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Abstract

We show that if strong pseudorandom generators exist then the statement “α
encodes a circuit of size n(log∗ n) for SATISFIABILITY” is not refutable in S2

2(α).
For refutation in S1

2(α), this is proven under the weaker assumption of the existence of
generators secure against the attack by small depth circuits, and for another system
which is strong enough to prove exponential lower bounds for constant-depth circuits,
this is shown without using any unproven hardness assumptions.

These results can be also viewed as direct corollaries of interpolation-like theorems
for certain “split versions” of classical systems of Bounded Arithmetic introduced in
this paper.
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1. Introduction

Proving lower bounds on the complexity of explicitly given Boolean functions is one of the
most challenging tasks in the computational complexity. This theory met with a remarkable
success at least twice: in the 60’s (see e.g. [35, 30, 31, 36, 37]) and in more recent time
([11, 1, 27, 12, 32, 33, 28, 2, 25, 29, 34, 22, 4, 15, 17]). Both times, however, the period
of enthusiasm was followed by understanding that it is not quite clear to which extent the
methods developed so far can be useful for attacking central open problems in Boolean
complexity.

A logical analysis of this situation should start with understanding what is the right
“minimal” fragment of ZFC which is really needed for formalizing all these methods, and
this question was raised in [19]. It was argued there that the conceivable answer is the
second order theory of Bounded Arithmetic V 1

1 , and no example of a lower bound for
explicit function not provable in V 1

1 has been found since that. The next goal is to develop
machinery for understanding whether V 1

1 can prove superpolynomial lower bounds on the
size of unrestricted circuits or not.

In this paper we present first partial results in this direction. Namely, we show that the
existence of a pseudorandom generator secure against the attack by circuits of size 2nε

(for
some fixed ε > 0) implies that for any explicit Boolean function fn and any integer-valued
t(n) such that t(n) ≥ nω(1), the theory S2

2(α) can not refute that α encodes a Boolean
circuit of size t(n) for fn. For the theory S1

2(α) the same statement holds under the weaker
assumption of the existence of a generator secure against nε-depth circuits.

A few remarks concerning these results should be made immediately.

• Following [19], we work in the strongest possible framework in which α includes en-
codings of truth-tables of all Boolean functions appearing in the circuit as intermediate
results.

• We do not require that Bounded Arithmetic would prove t(n) ≥ nω(1), we only need
this to be true on integers. Thus, our results are still applicable to e.g. t(n) = nlog∗ n.

• Since we are mostly interested in the provability in V 1
1 , this is also natural to consider

the hierarchy of its subtheories and wonder whether we can do better for them. The
strongest theory in this hierarchy to which our method applies is IE1(f) (see [26]
for the definition of IE1), and for this theory we indeed can prove a slightly stronger
result. Namely, we may replace t(n) by nk for a fixed constant k > 0 depending only
on the quality of the generator. This improvement, however, is really marginal, so
we prefer to work all the time in the language L2 containing the smash function #.
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Figure 1: The framework for split versions

For proving these results we define the split version S(S2) of S2 as the theory in the
language L2(α, β) which allows induction on arbitrary bounded formulae in L2(α) and
arbitrary bounded formulae in L2(β). We consider the pair (α, β) as an encoding of a
Boolean circuit with the PARITY gate at the top so that α encodes the left-hand side of
the rest, and β encodes the right-hand side (see Figure 1).

S(S2) proves in this framework exponential lower bounds on the size of constant-depth
circuits over the standard basis. We show that on the other hand it can not prove super-
polynomial lower bounds for depth-3 circuits with PARITY gates. We derive the above-
mentioned results about S1

2(α) and S2
2(α) as direct consequences of similar statements

concerning S(S2) appended with the corresponding induction schemes.

The proofs consist of several fairly independent pieces. One of essential ingredients is the
characterization of the circuit depth by a communication game [15], and a characterization
of the circuit size in these terms based upon local search problems (Theorem 3.1 of this
paper). These characterizations are non-uniform in their very nature, and this suggests
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that our results might be extended to stronger theories allowing more computational power
for both players.

To this end we define the split version S(V2) of the second order theory V2 in the same
fashion as S(S2), and extend our three results to this theory (appended with the appropriate
induction scheme for the first two). These extensions follow from general interpolation-
like theorems, and this is a close indication that S(V2) and its extensions exactly capture
Karchmer-Wigderson game and its analogue for the circuit size. Unfortunately, these
second order versions are somewhat technical. Thus, for the convenience of the reader
interested only in classical fragments of Bounded Arithmetic, we start with the simpler
first order case.

The paper is organized as follows. In Section 2 we recall necessary definitions from
Complexity Theory. In Section 3 we present the new characterization of the circuit size
(Theorem 3.1). In Section 4 we briefly survey results from Bounded Arithmetic needed
for our purposes. In Section 5 we recall the framework from [19] and introduce its split
variant. In Section 6 we present first order versions of our main results, and in Section
7 show that they can be actually derived as corollaries of interpolation-like theorems for
split versions of second order theories. The paper is concluded by some remarks and open
problems in Section 8.

2. Background from Complexity Theory

In this section we recall necessary definitions and facts from Complexity Theory.

2.1. Boolean Complexity

We address the reader to [5] for an excellent treatment of the subject; the sole purpose of
this section is to agree upon notation.

We denote by Fn the set of all Boolean functions in n variables x1, . . . , xn. Let x1
i
⇀↽ xi

and x0
i
⇀↽ (¬xi). Most of the time, it will be convenient to think of fn ∈ Fn as of a

binary string of length 2n called the truth-table of fn. We will denote by S(fn) the circuit
size of fn (over the standard basis {∧,∨,¬} with negations appearing only at variables;
all computational nodes must have fan-in 2). D(fn) is the minimal depth needed for
computing fn in the same model. Smon(fn) and Dmon(fn) are, respectively, the monotone
circuit size and the monotone depth of a monotone fn. Sd(fn) is the circuit size with
respect to depth-d (unbounded fan-in) circuits. S⊕

d (fn) is the same as Sd(fn), only now we
additionally allow PARITY gates.
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SIZE(t(n)) is the complexity class consisting of all functions {fn} for which S(fn) ≤
O(t(n)); DEPTH(d(n)) has a similar meaning. The notation DEPTH, SIZE(d(n), t(n))
andDEPTH, SIZE⊕(d(n), t(n)) corresponds to unbounded fan-in circuits with simultane-
ous restrictions d(n) on their depth and O(t(n)) on their size. DEPTH, SIZE(O(1), nO(1))
is the (non-uniform) class AC0, DEPTH, SIZE⊕(O(1), nO(1)) will be denoted by AC0[2],
and DEPTH, SIZE⊕(d, nO(1)) will be denoted by AC0,d[2].

All these complexity measures can be in a natural way extended to the case of partial
Boolean functions fn : {0, 1}n −→ {0, 1, ∗} (∗ stands for “undefined”). E.g. S(fn) for a
partial fn is the minimum of S(f̄n) taken over all total extensions f̄n of fn etc.

2.2. Karchmer-Wigderson game

This game was introduced in [15].
Let U, V, I be finite sets, and R ⊆ U × V × I be a ternary relation such that

∀u ∈ U ∀v ∈ V ∃i ∈ I ((u, v, i) ∈ R). (1)

Assume that we have two players with unlimited computational power. Let player I receive
u ∈ U , and player II receive v ∈ V . Their common task is to find some i ∈ I such that
(u, v, i) ∈ R exchanging messages between each other. The minimal number of bits (taken
over all possible protocols achieving this goal) to be exchanged in the worst case is called
the communication complexity of R and denoted by C(R).

Now, for a (possibly, partial) Boolean function fn in n variables consider the relation
Rfn ⊆ f−1

n (0)×f−1
n (1)× [n] given by Rfn

⇀↽ {(u, v, i) | ui 
= vi }. If fn is monotone (that is,
has at least one total monotone extension in Fn), define also its monotone analogue Rmon

fn

by Rmon
fn

⇀↽ {(u, v, i) | ui = 0, vi = 1}.
Proposition 2.1 ([15]). a) For every (partial) Boolean function f , C(Rf ) = D(f),

b) For every (partial) monotone Boolean function f , C(Rmon
f ) = Dmon(f).

