
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The fusion method (AKA the ultraproduct)

Ondřej Ježil

December 9, 2020

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 1 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits

so far we’ve seen:

▶ Razborov’s approximation method
▶ Sipser’s topological approach

These approaches were unified by M. Karchmer with his “Fusion
method”
we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits
so far we’ve seen:

▶ Razborov’s approximation method
▶ Sipser’s topological approach

These approaches were unified by M. Karchmer with his “Fusion
method”
we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits
so far we’ve seen:

▶ Razborov’s approximation method

▶ Sipser’s topological approach
These approaches were unified by M. Karchmer with his “Fusion
method”
we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits
so far we’ve seen:

▶ Razborov’s approximation method
▶ Sipser’s topological approach

These approaches were unified by M. Karchmer with his “Fusion
method”
we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits
so far we’ve seen:

▶ Razborov’s approximation method
▶ Sipser’s topological approach

These approaches were unified by M. Karchmer with his “Fusion
method”

we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some context

goal: Lower bounds (ideally) on non-monotone circuits
so far we’ve seen:

▶ Razborov’s approximation method
▶ Sipser’s topological approach

These approaches were unified by M. Karchmer with his “Fusion
method”
we will cover the survey article: Avi Widgerson – The Fusion Method
for Lower Bounds in Circuit Complexity

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 2 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct

▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations

▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each
u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct

▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations

▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each
u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct
▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.

▶ If we have an ultrafilter U on I. We can form a new structure∏
i∈I

Ai/U |= T.

Fusing computations

▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each
u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct
▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations

▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each
u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct
▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations

▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each
u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct
▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations
▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each

u ∈ U, we have P(u) an accepting computation of u.

▶ If we have some finite analogue of an ultrafilter F, we can fuse them
into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

General idea

Lower bound for a boolean function → Combinatorial “covering” problem

Ultraproduct
▶ We have a collection (Ai, i ∈ I) of structures, Ai |= T.
▶ If we have an ultrafilter U on I. We can form a new structure∏

i∈I
Ai/U |= T.

Fusing computations
▶ We have some program P, accepting exactly U ⊆ {0, 1}n, and for each

u ∈ U, we have P(u) an accepting computation of u.
▶ If we have some finite analogue of an ultrafilter F, we can fuse them

into a new ”accepting computation” of some new z, a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 3 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Straight-line programs, computations

Definition
Let X = {x1, . . . , xk} be a set of variables. A straight-line program P is a
tuple (g1, . . . , gt), such that gi = xi for i ∈ {0, . . . , n} and gi = gi1 ◦i gi2
where i1, i2 < i, and ◦i ∈ OP some set of binary operations.
For u ∈ {0, 1}n we define a computation of P on input u as
P(u) := (g1(u), . . . , gt(u)), where gt(u) ∈ {0, 1} is the output of the
computation.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 4 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example of a straight-line program

Consider the circuit:

y
∧

∨

x1 x2

x3

The corresponding straight-line program is

P = (x1, x2, x3, x1 ∨ x2, (x1 ∨ x2) ∧ x3).

And the following is an accepting computation of P(1, 0, 1)

P(1, 0, 1) = (1, 0, 1, 1, 1).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 5 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example of a straight-line program

Consider the circuit:

y
∧

∨

x1 x2

x3

The corresponding straight-line program is

P = (x1, x2, x3, x1 ∨ x2, (x1 ∨ x2) ∧ x3).

And the following is an accepting computation of P(1, 0, 1)

P(1, 0, 1) = (1, 0, 1, 1, 1).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 5 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example of a straight-line program

Consider the circuit:

y
∧

∨

x1 x2

x3

The corresponding straight-line program is

P = (x1, x2, x3, x1 ∨ x2, (x1 ∨ x2) ∧ x3).

And the following is an accepting computation of P(1, 0, 1)

P(1, 0, 1) = (1, 0, 1, 1, 1).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 5 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The fusion method

Let U ⊆ {0, 1}n, we would like to find a lower bound on the length of
the shortest straight-line program accepting exactly U.

