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t. Introduction.

One of the few general approaches to difficult combinatorial
optimization problems that has met with empirical success is local (or
neighborhood> search. In a typical combinatorial optimization prob­
lem, each instance is associated with a finite set of feasible solutions,
each feasible solution has a cost, and the goal is to find a solution of
minimum cost. In order to derive a local search algorithm for such a
problem, one superimposes on it a neighborhood structure that speci­
fies a "neighborhood" for each solution, that is, a set of solutions that
are, in some sense "close" to that solution. For example, in the travel­
ing salesman problem (TSP), a classical neighborhood is the one that
assigns to each tour the set of tours that differ from it in just two
edges (this is called the 2-change neighborhood). In the graph parti­
tioning problem (given a graph with 2n nodes and weights on the
edges, partition the nodes into two sets of n nodes such that the sum of
the weights of the edges going from one set to the other is minimized)
a reasonable neighborhood would be the so-called "swap" neighbor­
hood: Two partitions are neighbors if one can be obtained from the
other by swapping two nodes.

Given a combinatorial optimization problem with a superimposed
neighborhood structure, the local search heuristic operates as follows.
Starting from an independently obtained initial solution, we repeatedly
replace the current solution by a neighboring solution of lower value,
until no such neighboring solutions exist, at which point we have iden­
tified a solution that is "locally optimal." Typically, we repeat this
procedure for as many randomly chosen initial solutions as is computa­
tionally feasible, and adopt the best local optimum found. Variants of
this methodology have been applied to dozens of problems, often with
impressive success. The much-publicized "simulated annealing"
approach of [K] is just a new twist on this classical theme.

In local· search, one is of course not limited to such simple neigh­
borhood structures as those described above. Neighborhoods can be
complex, asymmetric, and cost-dependent. For example, the most
successful algorithm known for the TSP is the "X-change" or "Lin­
Kernighan" heuristic [LK], in which the neighborhood of a tour con­
sists of all tours that can be reached from it by a sequence of changes
of edges, going to arbitrary depth, with the exponential explosion of
the neighborhood controlled by a complex "greedy" criterion. Simi­
larly, for the graph partitioning problem, the champion is the
"Kernighan-Lin" local search algorithm [KL], in which we go from a
partition to a neighbor by a sequence of swaps. At each step of the
sequence we choose a swap involving as-yet-unswapped vertices that
yields the best cost differential (most positive, or least negative).
Although the first few swaps may possibly worsen the solution, later
swaps may more than make up for any initial loss. We can stop at any
point with positive gain.

In all reported studies of the above-cited local search algorithms
and their variants, local optima have been obtained from arbitrary ini­
tial solutions in very reasonable amounts of time (typical observed
growths are low-order polynomials [LK, PS2]). There has been a
debate on the quality of the optima [LK, Pa1, PS1], but the fact that
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local optima are easy to obtain has never been challenged. It has been
shown [Lu] that in the 2-change neighborhood for the TSP we can
have an exponentially long sequence of successive improvements, but
this only with repeated unfortunate choices in a contrived example.
Even for this simple case, the example is rather complex, and there are
no such examples known for ~-changes, or even for 3-changes {where
neighboring tours differ by three edges, rather than just two}.

Moreover, this exponential counterexample only rules out the
obvious algorithm for finding a local optimum. There is no evidence
that a clever criterion for choosing the next neighbor, or even a totally
different constructive technique, might not produce a local optimum in
polynomial time. The analogy with simplex and the ellipsoid algorithm
for linear programming is instructive here. The simplex algorithm is
essentially a local search algorithm, where the 'solutions" are vertices
of a polytope and the neighbors of a solution are those solutions that
can be reached from it by a single "pivot." The precise nature of the
algorithm depends on the method used for choosing among neighbors
when more than one neighbor offers an improvement. Most 'such
"pivoting rules" have been shown to yield an exponential number of
steps on certain pathological examples and no pivoting rule has been
proved to be immune from such examples. There are, however,
polynomial-time algorithms for finding solutions that are locally
optimal with respect to the simplex neighborhood structure, and the
ellipsoid algorithm is one such. It differs from simplex algorithms in
that it proceeds by an indirect approach and does not examine any ver­
tices of the polytope except for the locally optimal one with which it
terminates.