Denote by Cd(R) the modification of C(R) in which only d rounds are allowed. The
following is a slightly refined version of the result implicitly contained in [14, Definition
3.5.2]:

Proposition 2.2. For every (partial) Boolean function f and every d > 0,

2

(
Cd(Rf )

d
−1

)
≤ Sd(f) ≤ 2Cd(Rf ).
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2.3. Polynomial local search problems

This concept was originally considered in [13]. We reproduce here the variant of the
definition given in [8].

Definition 2.3. A local search problem L consists of a set FL(x) ⊆ N of solutions for
every instance x ∈ N, an integer-valued cost function cL(s, x) and a neighborhood function
NL(s, x) such that:

a) 0 ∈ FL(x);

b) for all s ∈ FL(x), NL(s, x) ∈ FL(x);

c) for all s ∈ FL(x), if NL(s, x) 
= s then cL(s, x) < cL(NL(s, x), x).

A local optimum for the problem L on x is an s such that s ∈ FL(x) and NL(s, x) = s.
A local search problem L is polynomial if the binary predicate s ∈ FL(x) and the functions
cL(s, x), NL(s, x) are polynomially time computable, and also there exists a polynomial
pL(n) such that |s| ≤ pL(|x|) for all s ∈ FL(x).

Note that the concept of a polynomial local search (PLS) problem can be relativized
in a standard way.

2.4. Natural proofs

This concept was introduced in [21].
Let Γ and Λ be complexity classes. Slightly altering the notation from [21], we call a

sequence {Cn | n ∈ ω} of subsets Cn ⊆ Fn a Γ-natural combinatorial property useful against
Λ if it satisfies the following three conditions:

Constructivity: The predicate fn

?∈ Cn is computable in Γ (note that the bit size of an
input to this problem is 2n which will be denoted further on by N),

Largeness: |Cn| ≥ 2−O(n) · |Fn|,
Usefulness: For any sequence of functions fn, where the event fn ∈ Cn happens infinitely

often, {fn} 
∈ Λ
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(our Cn corresponds to C∗
n from [21]). A lower bound proof that some explicit function

is not in Λ is called Γ-natural against Λ if it leads to a Γ-natural combinatorial property
which is useful against Λ.

For a pseudo-random generator Gn : {0, 1}n −→ {0, 1}2n define its hardness H(Gn) as
the minimal S for which there exists a circuit C of size ≤ S with the property

|P[C(Gn(x)) = 1] − P[C(y) = 1]| ≥ 1

S
. (2)

Here x is taken at random from {0, 1}n, and y is taken at random from {0, 1}2n.
The following is a minor improvement on [21, Theorem 4.1] which is proved in the same

way:

Proposition 2.4. Assume that there exists a SIZE
(
2(log N)O(1)

)
-natural combinatorial

property which is useful against P/poly (= SIZE(nO(1))). Then for every polynomial

time computable Gk : {0, 1}k −→ {0, 1}2k, H(Gk) ≤ 2ko(1)
.

We define depth hardness DH(Gn) of Gn as the minimal S for which there exists a
circuit C of depth ≤ log2 S such that (2) holds. The following is analogous to Proposition
2.4:

Proposition 2.5. Assume that there exists a DEPTH
(
(logN)O(1)

)
-natural combinato-

rial property which is useful against P/poly. Then for every polynomial time computable

Gk : {0, 1}k −→ {0, 1}2k, DH(Gk) ≤ 2ko(1)
.

Note that the classes SIZE
(
2(log N)O(1)

)
, DEPTH

(
(logN)O(1)

)
appearing in the above

two propositions are simply non-uniform analogues of quasipolynomial time and POLY-
LOGSPACE, respectively.

Finally, we improve along the same lines upon [21, Theorem 4.3]:

Proposition 2.6. There is no DEPTH, SIZE
(
O(1), 2(log N)O(1)

)
-natural combinatorial

property useful against AC0,3[2].

3. A new characterization of circuit size

Let U, V, I be finite sets, and R ⊆ U ×V × I be a ternary relation such that (1) holds. We
will be considering those local search problems whose instances x are (encodings of) pairs
(u, v); u ∈ U, v ∈ V .
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For any such problem L =< FL, cL, NL >, let C(FL, cL) be the communication com-
plexity of computing simultaneously the predicate s ∈ FL(u, v) and the function cL(s, u, v)
in the model when the first player gets (s, u), and the second gets (s, v) (thus, s is in the
public domain). C(NL) is defined similarly. The size of L, by definition, is

∣∣∣∣∣∣∣
⋃
u∈U
v∈V

FL(u, v)

∣∣∣∣∣∣∣ · 2
2C(FL,cL)+C(NL)

(the meaning of the coefficient 2 in front of C(FL, cL) will become clear from the proof of
Theorem 3.1).

We say that R reduces to L if there exists a function p : N −→ I such that for any
(u, v) ∈ U×V and any local optimum s for L on (u, v), we have (u, v, p(s)) ∈ R. We define
size(R) as

min {size(L) | R reduces to L} .

Theorem 3.1. a) For every partial Boolean function f , size(Rf ) = θ(S(f)),

b) For every monotone partial Boolean function f , size(Rmon
f ) = θ(Smon(f)).

Proof. Since the proofs of the two parts are practically identical, we prove only part a).

Let f be a partial Boolean function in n variables, let t ⇀↽ S(f), and let C be a size-t
circuit computing f . Denote f−1(0) by U , and f−1(1) by V . We want to reduce Rf to a
local search problem L of size O(t). Disregarding all inessential variables not appearing in
C, we may assume w.l.o.g. that

t ≥ n− 1. (3)

We arrange nodes w1, . . . , wt of the circuit C in such a way that a wire can go from wμ

to wν only when μ < ν. Let fν be the function computed at wν . Note for the record that
ft is an extension of f that is ft(u) = 0, ft(v) = 1 for all u ∈ U, v ∈ V .

We construct L as follows. Encode nodes w1, . . . , wt by integers n1, . . . , nt so that nt = 0
and {1, . . . , n} ∩ {n1, . . . , nt} = ∅. Let

FL(u, v) ⇀↽ {i | 1 ≤ i ≤ n & ui 
= vi } ∪ {nν | 1 ≤ ν ≤ t & fν(u) = 0 & fν(v) = 1} ,
cL(i, u, v) ⇀↽ 0 for 1 ≤ i ≤ n,

NL(i, u, v) ⇀↽ i for 1 ≤ i ≤ n,

cL(nν , u, v) ⇀↽ ν for 1 ≤ ν ≤ t.
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NL(nν , u, v) is defined as follows. If nν 
∈ FL(u, v), let NL(nν , u, v) ⇀↽ 0. Otherwise, that is
when fν(u) = 0 and fν(v) = 1, we choose one of the two sons of the node wν for which this
property is preserved. If this son is a computational node wμ, we let NL(nν , u, v) ⇀↽ nμ; if
this is a leaf xε

i , we let NL(nν , u, v) ⇀↽ i.
It is straightforward to check that so defined L is a local search problem, and that Rf

reduces to L. Also, C(FL, CL) ≤ 2 and C(NL) ≤ 3. Hence size(L) ≤ O(n + t) which is
O(t) due to (3).

For another (non-trivial) direction, assume that Rf reduces via a function p to a
local search problem L. Let h0 ⇀↽ 2C(FL,cL) and h1 ⇀↽ 2C(NL). Then for every fixed
s ∈ ⋃

u∈U
v∈V

FL(u, v) we have a communication protocol Ps for computing the binary rela-

tion s ∈ FL(u, v) and the cost function cL(s, u, v) which has at most h0 different histories.
These histories define a partition of U × V into rectangles Us,1 × Vs,1; . . . ;Us,h0 × Vs,h0

such that FL, cL are fully determined on Us,i × Vs,i. That is to say, for some predicates
αs ⊆ [h0] and some functions ηs : [h0] −→ N the following is true for all i ∈ [h0] and for
all (u, v) ∈ Us,i × Vs,i:

s ∈ FL(u, v) iff i ∈ αs

and
cL(s, u, v) = ηs(i).

