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Review

A(0) A (Vx)(A(x) = A(x + 1)) — (¥x)A(x) (IND)
(F)A(x) = (3x)(AG) A =(EFy)(y < x) AA(y)) (LNP)
(vx < £)(3Y)A(x, y) — (32)(¥x < )3y < 2)A(x,y) (REPL)

Definition
BY, is the theory IAq plus all £,-REPL axioms, i.e. all instances
of REPL for A € ¥,,, and similarly for BI,



Review

Definition

A predicate R(X) is Ag-defined if there is a formula ¢(X) € Ag
and a defining axiom R(X) < ¢(X).

A function symbol f(X) is X1-defined by a theory of arithmetic T
if y =1f(X) <> ¢(X,y) for a £ formula ¢ is its defining axiom and

T (V) 3ly)e(X, y)
Theorem

f(X) is X1-defined by /Ag < its defining formula ¢(X) is A and
there is a bounding term t(X) such that

180 F (VX)(3ly < t)p(X,y)



A theorem on 2 ;-definable functions

Theorem

If TT is a theory extending some bounded theory T O Q by
adding Ag-defined predicates and ¥1-defined function symbols and
their defining equations, then T+ is conservative over T. Also, if
A is a formula possibly containing some of the new function or
predicate symbols, then there is A~ in the language of T such that

TTFA« A

This also holds for T O BY1 and Ai-defined predicates with the
addition that if A is ¥, (N,), then A~ is also X, (IN,), respectively.



Proof - first part

We show that the new function and predicate symbols can be
eliminated from A without increase in the (unbounded) quantifier
complexity in such a way that the T -equivalence is preserved.
» Ap-defined predicates can be replaced by their defining
formulas
» eliminate new function symbols from bounded quantifiers by
replacing each (Vx < t)(...) by (Wx <t*)(x <t —...),
where t* is obtained from t by replacing every new function
symbol with its bounding term
» and do the same operation with the bounded existential
quantifiers that contain some of the new function symbols



Proof - first part

> if f is a new function symbol, replace every atomic formula
P(f(y)) by one of the following two formulas:

(3z < t(y))(Ar(y, 2) A P(2))

(Vz < t(y))(Ar(y, z) = P(2))
where Ar is a formula which defines f and t is a bounding
term of f

» because T - (Vx)(3ly)Ar(x,y), the formulas above are
equivalent to P(f(y)) in T*



Proof - notes on the second part

There are some modifications:

P as the theories are stronger than [Ag, there is no bounding
term t, so the two formulas replacing an atomic formula use
an unbounded quantification, and are thus in X, or I,

P but since Ais in X, or I, there is always a choice that does
not increase the number of alternating unbounded quantifiers

» the second thing is that we need % ;-replacement axioms for
the elimination of the new function symbols from terms in
bounded quantification



Corollary of the previous theorem

Theorem

Let T be IAq, %, or BY,, then in the conservative extension T
we may use the new function and relation symbols freely in
induction, minimization and replacement axioms.



The aim of bootstrapping, phase 2

» we want to formalize sequences inside /Ay, i.e. we want code
sequences of numbers as numerals and have formulas
expressing concepts such as “the i-th entry of the sequence
coded by x is y" (Godel's beta function)

> also we need to be able to prove in /A that the respective
notions have properties which we would expect

» the central difficulty is that one has to carefully choose how
the relevant concepts are defined, because not every
arithmetization strategy which works for PA (or /¥;) also
works for 1Ag



Examples

(i) the division function x/y = z is defined by the formula
o(x,y,z) & (y-z<xAx<y(z+1)V(y=0Az=0)

Both the existence and the uniqueness of such z can be
proved in /Ay, the first by induction on (3z < x)p(x,y, 2),
the second using restricted subtraction and distribution.

(ii) the remainder is defined by (x mod y = x =~y - (x/y))
(iii) the division relation x|y is defined by (x mod y = 0)
(iv) the set of primes is defined by the formula

x>IANNMy <x)(ylx —y=xVy=1)



The LenBit function

The function LenBit(i, x) equals the i-th bit in the binary
expansion of x and is defined by the formula |x/i] mod 2.
We will use it only when LenBit(2', x).

