}^{mon}$

• (Recall) Let

$$U^{\nu} \times V^{\nu} = U_{s,i} \times V_{s,i}$$

Consider the protocol P_s^* of complexity at most $C(F_L, c_L) + C(N_L)$

We run the optimal protocol for computing $N_L(s, u, v)$

$$s' \rightleftharpoons N_L(s, u, v)$$

Then we run $P_{s'}$

By proposition (from KW game):

For every (partial) monotone Boolean function f, $C(R_f^{mon}) = D_{mon}(f)$

$$D_{mon}(\hat{f}_{\nu}) \le C(F_L, c_L) + C(N_L)$$

And the same bound holds for some total monotone extension \bar{f}_{ν}

Note that this implies:

$$S_{mon}(\bar{f}_{\nu}) \leq h_0 h_1$$

- Consider a particular h of P_s^*
- Let (s', j) be the corresponding subprotocol $P_{s'}$
- By LS definition, ii) $\forall s \in F_L(x), N_L(s, x) \in F_L(x)$

Rectangle $U_{s,i} \times V_{s,i}$ is good

• By part iii) $\forall s \in F_L(x), \text{ if } N_L(s, x) \neq s \text{ then } c_L(s, x) < c_L(N_L(s, x))$ either $s' = s \text{ or } c(U_{s', i} \times V_{s', i}) < c(U_{s, i} \times V_{s, i})$

• If s' = s

- s is a local optimum for L on every $(u, v) \in U_{s,i} \times V_{s,i}$
- Since R_f reduces to L, this means that $u_{p(s)} \neq v_{p(s)}$
- Implying actually that $u_{p(s)}=\epsilon$, $v_{p(s)}=(\neg\epsilon)$ for some fixed $\epsilon\in\{0,1\}$
- Let $y'_h \rightleftharpoons x_{p(s)}^{(\neg \epsilon)}$

• If cost of $(U_{s',j} \times V_{s',j}) < cost of (U_{s,i} \times V_{s,i})$

$$U_{s',j} \times V_{s',j} = U^{\mu} \times V^{\mu}$$

- For some $\mu \leq \nu$
- Let $y'_h \rightleftharpoons f_\mu$

Finally

• Let
$$f_{\nu} \rightleftharpoons \bar{f_{\nu}}(y'_h, ..., y_H)$$

- f_{ν} can be computed by appending at most h_0h_1 nodes to $C_{\nu-1}$
- Since \bar{f}_{ν} is monotone and for every $u \in U^{\nu}$

$$\bar{f}_{\nu}(\bar{u}_1,\ldots,\bar{u}_H)=0$$

To check $f_{\nu}(u) = 0$, we only need to check, for any h

$$y'_h(u) \le \bar{u}_h$$

To check $f_{\nu}(u)=0$, we only need to check, for any h $y'_{h}(u) \leq \bar{u}_{h}$

Note that if $\bar{u}_h = 0$, then for some $v \in V^v$ the computation on (u, v) proceeds along h

Due to our choice of y'_h , implies $y'_h(u) = 0$

By dual argument, $f_{\nu}(v) = 1$, for all $v \in V^{\nu}$

This completes the construction of C_{ν}

• Now

$$C_{H_0}$$
 has size at most $H_0 h_0 h_1$

• By LS problem definition i), all rectangles $U_{0,i} \times V_{0,i}$ are good

• Thus, adding at most h_0 new nodes to C_{H_0} we compute f by a circuit of size O(size(L))

Sources

• A.A.Razborov, Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiya RAN., 59(1) (1995), 201-224.