This is equivalent to finding a lower bound for a straight-line program
computing some boolean function f on n-letter strings by setting
U = f−1[1].
Assume for contradiction there exists some program P = (g1, . . . , gt)
that accepts exactly U and t is too small.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 6 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The fusion method

Let U ⊆ {0, 1}n, we would like to find a lower bound on the length of
the shortest straight-line program accepting exactly U.
This is equivalent to finding a lower bound for a straight-line program
computing some boolean function f on n-letter strings by setting
U = f−1[1].

Assume for contradiction there exists some program P = (g1, . . . , gt)
that accepts exactly U and t is too small.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 6 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The fusion method

Let U ⊆ {0, 1}n, we would like to find a lower bound on the length of
the shortest straight-line program accepting exactly U.
This is equivalent to finding a lower bound for a straight-line program
computing some boolean function f on n-letter strings by setting
U = f−1[1].
Assume for contradiction there exists some program P = (g1, . . . , gt)
that accepts exactly U and t is too small.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 6 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The accepting computation matrix

Consider a |U| × t matrix, where rows are indexed by U and each row
is equal to the computation P(u).

u the rest of P(u)
0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 7 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Producing a contradiction

u the rest of P(u)
0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1

We would like to produce a contradiction using that the number of
rows t is too small.

We will try to construct a ”new” accepting computation using the old
ones. Since this table contains all accepting computations, this would
be a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 8 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Producing a contradiction

u the rest of P(u)
0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1

We would like to produce a contradiction using that the number of
rows t is too small.
We will try to construct a ”new” accepting computation using the old
ones. Since this table contains all accepting computations, this would
be a contradiction.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 8 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fusing the computations

How to produce the new computation?

Let F : {0, 1}|U| → {0, 1}, “a functional” from some set Ω of
functionals (will be specified later, e.g. Ω = {all functionals} works).
F will act as our finite analogue of an ultrafilter.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fusing the computations

How to produce the new computation?
Let F : {0, 1}|U| → {0, 1}, “a functional” from some set Ω of
functionals (will be specified later, e.g. Ω = {all functionals} works).

F will act as our finite analogue of an ultrafilter.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fusing the computations

How to produce the new computation?
Let F : {0, 1}|U| → {0, 1}, “a functional” from some set Ω of
functionals (will be specified later, e.g. Ω = {all functionals} works).
F will act as our finite analogue of an ultrafilter.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 9 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applying the functional

0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1
↓F
0

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 10 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applying the functional

0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1

↓F
0 1

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 11 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applying the functional

· · ·

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 12 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applying the functional

0 1 … 0 1 0 1 … 0 1
0 0 … 1 1 0 0 … 0 1
1 0 … 0 1 1 0 … 1 1
1 0 … 1 0 1 0 … 1 1
...
1 1 … 1 0 0 0 … 0 1

↓F
0 1 … 1 1 1 0 … 1 1

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 13 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.

By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.

There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1

3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t
We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional

It is obvious there is no guarantee that the resulting tuple will be an
accepting computation.
By F(gi) we mean the output of F on i-th column of the accepting
computation matrix.
There are three requirements on the functional F for this to work:

1 F ”encodes” some z ̸∈ U, that is, F(gi) = zi for i ∈ {1, . . . , n} (the ”u”
part of the new row is z)

2 The resulting computation is accepting, that is F(1) = 1
3 F is consistent, that is F(gi1) ◦i F(gi2) = F(gi1 ◦i gi2) for n < i ≤ t

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 14 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional cont.

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

How do we find functional in Ωf that satisfies the third requirement,
since it depends on P?
We don’t! We just conclude that if such short P exists, there has to
be no such functional in Ωf.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 15 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional cont.

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

How do we find functional in Ωf that satisfies the third requirement,
since it depends on P?

We don’t! We just conclude that if such short P exists, there has to
be no such functional in Ωf.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 15 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Requirements on the functional cont.

We will search for such F by considering

Ωf = {F ∈ Ω;F satisfies the first two points}.

How do we find functional in Ωf that satisfies the third requirement,
since it depends on P?
We don’t! We just conclude that if such short P exists, there has to
be no such functional in Ωf.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 15 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Covering

Definition
Let OP be some set of operations. We say, that the triple (g, h, ◦),
g, h ∈ {0, 1}n → {0, 1}, ◦ ∈ OP covers a functional F, if

F(g) ◦ F(h) ̸= F(g ◦ h).