The example of linear programming is interesting, because under
the simplex neighborhood structure, local optimality implies global
optimality. Thus determining a local optimum is a goal sufficient in
itself. Another interesting problem in which local optimality suffices
was suggested to us by Don Knuth [Kn] (and in fact was our initial
motivation for this work). In this problem local optimality does not
imply global optimality, but it is all we need for our desired applica­
tion. We are given an m x n real matrix A, m < n, and we wish to
find a non-singular m x m submatrix B of A such that the elements of
B-1A are all of absolute value at most 1. Since the elements of B-1A
are ratios of determinants, finding the submatrix B with the largest
determinant would do, but this is NP-complete [Pa2]. However, it is
easy to see that, according to Cramer's rule, all we need is a local
optimum submatrix, with column swaps as neighborhood. So, here is
an NP-complete problem in which the important goal is to find any
local optimum! No polynomial algorithm is known, but the local
search heuristic (improve until local optimum) has been observed
always to converge after very few iterations.

How easy is it to find a local optimum (in any and all of the
above situations)? We can formalize this question by defining a new
complexity class of functions. This class, called PLS for polynomial­
time local search, is made up of functions that map instances of a com­
binatorial optimization problem {with a given neighborhood structure},
to local optima. To make this class meaningful, we must make certain
assumptions on the problem and the neighborhood structure: First,



given an instance (e.g., an nxn distance matrix) we must be able to
produce some solution (e.g., a cyclic permutation of n objects) in poly­
nomial time. Second, given an instance and a solution, we must be
able to compute the cost of the solution in polynomial time. Finally,
giv'en an instance and a solution, we must be able in polynomial tim~

to determine· whether that solution is locally optimal, and if not to gen­
erate a neighboring solution of improved cost. The resulting class PLS
of total, multivalued functions, lies somewhere between the functional
analogues of P and NP. (Any polynomial-time computable. function
can be formalized' as'-a restricted local search problem, and any local
search problem obeying the above restrictions can be solved nondeter­
ministically in polynomial time by guessing a solution and verifying its
local optimality.)

Where exactly is PLS? In particular, is it true that PLS - P
(and thus we can always find local optima in polynomial time), or is it
true that PLS - NP (and thus for some problems in PLS, local,optima
cannot be found in polynomial time unless P ~ NP), or is it possible
that PLS is distinct from both P and NP? Practically all the empirical
evidence would lead us to conclude that finding locally optimal solu­
tions is much easier than solving NP-hard problems. Moreover, it is
easy to show that no problem in PLS can be NP-hard unless NP ~

co-NP. Thus it seems unlikely that PLS - NP.On the other hand, If
PLS - P, then presumably there must be some general approach to
finding local optima, and no such apprQach has yet been discovered.
Note that such an approach. would have to be at least. as clever as the
ellipsoid method., since linear programming .is in PLS.

The question of,P -1 PLS -1 NP thus has no obvious answers
and suggests no natural conjectures, a property it shares with the more
general open question of whether the computation of partial functions
is in general sped up by knowledge that an image exists. (In our case,
an image, Le., a locally optimal solution, must exist by definition, since
the set of solutions is finite'> In the interest of understanding these
issues, we proceed as any complexity theorist would with a new class:
We look for complete problems.

Of course, in this situation the conventional concepts of reduction
are inadequate. Intuitively, to reduce a local' search problem A to
another one B, we must not only be able to map instances of A to ones
of B, we must also be able to recover a local optimum of A from a
local optimum of B. In Section·2 we formalize this notion of reduction
together with that of PLS, and sketch a proof that the following "gen­
eric" problem is complete for PLS: Given a circuit with many inputs
and outputs, find an input whose output (when viewed as a binary
integer) cannot be reduced by flipping any single bit of the input. The
proof is unusually complex for a generic problem. The reason is that,
in our definition of a problem in PLS, we use three algorithms, not
one. Much of the complexity of the reduction lies in "absorbing" two
of them into the third (the computation of the cost) .