We call those rectangles Us,i×Vs,i for which i ∈ αs good. We call ηs(i) the cost of rectangle
Us,i × Vs,i. We order all good rectangles in such a way that their costs are non-decreasing:

U1 × V 1; . . . ;UH0 × V H0.

Here H0 ≤
∣∣∣∣⋃u∈U

v∈V
FL(u, v)

∣∣∣∣ · h0.

We construct by induction on ν ≤ H0 a circuit Cν which has the following property.
For every μ ≤ ν there exists a node wμ of Cν computing a function fμ such that fμ|Uμ ≡ 0
and fμ|V μ ≡ 1. Assume that we already have Cν−1. Cν will be obtained from it by adding
at most h0h1 new nodes for computing a fν with required properties from already available
f1, . . . , fν−1.

Let Uν × V ν = Us,i × Vs,i. Consider the following communication protocol P ∗
s of

complexity at most C(FL, cL) + C(NL). First we run the optimal protocol for computing
NL(s, u, v). Let s′ ⇀↽ NL(s, u, v) be its outcome. Then we run Ps′.

We introduce Boolean variables y1, . . . , yH for those histories of P ∗
s which actually corre-

spond to at least one instance (u, v) ∈ Us,i×Vs,i. For every u ∈ Us,i let ū be the assignment
on {0, 1}H defined by letting ūh be 0 if there exists v ∈ Vs,i such that the computation of
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P ∗
s on (u, v) develops according to the history h, and 1 otherwise. Dually, v̄h = 1 iff there

exists u ∈ Us,i so that the pair (u, v) leads to the history h. For every pair (u, v) ∈ Us,i×Vs,i

we have ūh = 0, v̄h = 1, where h is the history of P ∗
s corresponding to this pair. Hence,

the partial Boolean function f̂ν(y1, . . . , yH) outputting 0 on { ū | u ∈ Us,i}, outputting 1 on
{ v̄ | v ∈ Vs,i} and undefined elsewhere, is monotone, and, moreover, the protocol P ∗

s finds

a solution to Rmon

f̂ν
. Hence, by Proposition 2.1 b), Dmon(f̂ν) ≤ C(FL, cL)+C(NL), and the

same bound holds for some total monotone extension f̄ν of f̂ν . Note for the record that
this implies Smon(f̄ν) ≤ h0h1.

Consider now a particular history of P ∗
s , h. Let (s′, j) be the corresponding output (here

s′ is the output of computing NL, and j is the subhistory corresponding to the subprotocol
Ps′). By Definition 2.3 b), the rectangle Us′,j × Vs′,j is good. By part c) of this definition,
either s′ = s or the cost of Us′,j × Vs′,j is strictly less than the cost of Us,i × Vs,i.

In the first case s is a local optimum for L on every (u, v) ∈ Us,i × Vs,i belonging to
the non-empty rectangle which corresponds to h. Since Rf reduces to L, this means that
up(s) 
= vp(s) for every such pair, and this implies that actually up(s) = ε, vp(s) = (¬ε) for

some fixed ε ∈ {0, 1}. Let y′h ⇀↽ x
(¬ε)
p(s) .

In the second case Us′,j × Vs′,j = Uμ × V μ for some μ < ν. Let y′h ⇀↽ fμ.
Finally, let fν ⇀↽ f̄ν (y′1, . . . , y

′
H). fν can be computed by appending to Cν−1 at most

h0h1 new nodes.
Since for every u ∈ Uν , f̄ν (ū1, . . . , ūH) = 0, and f̄ν is monotone, in order to check that

fν(u) = 0 for u ∈ Uν , we only have to check that y′h(u) ≤ ūh for any history h. For doing
this simply note that if ūh = 0, then for some v ∈ V ν the computation on (u, v) proceeds
along h, which, due to our choice of y′h, implies y′h(u) = 0. By the dual argument, fν(v) = 1
for all v ∈ V ν .

This completes the construction of Cν .
Now, CH0 has size at mostH0h0h1. Also, due to Definition 2.3 a), all rectangles U0,i×V0,i

are good. Thus, applying the same argument as above and adding to CH0 at most h0 new
nodes, we finally compute f by a circuit of size O(size(L)). This completes the proof of
Theorem 3.1.

4. Background from Bounded Arithmetic

We assume the familiarity with [6] and use the now-standard notation for denoting various
hierarchies and fragments of Bounded Arithmetic from that book. We denote by L2 Buss’s
first order language which consists of the constant 0, function symbols S,+, ·, �1

2
x�, |x|, x#y
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and of the predicate symbol ≤. BASIC2 is the set of 32 open axioms in the language L2

from [6, §2.2] describing basic properties of its symbols. Σb ⇀↽
⋃

i≥0 Σb
i is the set of all

(first-order) bounded formulae of L2.
In [19] a convenient technical notion of a regular theory was introduced. The meaning

of this notion is that many proofs in Bounded Arithmetic which do not involve the smash
function # can be generalized to arbitrary regular theories. In this paper we need a stronger
notion which is good also for #-involving proofs.

Definition 4.1. A first order theory R in a language L ⊇ L2 is strongly regular if it
possesses the following properties:

a) BASIC2 ⊆ R,

b) R can be axiomatized by Σb
0-formulae,

c) every function symbol (and hence every term) of the language L can be bounded
from above in the theory R by a term of the language L2.

For a strongly regular theory R in a language L we denote by Si
R the theory R+Σb

i (L)−
PIND, and by T i

R the theory R+ Σb
i(L)− IND. Let also SR ⇀↽

⋃
i=0 S

i
R; this is the same

theory as TR ⇀↽
⋃

i=0 T
i
R.

If L = L2 and R = BASIC2 then Si
R is simply Si

2, and T i
R is T i

2. Another important
example is L = L2(γ), R = BASIC2 (γ is a new predicate variable). In this case Si

R and
T i

R coincide with ordinary theories Si
2(γ) and T i

2(γ). A less trivial example is provided by
L = LPV , R = “BASIC2 + Πb

1-defining axioms for PV -symbols” (see [6, §6.2]), where PV
is Cook’s equational system [10]. In this case S1

R is the theory S1
2(LPV ) as defined in [6].

One more example of this sort will be given in Section 6.
As we already mentioned, the meaning of this definition is that many (if not all) results

proven for Si
2, T

i
2 relativize to arbitrary strongly regular theories R. For example, the

(weaker form of) the main theorem from [6] in this setting looks like this:

Proposition 4.2. Let R be a strongly regular theory in a language L extending L2. Sup-
pose S1

R � ∃y A(�a, y), where A(�a, b) is a Σb
1(L)-formula with all its free variables displayed.

Then there is a polynomial time oracle Turing machine M allowed to ask queries of the

form �n
?∈ P or f(�n) =?, where P is a predicate symbol of L\L2, and f is a function symbol

of L \ L2, such that the following holds.
For every model (N,Ω) of the theory R expanding the standard model of BASIC2 and

every tuple �n ∈ N,
(N,Ω) |= A

(
�n,MΩ(�n)

)
.
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Here Ω is the interpretation of symbols from L \ L2, and MΩ(�n) is the result of the com-
putation of M on �n when M is fed with the oracle Ω.

We also need the following conservation result from [7]:

Proposition 4.3. For any strongly regular theory R in a language L ⊇ L2, S
2
R is Σb

2(L)-
conservative over T 1

R.

Finally, we recall the characterization of Σb
1-defined in T 1

2 functions in terms of PLS-
problems [8]. Once again, we present the relativized version.

Proposition 4.4. Let R be a strongly regular theory in a language L ⊇ L2. Suppose
T 1

R � ∃y A(a, y), where A(a, b) is a Σb
1(L)-formula with all its free variables displayed. Then

there is an oracle PLS-problem K, where the associated oracle computations of FK , cK , NK

are allowed to ask queries of the form �n
?∈ P or f(�n) =?; P, f being symbols of L \L2, and

a (polynomial-time computable) function p(s) such that the following holds.
For every model (N,Ω) of the theory R expanding the standard model of BASIC2, every

x ∈ N, and every local optimum s for KΩ on x,

(N,Ω) |= A(x, p(s)).