For a function f : {0, 1}n → {0, 1} we denote ρ(f) the smallest number of
such triples that cover Ωf.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 16 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The lower bound

Theorem (Meta-theorem)
ρ(f) is a lower bound on the shortest straight-line program computing f
over OP.

Proof.
Let P = (g1, . . . , gt) be a program computing f and t < ρ(f). Since
{(gi1 , gi2 , ◦i); i ∈ {n + 1, . . . , t}} cannot cover Ωf, therefore there does
exists F ∈ Ωf that is consistent with this program. F then codes a new
accepting computation of some z ̸∈ f−1[1], which is a contradiction.

The lower bound is actually n + ρ(f).
We can restrict the smallest cover to those covers for which each
(g, h, ◦) has g, h definable by some straight line program over OP.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The lower bound

Theorem (Meta-theorem)
ρ(f) is a lower bound on the shortest straight-line program computing f
over OP.

Proof.
Let P = (g1, . . . , gt) be a program computing f and t < ρ(f). Since
{(gi1 , gi2 , ◦i); i ∈ {n + 1, . . . , t}} cannot cover Ωf, therefore there does
exists F ∈ Ωf that is consistent with this program. F then codes a new
accepting computation of some z ̸∈ f−1[1], which is a contradiction.

The lower bound is actually n + ρ(f).
We can restrict the smallest cover to those covers for which each
(g, h, ◦) has g, h definable by some straight line program over OP.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The lower bound

Theorem (Meta-theorem)
ρ(f) is a lower bound on the shortest straight-line program computing f
over OP.

Proof.
Let P = (g1, . . . , gt) be a program computing f and t < ρ(f). Since
{(gi1 , gi2 , ◦i); i ∈ {n + 1, . . . , t}} cannot cover Ωf, therefore there does
exists F ∈ Ωf that is consistent with this program. F then codes a new
accepting computation of some z ̸∈ f−1[1], which is a contradiction.

The lower bound is actually n + ρ(f).

We can restrict the smallest cover to those covers for which each
(g, h, ◦) has g, h definable by some straight line program over OP.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The lower bound

Theorem (Meta-theorem)
ρ(f) is a lower bound on the shortest straight-line program computing f
over OP.

Proof.
Let P = (g1, . . . , gt) be a program computing f and t < ρ(f). Since
{(gi1 , gi2 , ◦i); i ∈ {n + 1, . . . , t}} cannot cover Ωf, therefore there does
exists F ∈ Ωf that is consistent with this program. F then codes a new
accepting computation of some z ̸∈ f−1[1], which is a contradiction.

The lower bound is actually n + ρ(f).
We can restrict the smallest cover to those covers for which each
(g, h, ◦) has g, h definable by some straight line program over OP.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 17 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.

¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .
The accepting computation matrix for any program P is

P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.
The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.
¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .

The accepting computation matrix for any program P is
P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.
The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.
¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .
The accepting computation matrix for any program P is

P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.
The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.
¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .
The accepting computation matrix for any program P is

P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.
The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.
¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .
The accepting computation matrix for any program P is

P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.

The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity
Let f(x1, x2) = (x1 + x2) mod 2, let OP = {∧,∨,¬}.
¬ is not a binary operation but we can define it as ¬(gi1 , gi2) = ¬gi1 .
The accepting computation matrix for any program P is

P(u1) : 0 1 … 1
P(u2) : 1 0 … 1

For Ω unrestricted, what do we have in Ωf? We have:
g: 0 x1 x2 1

g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

The rows of the two middle columns have to differ from the first two
rows because of requirement 1.
The last column contains only ones because of requirement 2.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 18 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity cont.
We need to cover the following four functionals.

g: 0 x1 x2 1
g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

F1 is covered by (x1, x2,∨), since F1(x1) ∨ F1(x2) = 0, but
F1(x1 ∨ x2) = F1(1) = 1
F2 is covered by (x1, x2,∧), since F2(x1) ∧ F2(x2) = 1, but
F2(x1 ∧ x2) = F2(0) = 0
F3 is covered by (x1,−,¬), since ¬F3(x1) = 1, but
F3(¬x1) = F3(x2) = 0 and so is F4
This is the smallest possible cover using OP, therefore the lower
bound is 2 + 3 = 5.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity cont.
We need to cover the following four functionals.

