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Sequent calculus for arithmetic theories

To obtain a sequent calculus formulation of arithmetic theories, the
calculus LK is extended by rules for IND, MIN, REP and rules for
bounded quantifiers:

A(t),T = A
LY <
t <s,(Vx <s)A(x),l = A
<s, = AA
Ry < pSsT=AADb)

M= A, (Vx < s)A(x)
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Sequent calculus for arithmetic theories

< b <s,A(b),l = A
- (3x <s5)A(x),IT = A

M= A A(t
R3 < = A, A1)
t<s I = A (3x <s)Ax)

The variable b works as an eigenvariable (it does not occur in the
contexts). LK plus the above four rules is called LKB and the
Free-cut Elimination Theorem holds for it, principal formulas of the
rules are t < s and (Qx < s)A.
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Induction rules

The reason for taking induction rules instead of induction axioms is
that the Free-cut Elimination Theorem will still hold. With the
contexts ', A, the rules turn out to be equivalent to the axioms.

®-IND induction

A(b),T = A, A(b+1)

A(0),T = A, A(t)

®-PIND induction

A([1b)),T = A, A(b)
A(0),T = A, At)

In both cases, b works as an eigenvariable.
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Subformula property for fragments of PA

Let ® be a class of formulas containing atomic formulas and being
closed under subformulas and term substitution. Let R be an
arithmetic theory axiomatized by ®-IND (or ®-PIND) rules plus
initial sequents containing formulas from ®. Suppose that I = A
contains only formulas from ® and that R proves [ = A. Then
there is an R-proof of [ = A such that every formula in that proof
is in .

V
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Parikh's theorem

@ let a bounded theory R contain < in its language and let the
reflexivity and transitivity of < be provable in R

@ assume further that for all terms r, s there is a term t such
that REr<tand RFs<t

o lastly assume that for all terms t(b) and r (possibly with
parameters) there is a term s such that R b <r — t(b) <s

Theorem (Parikh)

If R is a bounded theory satisfying the above conditions, A(X,y) is
a bounded formula and R = (VX)(3y)A(X,y), then there is a term
t such that R F (VX)(3y < t)A(X,y).
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Proof outline

@ work with a free-cut free R-proof P of the formula
(3y)A(b, y), where all b's are new variables

@ by the subformula property, all antecedents in P contain only
bounded formulas, and the succedents can, beside that, only
contain occurrences of the formula (3y)A(b, y)

@ prove by induction on the number of inferences in P that for
every sequent [ = A in P there is a term t such that R
proves [ = A, where A; denotes A without all occurrences
of (3y)A(b, y) and with one occurrence of (Jy < t)A(b, y)
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Inference rules for collection

The X -collection rules (X1-REPL) are the following inferences:

= A, (vVx < t)(3dy)A(x, y)
M= A, (3z)(vx < t)(Jy < 2)A(x, y)

It holds that:
@ the REPL rules and axioms are equivalent

@ the Free-cut Elimination Theorem holds (provided every direct
descendant of the principal formula of every REPL inference is
taken to be anchored)

@ the corollary is that Parikh’s theorem also holds for theories
containing ¥ 1-REPL
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Witnessing theorem for /2,

We want to prove the following theorem:

Theorem (Parsons (1970), Mints(1973) and Takeuti (1987))

Every ¥ 1-definable function of 1% is primitive recursive.

The method Buss uses is the witnessing theorem method, and it is
claimed that “/X; provides the simplest and most natural
application of the witnessing method"”.
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Proof outline

@ suppose /X proves a formula (Vx)(3y)A(x, y) for some
Acyy

@ then there is a sequent calculus proof of (Jy)A(c, y)

@ we must prove that there is a p.r. function f such that for
every n: A(n,f(n)) holds

@ a corollary of the following lemma gives something stronger,

namely that there is a ¥ 1-definable p. r. function f such that
IX; proves (Vx)A(x, f(x))



Witnessing theorem for /X
00@00000000

The witness predicate for > ;-formulas

-, —,

If A(b) is a X1-formula of the form (3xi,...,xk)B(x1,..., Xk, b)