Proving the existence of a generic complete problem is only the
first step in establishing the significance of a new complexity class.
We must also tie the class to problems that are of interest in their own
right, either for theoretical or practical reasons. In Section· 3 we exhi­
bit our first such discovery, a natural and well-studied local search
problem that is complete for PLS: the Kernighan-Lin neighborhood
structure for the graph partitioning problem £KLJ. The proof is rather
subtle, in that it must deal with delicate issues not present in ordinary
reductions.

Showing more such problems complete is· possible, but certainly
not automatic. We can show that the corresponding local search prob­
lem for independent sets is complete, and so are several variants of the
basic Kernighan-Lin local search problem. We have not, however,
been able to prove PLS-completeness for the TSP with the X-change
neighborhood. In addition, it seems unlikely that certain local search
problems, such as the TSP under the' 2- and 3-change neighborhood
structures and the problem of subdeterminant maximization, are com­
plete. The reason is that these problems are defined in terms of algo­
rithms for specifying the neighborhood and computing the cost which
run in polylogarithmic space, and thus do not appear to make full use
of polynomial time local search. (We conjecture that a local search
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problem cannot be PLS-complete unless the subproblem of verifying
local-optimality is itself logspace complete for P.)

Notice finally that, .for a PLS problem not to be trivially polyno-
.mial, the range of its possible solution costs must be exponential in
size. For example, one can in polynomial time find a truth assignment
such that flipping any single variable's truth value does not increase
the number of clauses satisfied, and similarly for the unweighted ver­
sion of the graph partitioning problem to be discussed in Section 3.

2. PIS and FLIP.

A polynomial-time local search (PLS) problem L is defined as
follows:' As with all computationalproblems, L has a set of instances,
which can be taken to be a subset of {O, l}.. For each instance x (in
the TSP, the encoding of a distance matrix), we have a finite set
FL(x) of solutions (tours in the TSP), which are considered also as
strings in {O, l}., without loss of generality all with the same length
p <Ix 1>, polynomially bounded. For each solution s E FL (x) we have a
nonnegative integer cost CL(S,X) and also a a subset N{s,x) ~ FL(x)
called the neighborhood of s. The remaining constraints ~n L are pro­
vided by the fact. that. the following three polynomial-time algorithms
A L, BL, and CL, must exist. Algorithm A L, given x, produces a partic­
ular standard solution A (x) E FL (x). Algorithm BL , given an
instance x and a string s, determines whether s E FL (x), and if so
computes CL (s,x),· the cost of the solution. Algorithm CL , given an
instance x and a solution s EFL (x), has two possible types. of output,
depending on s. If there is any solution s' E N (s,x) such that
cL (s',x) < CL (s,x), C produces such a solution. Otherwise it reports
that no such. solutions exist and hence that s is locally optimal. Now,
the computational problem L is the following: Given x, find a locally
optimal solution s E FL(x). Note that such solutions must exist
because FL (x) is finite.

We call PLS the. class of problems of function computation that
can be posed as local search problems for appropriate functions A,B,C.
It is easy to see that the class P of polynomially computable functions
is a subset of PLS, with FL (x) a singleton and all N (s,x) empty; and
the class NP of non-deterministic polynomial-time computable func­
tions is a superset of PLS, in which the algorithms are allowed to be
non-deterministic.

. We say that a problem L in PLS is reducible to another, K, if
there are polynomially computable functions f and g such that (a) f
maps instances of L to instances of K, (b) g maps (solution, instance)
pairs for instances of K generated by f back to solutions of L, and (c)
for all instances x of L, if s is a local optimum. for instance I (x) of K,
then g (s,1 (x» is a local optimum for x. We say that a problem L in
PLS is PLS-complete if any problem in PLS is reducible to L.

The circuit computation problem introduced informally in the
previous section will be called "FLIP." It can be described in terms of
the formal definition of PLS as follows: Instances are interpreted as
feedback-free Boolean circuits made up of and, or, and not gates.
Given such a circuit x with m inputs and n outputs, a solution in F(x)
is any bit vector with m components. Having fixed x, the cost of a

solution s is defined as ~_. 2JYJ' where YJ is the jth output of the
circuit with input s. Final(y,\here are m neighbors of each solution s,
the m strings of length WI. with Hamming distance one from s, Le., the
strings that can be obtained from s by changing exactly one bit. Intui­
tively, this PLS problem asks for an. input such that the output cannot
be improved lexicographically by flipping a single input bit. It should
be clear from this description that the required polynomial-time algo­
rithms A FUP, BFUP, and CFUP all exist.