g: 0 x1 x2 1
g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

F1 is covered by (x1, x2,∨), since F1(x1) ∨ F1(x2) = 0, but
F1(x1 ∨ x2) = F1(1) = 1

F2 is covered by (x1, x2,∧), since F2(x1) ∧ F2(x2) = 1, but
F2(x1 ∧ x2) = F2(0) = 0
F3 is covered by (x1,−,¬), since ¬F3(x1) = 1, but
F3(¬x1) = F3(x2) = 0 and so is F4
This is the smallest possible cover using OP, therefore the lower
bound is 2 + 3 = 5.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity cont.
We need to cover the following four functionals.

g: 0 x1 x2 1
g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

F1 is covered by (x1, x2,∨), since F1(x1) ∨ F1(x2) = 0, but
F1(x1 ∨ x2) = F1(1) = 1
F2 is covered by (x1, x2,∧), since F2(x1) ∧ F2(x2) = 1, but
F2(x1 ∧ x2) = F2(0) = 0

F3 is covered by (x1,−,¬), since ¬F3(x1) = 1, but
F3(¬x1) = F3(x2) = 0 and so is F4
This is the smallest possible cover using OP, therefore the lower
bound is 2 + 3 = 5.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity cont.
We need to cover the following four functionals.

g: 0 x1 x2 1
g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

F1 is covered by (x1, x2,∨), since F1(x1) ∨ F1(x2) = 0, but
F1(x1 ∨ x2) = F1(1) = 1
F2 is covered by (x1, x2,∧), since F2(x1) ∧ F2(x2) = 1, but
F2(x1 ∧ x2) = F2(0) = 0
F3 is covered by (x1,−,¬), since ¬F3(x1) = 1, but
F3(¬x1) = F3(x2) = 0 and so is F4

This is the smallest possible cover using OP, therefore the lower
bound is 2 + 3 = 5.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example - parity cont.
We need to cover the following four functionals.

g: 0 x1 x2 1
g(u1) 0 0 1 1
g(u2) 0 1 0 1
F1(g) 0 0 0 1
F2(g) 0 1 1 1
F3(g) 1 0 0 1
F4(g) 1 1 1 1

F1 is covered by (x1, x2,∨), since F1(x1) ∨ F1(x2) = 0, but
F1(x1 ∨ x2) = F1(1) = 1
F2 is covered by (x1, x2,∧), since F2(x1) ∧ F2(x2) = 1, but
F2(x1 ∧ x2) = F2(0) = 0
F3 is covered by (x1,−,¬), since ¬F3(x1) = 1, but
F3(¬x1) = F3(x2) = 0 and so is F4
This is the smallest possible cover using OP, therefore the lower
bound is 2 + 3 = 5.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 19 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Quality of the lower bound

Why should we consider Ω restricted to some type of functionals?

▶ Full Ω is huge, |Ω| = 22|U| and |U| = O(2n). So covering only part of it
can be much more managable.

▶ While considering unrestricted Ω we can obtain a larger lower bound.
However in some situations for some restrictions we get the following
theorem:

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Quality of the lower bound

Why should we consider Ω restricted to some type of functionals?
▶ Full Ω is huge, |Ω| = 22|U| and |U| = O(2n). So covering only part of it

can be much more managable.

▶ While considering unrestricted Ω we can obtain a larger lower bound.
However in some situations for some restrictions we get the following
theorem:

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Quality of the lower bound

Why should we consider Ω restricted to some type of functionals?
▶ Full Ω is huge, |Ω| = 22|U| and |U| = O(2n). So covering only part of it

can be much more managable.
▶ While considering unrestricted Ω we can obtain a larger lower bound.

However in some situations for some restrictions we get the following
theorem:

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 20 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.

This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.

This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.

This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.

proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.

“⇐” has been already proven as a part of the Main theorem.
With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Meta-Converse
Theorem (Meta-Converse)
There is a program P over OP that computes f that is not much larger
than ρ(f).

Proof.
(sketch) We have a cover C = {(g1, h1, ◦1), . . . , (gt, ht, ◦t)}.This is not a
program, and our task is to “organize” these unrelated gates into a
program.