-,

with B € Ag, define Witnessa(w, b) to be the formula

—,

B(B(L,w),...,B(k, w), b)
If A=A’ Ais a succedent, then Witness\; o(w, ) is the formula
Witnessa(B(1, w), €) V Witness\; ar(B8(2, w), €)
If ' =T, Ais an antecedent, then Witness \ r(w, ) is the formula

Witnessa(B(1, w), ¢) A Witness p r(B(2, w), €)

—,

Intuitively, Witnessa(w, b) is a formula stating that w is a witness
for the truth of A. It is a Ag-formula and /Ag can prove

-, -,

A(b) <> (Iw)Witnessa(w, b)
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Witnessing lemma for /24

Suppose 1X1 proves a sequent I = A of X1-formulas. Then there
is a function h such that:

©Q h is X1-defined by IY1 and p. r.
© /X1 proves
(VS)(Yw)[Witness p r(w, €) = Witness\; a(h(w, ©), €)]

v

If we let ' be empty and A consist only of the formula (3y)A(c, y)
and set f(x) = 5(1, 5(1, h(x))), the above theorem follows.

.
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Proof of the lemma

We work with a free-cut free proof P (in /X1) of the sequent
= A, where whose every formula we can assume to be ¥ ;.
The proof is by induction of the number of inferences in P.

First let the last inference be R3 on the formula A:

M= A,A(t)
M= A, (Ix)A(x)
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Proof of the lemma - case R4

The induction hypothesis gives a ¥1-defined p. r. function g(w, ©)
such that /23 proves

Witness/\ r(W, E) = Witnessv{AA(t)}(g(W, 5), E)
For the succedent to hold we must have that either 3(2, g(w, ¢))

witnesses \/ A or that 5(1, g(w, €)) witnesses A(t).
Define

h(w, ¢) = ((t()) * B(1,g(w, ©), B(2, g(w, ©)))
From the definition of Witness is follows that

Witness p r(w, €) = Witness\/a (3x)a(x)} (h(w, €), ©)
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Proof of the lemma - case L

Suppose the last inference is L3 on A(b), where b is an
eigenvariable. The induction hypothesis gives a ¥ 1-defined p. r.
function g(w, ¢, b) such that /¥; proves

Witness p (a(),ry(w, €) = Witnessy; a(g(w, ¢, b), €)

Denote the function tail({(wo, wa, ..., ws)) = (wi,..., wp) by
tail(w) and let h(w, C) be the function

g((tail(5(1,w)), 6(2, w)), ¢, 5(1, B(1, w)))

Then h satisfies the conditions of the lemma.
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Proof of the lemma - case IND

Suppose the final inference is a ¥1-IND inference step:

A(b),T= A, A(b+1)
A(0),T= A, A(t)

The induction hypothesis gives a ¥ 1-defined p. r. function
g(w, ¢, b) such that /X; proves

Witness p (a(b),ry(w, €, b) = Witness\/ia ap+1)1(g(w, €, b), €, b)
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Proof of the lemma - case IND (cont.)

Define the following auxiliary function:

K( ) v, if Witnessa(v, €) (1)
c,v,w) =
w, otherwise

This function is 21-defined by /Y1, because Witness € Ay.
Now define f(w, C, b):

f(w,c,0) = (B(1,w),0)
f(w,&b+1) =
(B(1.g((B(1, f(w, . b)), B(2,w)), c, b)),
k(c,8(2,f(w, ¢, b)),B(2,g({B(1,f(w,c, b)), B(2,w)), c,b))))
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Proof of the lemma - case IND (cont.)

Since f is p. r., it is X1-definable by /Y1 and can be used in
induction formulas, we can use ¥1-IND w. r. t. b to conclude

Witness/\{A(O)’r}(w, 5) = WI'lLI'leSSV{A,A(b)}(f-(W7 c, b), c, b)

Now we can set h(w, ¢) = f(w, C, t) and this function satisfies the
conditions of the lemma.
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Corollary

The A1-defined predicates of 11 are precisely the p. r. predicates.

Suppose A(c) and B(c) are Xi-formulas such that /X; proves

(Vx)(A(x) <> =B(x))
Then Chary is X1-definable in /X1, because /X1 proves
(V)EWIAX) Ay =0) V (B(x) Ay =1)]

By the above theorem Chary is primitive recursive, and hence so is
the predicate A(c). O

V.
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