5. Boolean Complexity and Bounded Arithmetic:

split framework

In our formalization of problems studied in Boolean complexity within the framework
provided by Bounded Arithmetic we follow [19, Appendix A]. Namely, let Circuit(t, N, γ)
be a Σb(γ)-formula asserting that γ encodes the protocol of computation by a circuit of size
t in |N | variables. Similarly, for a fixed d > 0, let Circuitd(t, N, γ) and Circuit⊕d (t, N, γ)
assert that Circuit(t, N, γ) and, moreover, γ is a depth-d circuit or depth-d circuit with
PARITY gates, respectively. Let Output(t, N, x, γ) be a Σb(γ)-formula which represents
the output of γ (viewed as a circuit of size t in |N | variables) on a Boolean string x.
The exact details of these encodings are unimportant; the only extra property which we
require (and which is shared by all reasonable schemes) is that we can easily combine in
this framework two circuits to compute PARITY of their outputs as shown on Figure 1.
More precisely, we require that there exists a Δb

1(α, β) (with respect to S1
2(α, β)) abstract

12



PARITY (t, N, α, β) such that

S1
2(α, β) �

(
Circuit(�(t−. 3)/4�, N, α) ∧ Circuit(�(t−. 3)/4�, N, β)

)
⊃(

Circuit(t, N, PARITY (t, N, α, β)) ∧ ∀x ∈ {0, 1}|N |

(Output(�(t−. 3)/4�, N, x, α) ⊕ Output(�(t−. 3)/4�, N, x, β) ≡
Output(t, N, x, PARITY (t, N, α, β)))

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Like in [19], we are mostly interested in the provability of the formula

Circuit(t(N), N, γ) ⊃ ∃x ∈ {0, 1}|N |(Output(t(N), N, x, γ) 
≡ S(N, x)), (5)

where t(N) is a Σb-definable function such that N |= t(N) ≥ (logN)ω(1), and S(N, a)
is in Σb. (5) asserts that there is no circuit of size t(N) (remember that N ≈ 2n)
computing the Boolean function {x}S(N, x); we denote this formula by LB(t, S, γ).
LBd(t, S, γ) and LB⊕

d (t, S, γ) are obtained from LBd(t, S, γ) after replacing Circuit(t, N, γ)
by Circuitd(t, N, γ) and Circuit⊕d (t, N, γ), respectively.

One of the main results of this paper (Corollary 6.5) says that if sufficiently strong
pseudorandom generators exist, then S2

2(γ) 
� LB(t, S, γ) for any choice of t, S with the
above properties. We can, however, prove a stronger result at the same cost and better
explain the mechanism of the proof if we split our circuit into two pieces as shown on
Figure 1. The corresponding statement, denoted by SLB(t, S, α, β) is

(Circuit(t(N), N, α) ∧ Circuit(t(N), N, β)) ⊃
∃x ∈ {0, 1}|N |(Output(t(N), N, x, α)⊕ Output(t(N), N, x, β) 
≡ S(N, x)).

SLBd(t, S, α, β) and SLB⊕
d (t, S, α, β) have the obvious meaning.

We are going to allow unlimited reasoning about each of the two halves α, β alone. In
this and the next section we do as much as we can within the first order framework, and,
with this restriction, we implement our idea as follows.

Denote by S(L2) the language L2(α, β) obtained from L2 by appending to it two new
unary predicate variables α and β, and define the split hierarchy SΣb

i , SΠb
i of bounded

formulae in this language similarly to the ordinary hierarchy Σb
i , Πb

i (see [6, §2.1]) with the
exception of the base case. Namely, SΣb

0 = SΠb
0 is the set of all bounded formula in the

language L2(α) plus the set of all bounded formulae in L2(β). The inductive definition of
SΣb

i+1, SΠb
i+1 is the same as for Σb

i+1,Π
b
i+1. Note that SΣb

0 is not closed under applying

13



the connectives ∧,∨ or sharply bounded quantifiers although all SΣb
i , SΠb

i for i > 0 are so
closed.

Our “base” theory S(S2) is the theory in the language S(L2) with the set of axioms
BASIC2+SΣb

0−IND. Another, more expressive description of S(S2) (which also justifies
the notation) is that it is axiomatized by S2(α) + S2(β).

We conclude this section by showing that S(S2) is already capable of proving some
non-trivial lower bounds.

Theorem 5.1. For every fixed d ≥ 2,

S(S2) � SLBd(t, S, α, β),

where t(N) ⇀↽ �2 1
50

|N |1/(2d−3)� and S(N, x) ⇀↽ x1 ⊕ · · · ⊕ x|N |.

Proof. Arguing informally in S(S2), let α and β be depth-d circuits of size at most t(N).
Since Hstad Switching Lemma is available in S2(α) (see [19, Appendix E.4]), we can find a

restriction ρ assigning at least 1
5
|N | d−1

2d−3 stars and reducing the output of α to a constant.
ρ, however, is coded by an integer, thus we can apply in S(S2) the same argument to β|ρ
and find an extension ρ′ of ρ assigning at least two stars and reducing β to a constant as
well. Now we take any two adjacent inputs compatible with ρ′; one of them will satisfy
Output(t(N), N, x, α) ⊕Output(t(N), N, x, β) 
≡ x1 ⊕ · · · ⊕ x|N |.

6. Main results: first order versions

Throughout the rest of the paper, t(N) will stand for a Σb-definable in S2 function such
that N |= t(N) ≥ (logN)ω(1), and S(N, a) will stand for an arbitrary bounded formula.

We start with our base theory S(S2) and show that it can not prove superpolynomial
lower bounds for depth-3 circuits allowing PARITY gates. This, together with Theorem
5.1, provides some formal evidence toward the remark made in [21, Section 3.2] that [34,
22, 4] had to require arguments from a stronger class than those of [11, 27, 12].

Theorem 6.1. For any t(N), S(N, a) with the above properties,

S(S2) 
� SLB⊕
3 (t, S, α, β).

The next theory of interest to us is S(S2) + SΣb
1 − PIND.

14



Theorem 6.2. Assume that there exists a polynomial time computable generator Gk :
{0, 1}k −→ {0, 1}2k with DH(Gk) ≥ 2kΩ(1)

. Then for any t(N), S(N, a) as above,

S(S2) + SΣb
1 − PIND 
� SLB(t, S, α, β).

Corollary 6.3. Under the same assumption as in Theorem 6.2,

S1
2(α) 
� LB(t, S, α).

Proof of Corollary 6.3 from Theorem 6.2. Assume the contrary, that is S1
2(α) �

LB(t, S, α). Substitute in this proof the Δb
1(α, β)-abstract PARITY (t(N), N, α, β) for

α. Then we will have S1
2(α, β) � SLB(t′, S, α, β), where t′(N) ⇀↽ �(t(N)−. 3)/4�. This

contradicts Theorem 6.2 (applied to t := t′) since S1
2(α, β) is a subtheory of S(S2)+SΣb

1 −
PIND.

Our main result is similar to Theorem 6.2.

Theorem 6.4. Assume that there exists a polynomial time computable generator Gk :
{0, 1}k −→ {0, 1}2k with H(Gk) ≥ 2kΩ(1)

. Then for any t(N), S(N, a) with the properties
stated in the beginning of this section,

S(S2) + SΣb
2 − PIND 
� SLB(t, S, α, β).

Corollary 6.5. Under the same assumption as in Theorem 6.4,

S2
2(α) 
� LB(t, S, α).

Proof is the same as that of Corollary 6.3.