Claim: f(z) = 1 ⇔ ∃F ∈ Ω that defines z and is not covered with C.
proof of the claim: For “⇒” pick Fz(g) := g(z). This is by
definition compatible with every operation.
“⇐” has been already proven as a part of the Main theorem.

With the claim, we just need to construct a program, that tries to find
such F. We don’t need the whole functional, just its values on xi and the
cover. For many choices of OP and Ω this yields program, that has either
linear or polynomial length with respect to ρ(f).

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 21 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The choices for Ω

The following restrictions for Ω have been considered:

▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone
(flipping zeroes in the input can only make the output 1)

▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone
(flipping zeroes in the input can only make the output 1)

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 22 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The choices for Ω

The following restrictions for Ω have been considered:
▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone

(flipping zeroes in the input can only make the output 1)

▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone
(flipping zeroes in the input can only make the output 1)

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 22 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The choices for Ω

The following restrictions for Ω have been considered:
▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone

(flipping zeroes in the input can only make the output 1)
▶ Ω = {F;F is a filter}, where a filter F is a functional, that is monotone

(flipping zeroes in the input can only make the output 1)

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 22 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”

What about lower bounds for non-monotone circuits?
In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.
However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.
What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.
1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”
What about lower bounds for non-monotone circuits?

In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.
However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.
What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.
1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”
What about lower bounds for non-monotone circuits?
In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.

However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.
What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.
1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”
What about lower bounds for non-monotone circuits?
In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.
However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.

What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.
1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”
What about lower bounds for non-monotone circuits?
In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.
However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.
What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.

1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Razborov’s work
In 1985 Razborov proved superpolynomial lower bounds on monotone
circuit size for the clique and matching functions using his
“approximation method”
What about lower bounds for non-monotone circuits?
In 1989 Razborov formalized his approximation method and proved it
cannot provide superlinear lower bounds for non-monotone circuits.
However, he proposed a generalization of this method and proved
that it actually characterizes circuit size. So it can be used to prove
lower bounds for non-monotone circuits.
What we’ve seen so far is actually his “generalized approximation
method”, in this point of view, F is seen as an approximation of a
gate.
1990 Razborov proved that somewhat restricted can be associeted
with non-deterministic branching programs, an proved a super-linear
lower bound for the Majority function.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 23 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Sipser’s work

On the other hand, in the early 1980’s Sipser proposed that we should
use infinite analogue of circuits used in topology to guide our
intuition.

We’ve seen his new proof of separation co-analytic sets from analytic
sets.
T the set of well founded trees is easily co-analytic, but Sipser proved
that is it not analytic, by taking a sequence t1, t2, · · · ∈ T that
converges to t∞ ̸∈ T. Which would any analytic circuit would have to
accept as well.
In his 1984 paper Sipser asks for a finite analogue of a limit that will
allow us to carry out such arguments in the finite world.
This should remind us of Ω a finite notion of a limit, and F a notion
of a converging sequence.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Sipser’s work

On the other hand, in the early 1980’s Sipser proposed that we should
use infinite analogue of circuits used in topology to guide our
intuition.
We’ve seen his new proof of separation co-analytic sets from analytic
sets.

T the set of well founded trees is easily co-analytic, but Sipser proved
that is it not analytic, by taking a sequence t1, t2, · · · ∈ T that
converges to t∞ ̸∈ T. Which would any analytic circuit would have to
accept as well.
In his 1984 paper Sipser asks for a finite analogue of a limit that will
allow us to carry out such arguments in the finite world.
This should remind us of Ω a finite notion of a limit, and F a notion
of a converging sequence.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Sipser’s work

On the other hand, in the early 1980’s Sipser proposed that we should
use infinite analogue of circuits used in topology to guide our
intuition.
We’ve seen his new proof of separation co-analytic sets from analytic
sets.
T the set of well founded trees is easily co-analytic, but Sipser proved
that is it not analytic, by taking a sequence t1, t2, · · · ∈ T that
converges to t∞ ̸∈ T. Which would any analytic circuit would have to
accept as well.