THEOREM 1. FLIP is PLS-complete.

Prool Sketch: Consider a PLS problem L. Without loss of gen­
erality, we assume that, for each instance x, FL (x) consists entirely of
strings of length p (x), no two of which are within Hamming distance
1 of each other. We first reduce L to an intermediate PLS problem M
that differs from L only in the neighborhood structure: in M no solu­
tion has more than one neighbor. If s is locally optimal for x then
NM{s,x) is' empty; otherwise the single neighbor of s is the output of



CL given inputs sand x. Note that we can take AM-AL, BM-BL,
and CM-CL .

We next reduce M to a second intermediate problem Q that has
the same instances as Land M, but has the same neighborhood struc­
ture as FLIP, Le., all strings of a given polynomially-bounded length
are solutions and any two strings at Hamming distance 1 are mutual
neighbors. Suppose that the stipulated length of solutions for instance
x of L (and hence of M) is p - p (I x I). Then solutions for x in Mare
of length 2p + 1. Although all such strings will be called "solutions,"
only certain specified ones will be inexpensive enough to be candidates
for local optima. For a solution U of L, the possible candidates are as
follows:

(a). uu 0, in which case cQ(uuO,x) - (2p + 2)CL (u,x).

(b) . uv 0, where U is not a local optimum and v is a string on the
shortest Hamming path from U to its (single) neighbor w in M.
The cost cQ(uvO,x) is (2p + 2)CL (w,x) + (p + 2) + h, where h is
the Hamming distance between v and w (h - °is allowed).

(c). vu 1, where v is any string of length p. The cost cQ(vu l,x) is
(2p + 2)CL (u,x) + h + 1, where h is the Hamming distance
between v and u.

All "non-candidates" s will have cost exceeding

Z - (4p + 2) (max {CL (u,x): U is a solution for x}).

In particular, if we let a be the standard solution returned by algo­
rithm AL , and h be the Hamming distance between sand aao, then
cQ(s,x) - Z + h. Thus there is a downhill path from any non­
candidate solution to aa 0. Furthermore, by (a), (b), and (c), the only
candidate solutions of Q that can be locally optimal must have the
form "vvO." Since all solutions to L are at least Hamming distance 2
apart by assumption, the candidate solutions of the form "vvO" that
are locally optimal are precisely those for which v is locally optimal for
L. (This one-to-one correspondence between local optima is actually a
stronger property than we need for a reduction from M to Q, but will
certainly suffice. To complete the definition of Q, we let algorithm AQ
return the "standard" solution 02p+1 .)

The last step of our proof is a reduction from Q to FLIP. This is
now relatively straightforward, as all the complexity of Q resides in
computing its cost function. Our reduction works by constructing, for
a given instance x of Q, a polynomial-size circuit with (2p (Ix I> + 1)
inputs that computes cQ(s,x) for all solutions s of x, with its outputs
describing the answer in binary notation. This can be done since the
algorithm BQ for computing costs runs in polynomial-time (by
hypothesis) . 0

3. A Well-Known Local Search Problem that is PIS-Complete.

The Local Optimum for Kernighan-Lin (LOKI) problem is
based on a famous local search heuristic for the well-studied graph
partitioning problem. In the graph partitioning problem, we are given
a graph G - (V,E) with weights w (e) on the edges. A solution is any
partition of V into two equal subsets A and B, and the cost C (A,B) is
the sum of the weights of all edges going from A to B. Our goal is to
find a partition of minimum cost.