We begin proving these results with a straightforward definition of the skolemization̂S2(γ) of the theory S2(γ). Firstly, we define the language ̂L2(γ) as the extension of L2(γ)

obtained by recursively appending to it new function symbols fA,t(�b) for every open formula

A(a,�b) and term t(�b) of the language ̂L2(γ); all occurrences of free variables in A, t are
explicitly displayed.̂S2(γ) is the open theory in the language ̂L2(γ) axiomatized by BASIC2 and the fol-
lowing defining axioms for fA,t:

∀�y fA,t(�y) ≤ t(�y);

∀x, �y ((x ≤ t(�y) ∧ A(x, �y)) ⊃ (A(fA,t(�y), �y) ∧ fA,t(�y) ≤ x)) ;

∀�y (¬A(fA,t(�y), �y) ⊃ fA,t(�y) = 0) .

15



Thus, the intended meaning of fA,t(�b) is simply μx ≤ t(�b)A(x,�b). The following summarizes
some easy properties of this theory:

Lemma 6.6. a) For every A ∈ Σb(γ) there exists A′ ∈ Open
( ̂L2(γ)

)
such that ̂S2(γ) �

A ≡ A′, and vice versa;

b) ̂S2(γ) is a strongly regular open extension of S2(γ) by definitions.

We define the extension Ŝ(L2) of S(L2) as ̂L2(α) + ̂L2(β), where we assume, of course,

that all non-logical symbols symbols in ̂L2(α) and ̂L2(β) other than those of L2 are pairwise

distinct. Finally, let Ŝ(S2) be the theory ̂S2(α)+ ̂S2(β) in the language Ŝ(L2). The following
properties are inherited from Lemma 6.6:

Lemma 6.7. a) For every A ∈ SΣb
0 there exists A′ ∈ Open

( ̂L2(α)
)
∪ Open

( ̂L2(β)
)

such that Ŝ(S2) � A ≡ A′, and vice versa;

b) Ŝ(S2) is a strongly regular open extension of S(S2) by definitions. Thus, Ŝ(S2) is
conservative over S(S2), and every model of S(S2) has an unique extension to a
model of Ŝ(S2).

The following observation provides a crucial link between the theory Ŝ(S2) and the
communication game from Section 2.2.

Lemma 6.8. Let s(a1, . . . , ar, α, β) be a term of the language Ŝ(L2) with all its free
variables displayed. Consider the following communication problem: player I receives
n1, . . . , nr ∈ N and a language A ⊆ N; player II receives the same n1 . . . , nr and B ⊆ N,
and they want to compute s(n1, . . . , nr, A,B) in the extension of the model (N, A,B) of
S(S2) to a model of Ŝ(S2). Then there exists a constant d depending only on the term s
and a d-round communication protocol solving this problem whose complexity is polynomial
in |n1| + · · ·+ |nr|.

Proof. Obvious induction on the logical depth of s (every function symbol of the language
Ŝ(L2) can be evaluated by one of the two players alone, and results of all intermediate
evaluations are of polynomial length).

Now we are ready to prove the results stated in the beginning of this section.

Proof of Theorem 6.1. Assume the contrary, that is S(S2) � SLB⊕
3 (t, S, α, β).

Then also Ŝ(S2) � SLB⊕
3 (t, S, α, β). But the theory Ŝ(S2) is open, and, by Lemma 6.7
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a), the formulae Circuit⊕3 (t(N), N, α), Circuit⊕3 (t(N), N, β), Output(t(N), N, x, α) and
Output(t(N), N, x, β) are equivalent in Ŝ(S2) to open formulae. Thus, by Herbrand’s the-
orem, there exist terms s1(N,α, β), . . . , sr(N,α, β) of the language Ŝ(L2) such that

Ŝ(S2) �
(
Circuit⊕3 (t(N), N, α) ∧ Circuit⊕3 (t(N), N, β)

)
⊃

r∨
i=1

(
si(N,α, β) ∈ {0, 1}|N | ∧

(Output(t(N), N, si(N,α, β), α)⊕ Output(t(N), N, si(N,α, β), β) 
≡
S(N, si(N,α, β)))

)
.

Let n be an integer, and N ⇀↽ 2n−1. By Lemma 6.8, there exists a communication protocol
in which the first player receives n and a depth-3 size-t(N) circuit C1 in n variables allowing
PARITY gates, the second player receives n and a circuit C2 of the same kind, and they
produce an input string x such that

C1(x) ⊕ C2(x) 
≡ S(N, x) (6)

within O(1) rounds and nO(1) bits exchanged. For doing this they simply compute

s1(N,C1, C2), . . . , sr(N,C1, C2)

and find among this list some x satisfying (6).
But this protocol also gives raise to a similar protocol in which the players, instead of

circuits, receive only Boolean functions f1, f2 ∈ Fn such that S⊕
3 (f1) ≤ t(N) and S⊕

3 (f2) ≤
t(N). In fact, the players, using their unlimited power, simply reconstruct some C1, C2

computing f1 and f2, respectively, and then run the protocol above.
Let us now consider the partial Boolean function Fn in 2n variables (we will call it a

functional) which outputs a 1 on f if S⊕
3 (f) ≤ t(N), outputs a 0 if S⊕

3 (f ⊕ sn) ≤ t(N)
(here sn(x) ⇀↽ S(N, x)) and is undefined elsewhere. Then our protocol for every f1, f2

such that Fn(f1) = 1 and Fn(f2) = 0 finds a position x where f1(x) 
= f2(x) (note
that the second player should modify his f2 to f2 ⊕ sn before entering the protocol
from the previous paragraph). Hence, by Proposition 2.2, there exists En ⊆ Fn in

DEPTH, SIZE
(
O(1), 2(logN)O(1)

)
such that F−1

n (1) ⊆ En and F−1
n (0) ∩ En = ∅. If

|En| ≥ 1
2
Fn then En ⊕ sn makes a DEPTH, SIZE

(
O(1), 2(log N)O(1)

)
-natural combina-

torial property useful against AC0,3[2] since t(N) ≥ nω(1) and for every fn ∈ En ⊕ sn we
have the bound S⊕

3 (fn) > t(N). Otherwise, Fn \ En is such a property. We have arrived
at a contradiction with Proposition 2.6.

17



Proof of Theorem 6.2. Suppose S(S2) + SΣb
1 − PIND � SLB(t, S, α, β). By Lemma

6.7 a), the class of SΣb
1-formulae is equivalent in Ŝ(S2) to the class of Σb

1

(
Ŝ(L2)

)
-formulae.

Denoting Ŝ(S2) by R, we see that Ŝ(S2) + SΣb
1 − PIND is actually equivalent to S1

R. In
particular, S1

R � SLB(t, S, α, β). But R is strongly regular by Lemma 6.7 b), hence we
can apply to it Proposition 4.2. We find a polynomial time (in n) oracle Turing machine
M asking queries which depend either only on C1 or only on C2; C1, C2 being this time
size-t(N) circuits, and producing a length n string x with the property (6). But the two
players, one holding (n, C1) and another holding (n, C2), can simulate M exchanging only
nO(1) bits between each other. Now the proof is completed by the same argument as in the
proof of Theorem 6.1 on the base of Propositions 2.1 a) and 2.5.

Proof of Theorem 6.4. Suppose S(S2) + SΣb
2 − PIND � SLB(t, S, α, β). Let,

once again, R ⇀↽ Ŝ(S2). Then S(S2) + SΣb
2 − PIND is equivalent to S2

R, and S2
R �

SLB(t, S, α, β). By Proposition 4.3, T 1
R � SLB(t, S, α, β). By Proposition 4.4, there is an

oracle PLS-problem K and a function p(s) such that for any two circuits C1, C2 of size at
most t(N), and any local optimum s for KC1,C2 on N , p(s) is a binary string x of length
n for which (6) holds.

Now we change our view and consider C1, C2 simply as extra inputs to K rather than as
oracles, and let Kn be its subproblem obtained by fixing n to a particular value. Then the
relation RFn corresponding to Fn (Fn is the functional defined as in the proof of Theorem
6.1) reduces to Kn if we encode a pair (f1, f2) by (C1, C2), where C1 is a size-t(N) circuit

computing f1, and C2 is a size-t(N) circuit computing f2⊕sn. Also, size(Kn) ≤ 2(log N)O(1)
.