In his 1984 paper Sipser asks for a finite analogue of a limit that will
allow us to carry out such arguments in the finite world.
This should remind us of Ω a finite notion of a limit, and F a notion
of a converging sequence.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Sipser’s work

On the other hand, in the early 1980’s Sipser proposed that we should
use infinite analogue of circuits used in topology to guide our
intuition.
We’ve seen his new proof of separation co-analytic sets from analytic
sets.
T the set of well founded trees is easily co-analytic, but Sipser proved
that is it not analytic, by taking a sequence t1, t2, · · · ∈ T that
converges to t∞ ̸∈ T. Which would any analytic circuit would have to
accept as well.
In his 1984 paper Sipser asks for a finite analogue of a limit that will
allow us to carry out such arguments in the finite world.

This should remind us of Ω a finite notion of a limit, and F a notion
of a converging sequence.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Sipser’s work

On the other hand, in the early 1980’s Sipser proposed that we should
use infinite analogue of circuits used in topology to guide our
intuition.
We’ve seen his new proof of separation co-analytic sets from analytic
sets.
T the set of well founded trees is easily co-analytic, but Sipser proved
that is it not analytic, by taking a sequence t1, t2, · · · ∈ T that
converges to t∞ ̸∈ T. Which would any analytic circuit would have to
accept as well.
In his 1984 paper Sipser asks for a finite analogue of a limit that will
allow us to carry out such arguments in the finite world.
This should remind us of Ω a finite notion of a limit, and F a notion
of a converging sequence.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 24 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work

Karchmeri, in his 1993 paper, was the first one to describe the fusion
method in a way that was presented earlier. He observed, that it
generalizes the previous efforts.

He noted, that this method can be viewed as a finitary version of an
ultraproduct. This idea was pushed even further by Ben-David,
Karchmer and Kushilevitz who have showed that standard ultra-filter
arguments can simplify Sipser’s proof.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 25 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work

Karchmeri, in his 1993 paper, was the first one to describe the fusion
method in a way that was presented earlier. He observed, that it
generalizes the previous efforts.
He noted, that this method can be viewed as a finitary version of an
ultraproduct. This idea was pushed even further by Ben-David,
Karchmer and Kushilevitz who have showed that standard ultra-filter
arguments can simplify Sipser’s proof.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 25 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 1

In his 1993 he has also proved three characterization results.

First note that here we are considering inputs as both positive and
negative literals.
Choosing Ω := {F;F is a filter (a monotone functional)} results in
the following characterization of P:

Theorem (Characterization of P)
f ∈ P if and only if ρ(Ωf) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 1

In his 1993 he has also proved three characterization results.
First note that here we are considering inputs as both positive and
negative literals.

Choosing Ω := {F;F is a filter (a monotone functional)} results in
the following characterization of P:

Theorem (Characterization of P)
f ∈ P if and only if ρ(Ωf) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 1

In his 1993 he has also proved three characterization results.
First note that here we are considering inputs as both positive and
negative literals.
Choosing Ω := {F;F is a filter (a monotone functional)} results in
the following characterization of P:

Theorem (Characterization of P)
f ∈ P if and only if ρ(Ωf) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 1

In his 1993 he has also proved three characterization results.
First note that here we are considering inputs as both positive and
negative literals.
Choosing Ω := {F;F is a filter (a monotone functional)} results in
the following characterization of P:

Theorem (Characterization of P)
f ∈ P if and only if ρ(Ωf) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 26 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 2

Now consider: Ω′ := {F;F a self dual filter}, that is a set of filters,
that contain each string or its negation.

Note that Ω′ contains more than just ultrafilters.
We have the following result:

Theorem (Characterization of NP)
f ∈ NP if and only if ρ(Ω′

f) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 2

Now consider: Ω′ := {F;F a self dual filter}, that is a set of filters,
that contain each string or its negation.
Note that Ω′ contains more than just ultrafilters.

We have the following result:

Theorem (Characterization of NP)
f ∈ NP if and only if ρ(Ω′

f) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 2

Now consider: Ω′ := {F;F a self dual filter}, that is a set of filters,
that contain each string or its negation.
Note that Ω′ contains more than just ultrafilters.
We have the following result:

Theorem (Characterization of NP)
f ∈ NP if and only if ρ(Ω′

f) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 2

Now consider: Ω′ := {F;F a self dual filter}, that is a set of filters,
that contain each string or its negation.
Note that Ω′ contains more than just ultrafilters.
We have the following result:

Theorem (Characterization of NP)
f ∈ NP if and only if ρ(Ω′

f) ≤ p(n) for some polynomial p.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 27 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 3

Again choosing Ω := {F;F is a filter (a monotone functional)}, but
restricting inputs to positive literals, results in the following
characterization:

Theorem (Characterization of mP)
f ∈ mP if and only if ρ+(Ωf) ≤ p(n) for some polynomial p.