Example
Take x =5 = (1,0,1), then

LenBit(2°,5) = [5/1] mod 2 =1
LenBit(2',5) = [5/2] mod 2 =0
LenBit(22,5) = [5/4] mod 2 =

LenBit(23,5) = [5/8] mod 2 =0



A theorem on binary representation

IAg can prove that the binary representation of a number uniquely
defines that number:

Theorem
IAg proves that (Vx)(Vy < x)(32')(LenBit(2', x) > LenBit(2', y))

(if we have 2 distinct numbers then there is a bit in their binary
representation on which they differ)



The bootstrapping - overview

| 2

| 2

the most important and nontrivial prerequisite of coding
sequences is to define the relation x = 2¥

this can be done by a Ag formula ¢(x, y) and it can be shown
in IAg that this formula behaves as if it defined the graph of
the exponentiation function with the exception that /Ay does
not prove (Vx)(3y)y(x, y)

the next step is to ¥ 1-define Godel numbers of sequences and
the function (i, x) that extracts the number in the i-th entry
of the sequence coded by x - this is also rather delicate



Relationships amongst the axioms of PA

Theorem
1. BN+ BXpi1
2. X pp1E B

3. If A(x,y) € ¥, and t is a term, then BY,, can prove that
(Vx < t)A(x,y) is equivalent to a ¥, formula

To prove this theorem we use concepts that were earlier shown to
be ¥ i-definable in [Ay.



Proof - case 1

» suppose A(x,y) is in £ 41, we want to show that the
following formula is derivable in BI,:

(Vx < u)(3y)A(x,y) = (3v)(Vx < u)(Fy < v)A(x,y)

» A(x,y) has the form (32)B(x,y, Z) for some B € M.

» replace the part [...(3y)(32)B...] by [...(3w)B...],
where w is intended to range over the codes of the Godel
numbers of sequences of possible values for y and Z by setting

B(l,w) =y and B(i +1,w) = z

» since y = (1, w) < w, take w to witness the bound for y in
the consequent of the above axiom



Proof - case 3 (this is needed for case 2)

» by induction on n, if n =0, then the new formula is bounded
in IAO - BZO

> since we can code a sequence of possible values by a single
number, let A is of the form (3y)B for some B € ,,_1,
then

(Vx < t)(3y)B < (3u)(Vx < t)(Iy < u)B (REPL)
< (Fu)(vx < t)C (IH)

where C is N,_1, so (Vx < t)A is equivalent to a X, formula



Proof - case 2

Suppose A(x,y) € £p11, we want to show that /X, 11 proves the
REPL instance for A, by case 1 we may assume that A € I1,,.

P> assume
(Vx < u)(Fy)A(x, y) (1)
» denote by ¢(a) the formula

(@Av)(vx < a)(Fy < v)A(x,y) (2)

> note that ¢(x) is equivalent to a X,y formula (case 3)
» by (1) we have ¢(0) and p(a) = p(a+1) fora< u
» so by ¥, 1-induction it holds that ¢(u)



Some other relationships

(i) IL, 1N,
> let A(x) € M, assume A(0) and (Vx)(A(x) — A(x + 1))
> let a be arbitrary, let B(x) be the formula —=A(a - x)
» then —B(a) and B(x) — B(x + 1), so by induction =B(0)
» hence A(a), and therefore also (Vx)A(x)

(i) IM, F I1X, is similar



Some other relationships

(i) LY, 1T,
> take A(x) € MM, such that (3x)-A(x)
» use LNP to find the smallest x” such that —A(x’)
> if x' = 0, then ~A(0)
> if x’ >0, then by LNP A(x' — 1)
(iv) LN, = IX, is similar

(v) ... and IND also implies LNP



Some arrows

/Zn—i-l
4
BY n41 < B,

4
I, N, L, < L,
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