Thus, by Theorem 3.1, Fn is computable by circuits of size 2(log N)O(1)
, and we can apply

Proposition 2.4 to complete the proof.

7. Interpolation-like theorems in the second order set-

ting

The proof of Proposition 2.1, as well as of Theorem 3.1 in the non-trivial direction involves
a highly non-constructive step of deciding whether a rectangle is empty (cf. the sentence
“those histories of P ∗

s which actually correspond to at least one instance (u, v) ∈ Us,i×Vs,i”
on page 9). This step seems to be intractable if we want to prove syntactic analogues of
the results from the previous section within the framework provided by first order theories.
In this section we briefly outline how to extend this framework to second order theories,
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and present in this more general setting interpolation-like theorems which actually imply
these results.

Let L2 be the second order extension of L2 obtained by augmenting it with second order
variables γ1, γ2, . . . (for simplicity we allow only unary variables). Let S(L2) be the second
order language which has one sort for first order variables and two different sorts for second
order variables. We will be denoting second order variables of the first sort by α1, α2, . . .
(free variables) and φ1, φ2, . . . (bound variables); second order variables of the second sort
will be denoted by β1, β2, . . . , ψ1, ψ2, . . . We fix the notation Lα

2 [Lβ
2 ] for the sublanguage

of S(L2) (isomorphic to L2) which allows second order variables only of the first sort [of
the second sort, respectively]. For a formula A(γ1, . . . , γr) of L2 with all free second order
variables displayed, we denote by Aα(α1, . . . , αr) and Aβ(β1, . . . , βr) its isomorphic copies
in Lα

2 and Lβ
2 , respectively.

We form the hierarchy Σw1,b
i of second order bounded formulae similarly to the ordinary

hierarchy Σ1,b
i (see [6, §9.1]) with the exception that the forming rule “if A is in Σ1,b

i then
(∀x ≤ t)A is in Σ1,b

i ” is weakened to “if A is in Σw1,b
i then (∀x ≤ |t|)A is in Σw1,b

i ”,
and similarly for the dual case. In plain words, we allow sharply bounded first order
quantifiers for free, whereas all other first order quantifiers are counted exactly as second
order quantifiers.

We define the split versions SΣw1,b
i similarly to SΣb

i . That is, SΣw1,b
0

⇀↽ SΠw1,b
0

⇀↽(
Σ1,b

)α ∪
(
Σ1,b

)β
, and the inductive definition of SΣw1,b

i+1 ,SΠw1,b
i+1 is the same as for

Σw1,b
i+1 ,Π

w1,b
i+1 (the case (∃η)A gets split into two, depending on the sort of the second order

bound variable η).

Definition 7.1. For a class Φ of bounded formulae in L2, we denote by Φ − SIM the
following principle:

r∧
i=1

(∀x(αi(x) ≡ βi(x))) ⊃
(
Aα(α1, . . . , αr) ≡ Aβ(β1, . . . , βr)

)
,

where A(γ1, . . . , γr) is in Φ.

Let Cl2 be the class of bounded formulae without free second order variables. Note
that Cl2 − SIM is simply Aα ≡ Aβ, where A ∈ Cl2. This principle states that isomorphic
internal computations run by the two parties (whatever complex) lead to the same result.

Our base theory, S(V2) in the language S(L2) is, by definition, axiomatized by (V2)
α +

(V2)
β + Cl2 − SIM .
For a class Φ of formulae in the language L2 we denote by Φ+ the closure of Φ under

the operation of substituting Cl2-abstracts for second order variables.

19



Lemma 7.2. S(V2) �
(
Σ1,b

0

)+ − SIM .

Proof. Let A(γ1, . . . , γr, V1, . . . , Vs) ∈
(
Σ1,b

0

)+
, where A(γ1, . . . , γr, γr+1, . . . , γr+s) is in

Σ1,b
0 , and V1, . . . , Vs are Cl2-abstracts. In order to show A(γ1, . . . , γr, V1, . . . , Vs) − SIM ,

we apply an obvious induction on the logical complexity of A; Cl2 − SIM takes care of
the base case A ≡ γi(t); r + 1 ≤ i ≤ r + s.

Lemma 7.3. S(V2) + SΣw1,b
1 − PIND �

(
Δ1,b

1 (U1
2 )

)+ − SIM , where Δ1,b
1 (U1

2 ) is the set

of formulae which are Δ1,b
1 with respect to U1

2 .

Proof. It is an immediate corollary of the main result in [19] that every A(�a,�γ) in
Δ1,b

1 (U1
2 ) is equivalent to the result of evaluating a Σ1,b

0 -definable circuit δ(�a,�γ) of depth
|�a|O(1). Thus, we only have to show in S(V2)+SΣw1,b

1 −PIND that
∧

i ∀x(αi(x) ≡ βi(x)) ⊃(
δα(�a, �α, �V ) ≡ δβ(�a, �β, �V )

)
for any circuit δ of this kind and any abstracts �V in Cl2. This

is done by SΠw1,b
1 − PIND on d applied to the formula “every node of δ at the dth level

outputs the same value in δα(�a, �α, �V ) and in δβ(�a, �β, �V )”.

The following is proved in exactly the same way.

Lemma 7.4. S(V2) + SΣw1,b
1 − IND �

(
Δ1,b

1 (V 1
2 )

)+ − SIM .

Now we are in position to formulate and prove interpolation-like theorems generalizing
the results of the previous section.

Theorem 7.5. Let A(�γ), B(�γ′), C(a,�γ), D(a,�γ′) be Σ1,b-formulae, where all occurences of
a and of all free second order variables are explicitly displayed. Then S(V2) proves the
formula

∀�φ∀�ψ
(
(Aα(�φ) ∧Bβ(�ψ)) ⊃ ∃x(Cα(x, �φ) 
≡ Dβ(x, �ψ))

)
(7)

if and only if there exists E(γ) ∈
(
Σ1,b

0

)+
such that

V2 � ∀�φ(A(�φ) ⊃ E({x}C(x, �φ))) (8)

and
V2 � ∀�ψ(B(�ψ) ⊃ ¬E({x}D(x, �ψ))). (9)
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Theorem 7.6. Let A,B,C,D have the same meaning as in Theorem 7.5. Then the
formula (7) is provable in S(V2) + SΣw1,b

1 − PIND if and only if there exists E(γ) ∈(
Δ1,b

1 (U1
2 )

)+
with the properties (8), (9).

Theorem 7.7. For the same A,B,C,D, S(V2) + SΣw1,b
2 − PIND proves (7) if and only

if there exists E(γ) ∈
(
Δ1,b

1 (V 1
2 )

)+
satisfying (8), (9).

These theorems, combined with the material from Section 2.4, indeed generalize the re-
sults of the previous section if we notice that E(γ) with properties (8), (9) encodes a circuit
from the class needed in each of the three cases separating functions {{x}C(x, �α) | A(α)}
from functions

{
{x}D(x, �β) |B(β)

}
. The output of this circuit corresponds to En in the

proof of Theorem 6.1, and the Cl2-abstracts provide non-uniformity.

The proofs of Theorems 7.5, 7.6, 7.7 in the easy direction are based on Lemmas 7.2,
7.3, 7.4, respectively. Namely, assume that we have (8), (9) for some E(γ) from the class
Φ prescribed in each of the three cases. We lift these proofs to (V2)

α and (V2)
β, and find

that S(V2) � ∀�φ∀�ψ
(
(Aα(�φ) ∧ Bβ(�ψ)) ⊃ (E({x}Cα(x, �φ)) 
≡ E({x}Dβ(x, �ψ)))

)
. Now we

only have to apply Φ − SIM to the formula E(γ).

The proofs in another direction can be viewed as formalized analogues of Propositions
2.2, 2.1 and Theorem 3.1. In the rest of this section we briefly outline those aspects of this
formalization which may appear less obvious.