The "Kernighan-Lin" neighborhood structure for this problem is
highly data-dependent, and its definition is built up as follows. A swap
of partition (A,B) is a partition (C,D) such that A and C have sym­
metric difference 1. It is a greedy swap if C(A,B) - C(C,D) is maxim­
ized over all swaps of (A,B). If in fact (C,D) is the lexicographically
smallest over all greedy swaps, we say that (C,D) is the lexicographic
swap of (A,B). Let (Ai,Bi ) be a sequence of partitions, of which each
one is a swap of the one preceding it. We call it monotonic if the
differences Ai - A o and Bi - B o are monotonically increasing (that is,
no node is switched back to its original set). Finally, we say that a
partition (C,D) is a neighbor of (A,B) in the Kernighan-Lin neighbor­
hood structure if it occurs in the (unique) maximal monotonic
sequence of lexicographic swaps starting with (A,B). Thus each parti-
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tion has 0 (I V I) neighbors.....The Kernighan-Lin algorithm performs
local search over this neighborhood structure, with the added proviso
that if more than one neighbor offers an improvement over the current
partition, we must choose a neighbor that offers the best improvement.

(The original paper [KL] does not specify what is to be done
when there are more than one neighbors offering the best improve­
ment, and so various implementations· differ on this point. The paper
also fails to specify the underlying neighborhood· structure as precisely
as we do here; it does not say what to do when ties are encountered in
the process of buildi~g a maximal monotone. sequence of swaps,.
whereas we have specified a lexicographic tie-breaking rule. Our
PLS-completeness result can be shown to hold, however, for any rea­
sonable variant on lexicographic tie-breaking.)

As an intermediary in our proof, we consider a variant on LOKL
with a considerably larger neighborhood structure, called the Weak
LOKL problem. WLOKL is like LOKL, except that a partition
(C,D) is a neighbor of (A,B) if it can be obtained from it by a mono­
tonic sequence of greedy swaps, all except the first of which are lexico­
graphic. In other words, we exhaust all ties at the first step, although
we resolve ties lexicographically from then on. Since there can be at
most 0 <I V 12

) swaps tied at the first step, each partition has at most
0(1 V13) neighbors in the WLQKL neighborhood structure.

THEOREM 2. WLOKL is PLS-complete.

Very Sketchy Proof Sketch: We start from FLIP. We first
transform the circuit of the FLIP instance to a set of clauses of not­
all-equal-SAT persuasion, each with a level number, corresponding to
the level of the corresponding gate in the circuit, going from 1 (leaves)
to d. Each or gate "a - b or c" gives three clauses:
(a,b,c), (a,b,O), (a,c,O), and similarly for and gates (remember, these
are '''not all equal" clauses). Also, we assume that the input x, is
involved in only two clauses (x"y,), (x,S,), where y" the negation of
Xi' propagates the value upwards.

The graph has two "one nodes" and two "zero nodes," connected
by edges of weight M 2 • For each variable (input, gate, or output) a
we have two nodes a and a, connected by an edge of weight M. For
each clause of level i, we connect the (three) literals with edges of
weight N d- i , where N is the circuit size. We also connect the jth out­
put with a zero node, by an edge of weight 2i1M. Finally, we have
two new nodes a',a' for each non-input variable a, an edge (a',a? of

weight M, and edges (a,a? and (a,a? with weight N 2d1 + ~.
M

It can be shown that any local optimum of the resulting instance
of WLOKL is such that all variables are separated, and thus a truth
assignment is induced. Furthermore, the truth values must be con­
sistent with the circuit, because otherwise Kernighan-Lin would
improve the partition, starting from the variable corresponding to the
lowest inconsistent gate. Finally, these values correspond to a local
optimum input, otherwise Kernighan-Lin would discover the
improvement. 0

By more complex arguments, we can show that several other
PLS problems are PLS-complete. First, we can extend the above proof
to LOKL. Then, we can show a similar result for variants of LOKL in
which the first swap is completely exhaustive (not greedy), or exhausts
all nodes of A and then chooses the node to leave B greedily. Also, we
can prove along the same lines completeness of the independent set
problem (of course weighted), in which the analog of a swap consists
of inserting a node in the independent set, and removing its neighbors.
The first swap is exhaustive, and the remaining ones lexicographic.
There seems to be no easy way to extend these results to other PLS
problems; the salient open question here is the ~-change heuristic for
the TSP.
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