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Monotone Boolean functions

For z,y € {0,1}" we write z < y iff (Vi € {1,...,n})z; < y,.
A Boolean function f: {0,1}" — {0, 1} is monotone iff z < y implies

f(@) < fy).
e Monotone Boolean functions may be represented by DNFs or CNFs without

negations.

Examples:
o Threshold functions Thi(z) =1 iff 1 + -+ z,, > k.
o CLIQUE(n, k): {0,1}(3) — {0,1}
e Input z encodes graph G, with vertices {1,...,n}, where ¢ and j are adjacent iff

Tij = 1.
e CLIQUE(n,k)(x) =1 iff G, contains a clique on k vertices.



Monotone Boolean circuits

e Circuits with fanin-2 AND and OR gates.

o Small technical detail: We should allow constants 0 and 1 to be able to compute
all monotone Boolean functions including the constant ones.

e For a circuit C, size(C) is the number of gates.



Lower bounds

Lower bounds for explicit functions of n variables.
e Tiekenheinrich |Tie84|: 4n
Razborov [Raz85|: nf(losn)
Andreev [And85]: 2n“ " 1 independently of Razborov
Andreev [And87|: 20n'/?/logn)
Harnik and Raz [HR00]: 22((n/logn)'/?)

Cavalar, Kumar and Rossman [preprint 2020]: 29

12/ (logn)*/?)

T was not able to find the value of c.



Theorem (|Raz85|, [AB87])

For 3 < k < n'/* | the monotone circuit complexity of CLIQUE(n, k) is nQVk),

I follow the proof from the book by Jukna [Juk12].



Combinatorial tool: The sunflower lemma

Definition

A sunflower with p petals and a core T is a collection of sets Si, ..., S, such that
S;NS; =T for all ¢ # j.

Theorem (Sunflower lemma [ER60])

Let F be a family of sets each of size at most 1. If |F| > I!(p — 1)! then F contains
a sunflower with p petals.



Proof by induction on {:

e | = 1: We have more than p — 1 sets of cardinality < 1, any p of them form a
sunflower with empty core.

o [ >2:

o §={51,...,5:} a maximal family of pairwise disjoint members of F

o If t > p: We are done.

o Assumet<p—1. 5S:=85U---US. |S| <Ilp-—1).

o S intersects (by maximality) every set in F

o Pigeonhole principle: exists = € S lying in at least this many sets of F:
A up-1) .
S -y e

Fo={F\{z} | FeF,zeF}

[¢]

Apply the induction assumption on F, and add x to each petal.



Razborov’s Method of Approximations

The set of all monotone Boolean functions — the set of approximators A
o Input variables are in the set of approximators
e New operations: V — LI, A — T
o MmAxA—A
Circuit C' computing CLIQUE(n, k) — approximator circuit CeA
Strategy of the proof:

o Every approximator (including C') makes a lot of errors when computing
CLIQUE(n, k).

o If size(C) is small, then C cannot make too many errors.

o This together implies that size(C) is large.



Our approximators

For X C {1,...,n}, the clique indicator of X is the function [X:

[X](F) =1 iff the graph E contains a clique on the vertices X

[X] is just a monomial

X1= N\ =y

i,jEX i<

(m,1)-approzimator is an OR of at most m clique indicators. The underlying
vertex-set X of each indicator satisfies | X| <.

m,l > 2 to be set later

Observe that input variables x;; are (m,()-approximators because

x5 = [{i, 5}



Positive and negative graphs

e Positive graphs: P denotes the set of all graphs on n vertices which consist of
one clique on k vertices and n — k isolated vertices.
° [P1= ()
o (VEe€P)C(E)=1
e Negative graphs: N denotes the multiset of all the graphs on n vertices
created by the following process: We color each vertex by one of £ — 1 colors
and then connect by edges pairs of vertices with different colors.
o IN| = (k- 1)
o (VEeN)C(E)=0
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Each approximator makes a lot of errors

Lemma

Every approximator either rejects all graphs or wrongly accepts at least a fraction
1—12/(k—1) of all (k— 1)" negative graphs.

e An (m,l)-approximator A = \/[_,[X;].
e Assume that A accepts at least one graph. Then A > [X1].

e A negative graph is rejected by [X;] iff its associated coloring assigns some
two vertices of X7 the same color.

e There are (pgl') pairs of vertices in Xi. For each such pair at most (k — 1)"~*
colorings assign the same color.