Karchmer used this to give a new proof of Razborov’s
super-polynomial lower bound for the monotone clique.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 28 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 3

Again choosing Ω := {F;F is a filter (a monotone functional)}, but
restricting inputs to positive literals, results in the following
characterization:

Theorem (Characterization of mP)
f ∈ mP if and only if ρ+(Ωf) ≤ p(n) for some polynomial p.

Karchmer used this to give a new proof of Razborov’s
super-polynomial lower bound for the monotone clique.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 28 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The unification - Karchmer’s work cont. 3

Again choosing Ω := {F;F is a filter (a monotone functional)}, but
restricting inputs to positive literals, results in the following
characterization:

Theorem (Characterization of mP)
f ∈ mP if and only if ρ+(Ωf) ≤ p(n) for some polynomial p.

Karchmer used this to give a new proof of Razborov’s
super-polynomial lower bound for the monotone clique.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 28 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic variants

({0, 1}n,∧,∨, (¬)) are precisely finite Boolean algebras, and a filter is
a natural notion for these structures, that can give some intuition on
the choice Ω = {filters}

({0, 1}n,∧,⊕) are precisely finite arithmetical vector spaces over
GF(2), what is a “natural” choice for Ω here?

Ω = {affine}, this also
results in a characterization.
Notice, that the whole fusion method does not depend on that the
values of our functions are just {0, 1}, if instead we consider functions
over some ring R, this whole method works for proving lower bound
on their algebraic circuit complexity.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic variants

({0, 1}n,∧,∨, (¬)) are precisely finite Boolean algebras, and a filter is
a natural notion for these structures, that can give some intuition on
the choice Ω = {filters}
({0, 1}n,∧,⊕) are precisely finite arithmetical vector spaces over
GF(2), what is a “natural” choice for Ω here?

Ω = {affine}, this also
results in a characterization.

Notice, that the whole fusion method does not depend on that the
values of our functions are just {0, 1}, if instead we consider functions
over some ring R, this whole method works for proving lower bound
on their algebraic circuit complexity.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic variants

({0, 1}n,∧,∨, (¬)) are precisely finite Boolean algebras, and a filter is
a natural notion for these structures, that can give some intuition on
the choice Ω = {filters}
({0, 1}n,∧,⊕) are precisely finite arithmetical vector spaces over
GF(2), what is a “natural” choice for Ω here?

Ω = {affine}, this also
results in a characterization.

Notice, that the whole fusion method does not depend on that the
values of our functions are just {0, 1}, if instead we consider functions
over some ring R, this whole method works for proving lower bound
on their algebraic circuit complexity.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic variants

({0, 1}n,∧,∨, (¬)) are precisely finite Boolean algebras, and a filter is
a natural notion for these structures, that can give some intuition on
the choice Ω = {filters}
({0, 1}n,∧,⊕) are precisely finite arithmetical vector spaces over
GF(2), what is a “natural” choice for Ω here? Ω = {affine}, this also
results in a characterization.

Notice, that the whole fusion method does not depend on that the
values of our functions are just {0, 1}, if instead we consider functions
over some ring R, this whole method works for proving lower bound
on their algebraic circuit complexity.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Algebraic variants

({0, 1}n,∧,∨, (¬)) are precisely finite Boolean algebras, and a filter is
a natural notion for these structures, that can give some intuition on
the choice Ω = {filters}
({0, 1}n,∧,⊕) are precisely finite arithmetical vector spaces over
GF(2), what is a “natural” choice for Ω here? Ω = {affine}, this also
results in a characterization.
Notice, that the whole fusion method does not depend on that the
values of our functions are just {0, 1}, if instead we consider functions
over some ring R, this whole method works for proving lower bound
on their algebraic circuit complexity.