Firstly, we, similarly to [18], treat V2 simply as a two-sorted first order theory. This
allows us to define a language L̂2 and the skolemization V̂2 of V2 in this language similarly

to ̂L2(γ),
̂S2(γ). Namely, behind function symbols fA,t already known to us from the

previous section, we introduce function symbols θA(�b, �γ) and πB(�b, �γ) taking values in the

sort for second order variables with the intended meaning θA(�b, �γ) ≡ μφA(φ,�b, �γ) and

πB(�b, �γ) ≡ {x}B(x,�b, �γ). Here A(γ0,�b, �γ), B(a,�b, �γ) are in Open
(
L̂2

)
, and the operator

μ corresponds to the ordering of second order objects γ given by γ �→ ∑
2−nγ(n). The

definition of θA makes sense in V̂2 since there always exists a term tA(�b) such that V̂2 �
∀x ≤ tA(�b)(γ0(x) ≡ γ′0(x)) ⊃ (A(γ0,�b, �γ) ≡ A(γ′0,�b, �γ)). We omit the exact details.

Then we define Ŝ(L2) and Ŝ(V2) analogously to Ŝ(L2) and Ŝ(S2). We will be denoting
terms of Ŝ(L2) taking values in the second order variables of the first sort by A1,A2, . . .,
and terms taking values in the second order variables of the second sort by B1,B2, . . .

Now, suppose S(V2) proves (7). Then Ŝ(V2) also proves this formula. Applying Her-
brand’s theorem (for the three-sorted case) as in the proof of Theorem 6.1, we find witnesses
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s1(�α, �β), . . . , sr(�α, �β) to this fact, and it is easy to see that actually they can be combined

into one term s(�α, �β) such that

Ŝ(V2) � (Aα(�α) ∧Bβ(�β)) ⊃ (Cα(s(�α, �β), �α) 
≡ Dβ(s(�α, �β), �β)). (10)

Next, we make an easy observation that the term s(�α, �β) can be represented in an

equivalent form s′(A(�α),B(�β)), where all occurences of second order variables are explicitly
displayed, and s′(α, β) is a term of Ŝ(L2).

In order to find E(γ) ∈
(
Σ1,b

0

)+
with the required properties (8), (9), we apply induction

on the logical complexity of s′.
Base case s′ ≡ a. We have S(V2) � (Aα(a, �α) ∧ Bβ(a, �β)) ⊃ (Cα(a, �α) 
≡ Dβ(a, �β)).

Applying the sort-erasing interpretation, we find

V2 � (A(a, �α) ∧B(a, �β)) ⊃ (C(a, �α) 
≡ D(a, �β)).

The formula E(a, γ) defined by

E(a, γ) ⇀↽

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(a) ≡ ∃�φ(A(a, �φ) ∧ C(a, �φ)) if ∃�φA(a, �φ) ∧ ∃�ψB(a, �ψ)

� if ∃�φA(a, �φ) ∧ ∀�ψ¬B(a, �ψ)

⊥ if ∀�φ¬A(a, �φ) ∧ ∃�ψB(a, �ψ)

arbitrary if ∀�φ¬A(a, �φ) ∧ ∀�ψ¬B(a, �ψ)

has the required properties. Note that the case analysis in the definition of E(a, γ) is
exactly the place where we use the power of our base theory not available in the first order
setting.

Inductive step. s′(α, β) ≡ s′′(fα(α), α, β), where f(γ) is a function symbol of ̂L2(γ),
and we are guaranteed the existence of E with the desired properties anytime when (10)

is true for the term s′′(a,A(�α),B(�β)) and any choice of A,B,C,D.
(10) implies

Ŝ(V2) � (Aα(�α) ∧ fα(A(�α)) = a ∧Bβ(�β)) ⊃
(Cα(s′′(a,A(�α),B(�β)), �α) 
≡ Dβ(s′′(a,A(�α),B(�β)), �β)),

and we can use our inductive assumption (with A(a, �α) := A(�α) ∧ f(A(�α)) = a) to find

E ′(a, γ) ∈
(
Σ1,b

0

)+
such that

V2 � (A(�α) ∧ f(A(�α)) = a) ⊃ E ′(a, {x}C(x, �α))
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and
V2 � B(�β) ⊃ ¬E ′(a, {x}D(x, �β)).

We simply set E(γ) ⇀↽ ∃x ≤ t E ′(x, γ), where t is a term such that V2 � f(α) ≤ t. This
completes the inductive step and the proof of Theorem 7.5.

Coming to Theorem 7.6, we notice that in the theory Ŝ(V2) + SΣb
1 − PIND every

SΣw1,b
1 -formula is equivalent to a Σb

1

(
Ŝ(L2)

)
-formula of the form ∃x ≤ t

(
Aα(x) ∧ Bβ(x)

)
,

where A(a), B(a) ∈ Σ1,b. Indeed, the class of such formulae is closed under applying second
order quantifiers:

∃φ∃x ≤ t
(
Aα(φ, x) ∧ Bβ(x)

)
≡ ∃x ≤ t

(
∃φAα(φ, x) ∧Bβ(x)

)
,

and (in the presence of Σb
1

(
Ŝ(L2)

)
− PIND) under applying sharply bounded universal

quantifiers1:

∀y ≤ |s|∃x ≤ t
(
Aα(x, y) ∧Bβ(x, y)

)
≡

∃w
(
Seq(w) ∧ Len(w) ≤ |s| + 1 ∧ Size(w) ≤ t ∧ ∀y ≤ |s| Aα((w)y+1, y) ∧
∀y ≤ |s| Bβ((w)y+1, y)

)
.

Thus, S(V2) +SΣw1,b
1 −PIND is equivalent to Ŝ(V2) + Σb

1

(
Ŝ(L2)

)
−PIND. But it is

straightforward to establish for Ŝ(V2) + Σb
1

(
Ŝ(L2)

)
− PIND the cut elimination theorem

and extend to it the syntactic version of Proposition 4.2; in fact, this theory more resembles
the first order theory S1

R for what might be called “a many-sorted strongly regular theory
R, where no quantifiers other than those on first order variables are allowed” than a second
order theory. We skip the details.

The proof of Theorem 7.6 is completed by formalizing the standard proof of Proposition
2.1 in the same fashion as we did above with the proof of Proposition 2.2. We omit exact
and somewhat tedious details.

The same ideas work for the weaker version of Theorem 7.7 in which SΣw1,b
2 − PIND

is replaced by SΣw1,b
1 − IND: extending the syntactic variant of Proposition 4.4 to this

case and formalizing the proof of Theorem 3.1 is more or less straightforward.
The analogue of Proposition 4.3 is, however, much less straightforward since we in

general can not eliminate second order quantifiers from SΣw1,b
2 -formulae. We circumvent

this as follows.

1to avoid collision with another usage of β, we denote the ith member of a sequence w by (w)i rather
than by β(i, w)
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For A(�a, �α, �β) ∈ SΣw1,b
2 we introduce a family W2,�a,�α,�β

A of witnessing formulae

Witness2,�a,�α,�β
A (w,�a, �α, �β) ∈ Σb

1

(
Ŝ(L2)

)
∪ Πb

1

(
Ŝ(L2)

)

rather than a single formula. All old cases in the standard definition of Witness (see [7,

Section 4]) are modified in an obvious way, e.g. we say “if A is B∧C then W2,�a,�α,�β
A consists

of all formulae of the form Witness2,�a,�α,�β
B ((w)1,�a, �α, �β)∧Witness2,�a,�α,�β

C ((w)2,�a, �α, �β), where

Witness2,�a,�α,�β
B (w,�a, �α, �β) ∈ W2,�a,�α,�β

B , and Witness2,�a,�α,�β
C (w,�a, �α, �β) ∈ W2,�a,�α,�β

C ”.
The only case when the branching really occurs is the following new case:

(8) If A 
∈ Σb
1

(
Ŝ(L2)

)
∪ Πb

1

(
Ŝ(L2)

)
and A is ∃φ B(�a, �α, φ, �β) then W2,�a,�α,�β

A consists of all

formulae Witness2,�a,�α,�β
A (w,�a, �α, �β) of the form

Seq(w)∧Len(w) = 2∧(w)1 ≤ t(�a)∧Witness2,�a,�α,α0,�β

B(�a,�α,α0,�β)
((w)2,�a, �α,A(�a, (w)1, �α, �β), �β),

where t(�a) and A(�a, w, �α, �β) run over all terms of the language Ŝ(L2), and

Witness2,�a,�α,α0,�β

B(�a,�α,α0,�β)
(w,�a, �α, α0, �β) ∈ W2,�a,�α,α0,�β

B .