e Thus, at most (pgl')(k 1)t < (é) (k —1)"~! negative graphs can be rejected
by [X;], and hence, by the approximator A.
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Operation LI

e Two (m,!)-approximators A = \/;_,[X;]| and B = \/;_,[Y;] are given.
e We wish to define an (m,{)-approximator A LI B that approximates AV B

e Defining ALl B = AV B would potentially give us (2m, [)-approximator. We
use the sunflower lemma to overcome this:
o F:= {Xl,...7Xr,Y1,...,YS}
m:=ll(p—1)
Plucking: replace the p sets forming a sunflower by their core
Plucking procedure: repeat plucking while r 4+ s > m
Each plucking reduces the number of sets = at most m pluckings

O O O O
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Operation 1M

Two (m,l)-approximators A = \//_,[X;] and B = \/;_, [Y;] are given.
We wish to define an (m,[)-approximator A M B that approximates A A B

Defining
AuB=AnB=\/\/([X]A[Y;])

i=1j=1

has two issues:

o up to m? terms

o [X;] ATY;] might not be a clique indicator
We do the following steps:

1. Replace the term [X;] A [Y;] by the clique indicator [X; UYj].

2. Erase those indicators [X; UY;] with | X; UY;| > 1+ 1.

3. Apply the plucking the procedure to the remaining indicators; there will be at

most m? pluckings.
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Lemma (Error on positive graphs)

[ € PICE) = 0} < sine€)- (7 T )

e We calculate the number of errors introduced by a single gate.
e Case 1: V-gate is replaced by U

o This involves taking A V B and the plucking procedure.
o Each plucking replaces a clique indicator [X'] with some indicator [X'] s.t.
X’ C X which can only accept more graphs, i.e., no error is introduced.
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e Case 2: N-gate is replaced by M
o The first step was to replace [X;] A [Y;] by [X; UY;]. These functions behave
identically on positive graphs (cliques).
o The second step was to erase those clique indicators [X; UY;] for which
|X; UY;| > 1+ 1. For each such clique indicator, at most (Z:fj) of the positive
graphs are lost. There are at most m? of these indicators.
o The third step was the plucking procedure which again accepts only more graphs.

nflfl).

e In total, the error is at most size(C) - m? (7, ",
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Lemma (Error on negative graphs)

{E € N|C(E) = 1}| < size(C) - m*1?(k — 1)"P

e We again calculate the number of errors introduced by a single gate.

e We analyze the number of errors introduced by plucking:

o

o

Sunflower with core Z and petals Zy,..., Z,.

Let G be a uniformly random graph from N — this correponds to coloring each
vertex independently by one of the k — 1 colors, each color having probability
1/(k—1).

What is the probability that [Z] accepts G, but none of the [Z1], ..., [Z,]
accept it?

PC stands for “properly colored”
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Pr[Z is PC and Zi, ..., Z, are not PC]
< Pr[Z,...,Z, are not PC|Z is PC]

P
HPr[Zi is not PC|Z is PC]

<.
I
—

IN
i~

Pr[Z; is not PC]
1

) /(=1 < P 1)

<.
Il

IN

N\

(

e The lines hold because:
1. The definition of conditional probability
2. Sets Z; \ Z are disjoint and hence the events are independent.
3. It is less likely to happen that Z; is not PC given the fact that Z is PC.
4. Z; is not PC iff two vertices get the same color
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Thus, one plucking adds at most I?P(k — 1)"~P negative graphs which are
accepted.
Case 1: V-gate is replaced by U
o We take AV B and perform at most m pluckings.
Case 2: A-gate is replaced by M
o The first step introduces no error because [X;] A [Y;] > [X; UY;].
o The second step introduces no error because we only remove indicators, which

cannot accept more graphs.
o The third step involves at most m? pluckings.

In both cases: at most m?I?P(k — 1)" P negative graphs are newly accepted.
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Grand finale

Set I = |vk —1/2]; p = [10vVElogy n
Recall m = I!(p — 1)! < (pl)!. See m? < (10k log, n)‘/E
Use the first lemma

Case 1: C is identically 0
o C errs on all positive graphs, we obtain:

eyt (1711 5 ()

(n/k)l-i-l - n3/4(lVEk=1/2]+1)
m? 7 (10n1/41logy n)VE

size(C') > = pVE)
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o Case 2: C outputs 1 on a (1 —12/(k — 1)) > 1/2 fraction of all (k — 1)" graphs

size(C) -m?-27P - (k—1)" > %(k - 1"
D Wk
size(C') > 2 - = n > pUVR)
2m 2(10k logy n)VE
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