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 29 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of results

Inputs Gates Type Mode Ω C∆ Upper bound
X ∪ X {∨,∧} Circuit Det. Filters P (ρΓ(f))C

X ∪ X {∨,∧} BP Det. Filters NL C · ρΓ(f)
X ∪ X {∨,∧} Circuit Nondet. SDF NP C · ρΓ(f)

X {∨,∧} Circuit Det. Filters mP (ρΓ(f))C

X ∪ X {⊕,∧} Circuit Nondet. Affine NP C · ρΓ(f)

A few parameters here are missing, such as restriction on the g, h in
the cover triplets.
C = 4 works for all of the upper bounds on the length of the shortest
program.
For NP there exists a “super-linear” lower bound:
ρΓ(f) = Ω(log log log∗ n)
For mP there exists a super-polynomial lower bound:
ρΓ(f) = exp(Ω(n1/8))

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 30 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of results

Inputs Gates Type Mode Ω C∆ Upper bound
X ∪ X {∨,∧} Circuit Det. Filters P (ρΓ(f))C

X ∪ X {∨,∧} BP Det. Filters NL C · ρΓ(f)
X ∪ X {∨,∧} Circuit Nondet. SDF NP C · ρΓ(f)

X {∨,∧} Circuit Det. Filters mP (ρΓ(f))C

X ∪ X {⊕,∧} Circuit Nondet. Affine NP C · ρΓ(f)
A few parameters here are missing, such as restriction on the g, h in
the cover triplets.

C = 4 works for all of the upper bounds on the length of the shortest
program.
For NP there exists a “super-linear” lower bound:
ρΓ(f) = Ω(log log log∗ n)
For mP there exists a super-polynomial lower bound:
ρΓ(f) = exp(Ω(n1/8))

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 30 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of results

Inputs Gates Type Mode Ω C∆ Upper bound
X ∪ X {∨,∧} Circuit Det. Filters P (ρΓ(f))C

X ∪ X {∨,∧} BP Det. Filters NL C · ρΓ(f)
X ∪ X {∨,∧} Circuit Nondet. SDF NP C · ρΓ(f)

X {∨,∧} Circuit Det. Filters mP (ρΓ(f))C

X ∪ X {⊕,∧} Circuit Nondet. Affine NP C · ρΓ(f)
A few parameters here are missing, such as restriction on the g, h in
the cover triplets.
C = 4 works for all of the upper bounds on the length of the shortest
program.

For NP there exists a “super-linear” lower bound:
ρΓ(f) = Ω(log log log∗ n)
For mP there exists a super-polynomial lower bound:
ρΓ(f) = exp(Ω(n1/8))

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 30 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of results

Inputs Gates Type Mode Ω C∆ Upper bound
X ∪ X {∨,∧} Circuit Det. Filters P (ρΓ(f))C

X ∪ X {∨,∧} BP Det. Filters NL C · ρΓ(f)
X ∪ X {∨,∧} Circuit Nondet. SDF NP C · ρΓ(f)

X {∨,∧} Circuit Det. Filters mP (ρΓ(f))C

X ∪ X {⊕,∧} Circuit Nondet. Affine NP C · ρΓ(f)
A few parameters here are missing, such as restriction on the g, h in
the cover triplets.
C = 4 works for all of the upper bounds on the length of the shortest
program.
For NP there exists a “super-linear” lower bound:
ρΓ(f) = Ω(log log log∗ n)

For mP there exists a super-polynomial lower bound:
ρΓ(f) = exp(Ω(n1/8))

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 30 / 30

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of results

Inputs Gates Type Mode Ω C∆ Upper bound
X ∪ X {∨,∧} Circuit Det. Filters P (ρΓ(f))C

X ∪ X {∨,∧} BP Det. Filters NL C · ρΓ(f)
X ∪ X {∨,∧} Circuit Nondet. SDF NP C · ρΓ(f)

X {∨,∧} Circuit Det. Filters mP (ρΓ(f))C

X ∪ X {⊕,∧} Circuit Nondet. Affine NP C · ρΓ(f)
A few parameters here are missing, such as restriction on the g, h in
the cover triplets.
C = 4 works for all of the upper bounds on the length of the shortest
program.
For NP there exists a “super-linear” lower bound:
ρΓ(f) = Ω(log log log∗ n)
For mP there exists a super-polynomial lower bound:
ρΓ(f) = exp(Ω(n1/8))

Ondřej Ježil The fusion method (AKA the ultraproduct) December 9, 2020 30 / 30