The case A ≡ ∃ψB(ψ) is treated in the same way.

For every Witness2,�a,�α,�β
A (w,�a, �α, �β) ∈ W2,�a,�α,�β

A ,

Ŝ(V2) � ∃wWitness2,�a,�α,�β
A (w,�a, �α, �β) ⊃ A(�a, �α, �β).

Due to the very limited nature of witnessing second order variables, we can not hope to
reverse this implication in any reasonable sense. But we actually do not need this. We
simply show the straightforward analogue of [7, Theorem 17] in the following form:

if
Ŝ(V2) + SΣw1,b

2 − PIND � G(�a, �α, �β) ⊃ H(�a, �α, �β),

where G,H are in SΣw1,b
2 then for every Witness2,�a,�α,�β

G (w,�a, �α, �β) ∈ W2,�a,�α,�β
G there exist

Witness2,�a,�α,�β
H (w,�a, �α, �β) ∈ W2,�a,�α,�β

H and a Q2-defined function f(w,�a, �α, �β) of Ŝ(V2) +

Σb
1

(
Ŝ(L2)

)
− IND such that

Ŝ(V2) + Σb
1

(
Ŝ(L2)

)
− IND � Witness2,�a,�α,�β

G (w,�a, �α, �β) ⊃
Witness2,�a,�α,�β

H (f(w,�a, �α, �β),�a, �α, �β).

This allows us to conclude that Ŝ(V2) + SΣw1,b
2 − PIND is SΣw1,b

2 -conservative over

Ŝ(V2) + Σb
1

(
Ŝ(L2)

)
− IND and complete the proof of Theorem 7.7.
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8. Conclusion

Naturally, the most interesting question is to which extent the techniques developed in
this paper can advance us toward the main goal of understanding the strength of V 1

1 . Let
us first point out that the hierarchy of second order theories introduced in the previous
section collapses already at the next level. Indeed,

Ŝ(V2) + SΣw1,b
2 − IND � ∀φ∃ψ∀x ≤ t(φ(x) ≡ ψ(x)) ∧ ∀ψ∃φ∀x ≤ t(φ(x) ≡ ψ(x)).

Thus, at least with respect to bounded formulae, Ŝ(V2)+SΣw1,b
2 −IND is simply equivalent

to V2. So, we restrict our discussion to first order theories.

What we actually did in the proof of Theorem 6.4 (this is also a direct corollary of
Theorem 7.7) was to show the following separation theorem. Whenever

S2
R � (A(N,α) ∧B(N, β)) ⊃ ∃x(C(N, x, α) 
≡ D(N, x, β)), (11)

where R = S(S2), the sets {{x}C(N, x, α) |A(N,α)} and {{x}D(N, x, β) |B(N, β)} can

be separated by a size-2(log N)O(1)
circuit. An informal reformulation of this is that every two

NP -sets which are provably disjoint in S2
R can actually be separated by a set computable

in quasipolynomial time. Is it possible to improve this by replacing S2
R in (11) with a

stronger theory like T 2
R, S2(α, β), U1

2 or V 1
2 ? This seems to be open even under any

reasonable complexity assumption. Note for the comparison that even for the case of V 1
2 ,

the affirmative answer to a similar question in which we are interested in separating co−NP
sets is a straightforward corollary of Proposition 4.2 and RSUV-isomorphism [23, 24, 18].

There are several examples showing that for NP -sets the situation may be different.
A couple of them originated from a discussion with Steven Rudich are based upon the
lower bound proof for voting polynomials [3] and one-way functions, respectively. In these
examples, however, in order to prove the formula (11) one apparently needs at least the
strength of U1

1 . Also, their impact on the future research in this direction is still to be
understood. Thus, we confine ourselves here with a simpler combinatorial example which
gives a new unexpected proof of a known result from [9] and raises several immediate open
questions.

Example 1. The proof of the separation theorem works for the monotone case as well.
That is to say, if

S2
R � (A(N,α) ∧ B(N, β)) ⊃ ∃x(C(N, x, α) ∧ ¬D(N, x, β))
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then there exists a monotone size-2(log N)O(1)
circuit outputting 1 on all {x}C(N, x, α) with

A(N,α), and outputting 0 on all {x}D(N, x, β) with B(N, β). We will show that this is
no longer the case if we replace S2

R with T 3
R.

Indeed, denote by WPHP (f) the weak pigeon hole principle taken in the following
form:

(
a ≥ 2 ∧ ∀x ≤ a2(f(x) < a)

)
⊃ ∃x1, x2 < a2(f(x1) = f(x2) ∧ x1 
= x2).

Note that, contrary to the common belief, it is open whether T 2
2 (f) � WPHP (f). But

the proof in [16] lets us conclude at least that T 3
2 (f) � WPHP (f), and this (naturally)

extends to showing that T 3
R(f) � WPHP (f) for every Σb

1-definable f .
Now, let A(N, fα) say “fα is an injective mapping from [N2] to [N4]”. Let B(N, fβ)

say “fβ is a mapping from [N4] to [N ]”. Then, applying WPHP (fβ ◦fα) (available in T 3
R),

we see that

T 3
R � (N ≥ 2∧A(N, fα)∧B(N, fβ)) ⊃ ∃x1 < x2 < N4 (x1, x2 ∈ im(fα) ∧ fβ(x1) = fβ(x2)) .

But {x1, x2} (x1 < x2 < N4 ∧ x1, x2 ∈ im(fα)) taken over all possible injective fα : [N2] −→
[N4] is simply the set of all N2-cliques. {x1, x2} (x1 < x2 < N4 ∧ fβ(x1) = fβ(x2)) is the
set of all N -partite complete subgraphs. These two sets can not be separated by a subex-
ponential size monotone circuit [2].

This example suggests several open questions. Is it true that T 2
2 (f) � WPHP (f)? Is

it true that T 2
R(f) � WPHP (fβ ◦ fα)? Is the monotone version of the separation theorem

true for T 2
R?

In connection with the last question the following observation made by J. Kraj́ıc̆ek may
turn out useful. Let the weaker principle WPHP1(f, g) state that f and g do not form two
inverse bijections between [a2] and [a], for a ≥ 2. Then this principle is already provable
in T 2

2 (f).

In general, we lack a decent characterization of Σb
1-theorems of T 2

2 . In particular, it
is still open whether S2(α) is Σb

1(α)-conservative over T 2
2 (α) or not. Obtaining such a

characterization and understanding its meaning in the context of split versions seems to
be the most immediate accessible question. The first part of this question is undoubtedly
interesting in its own right, irrespectively of the application to particular problems from
Boolean complexity.

It is also worth noting that the reasoning in Example 1 can be reversed: since we
have the monotone separation theorem for S2

R, we also have the independence result S2
R 
�

WPHP (fβ ◦ fα). This implies the result from [9] that S2
2(f) 
� WPHP (f).
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In the formal sense, Example 1 can not be used for refuting the separation theorem for
nonmonotone circuits. Indeed, É. Tardos [25] noticed that the classes of graphs G with
ω(G) ≥ s and of graphs G with χ(G) < s can be separated by (non-monotone) polynomial
size circuits. Still, her proof involves highly nontrivial combinatorial argument known as
Lovasz lower bound for Shannon capacity, and it hardly can be expected that this argument
would follow from a separation theorem in Bounded Arithmetic.

9. Added in proof

After this paper was submitted, the author has found a purely complexity characterization
of pairs ofNP -sets which are provably disjoint in certain fragments of Bounded Arithmetic,
including S(S2) + SΣb

i − IND, U1
2 and V 1

2 [20]. This characterization, in particular, gives
raise to another and, perhaps, more natural, proof of Theorem 6.4.
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