
Formulas, their size and depth
in relation to communication complexity
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DeMorgan language

An alphabet consisting of:

I an infinite set Atoms of atoms: p, q, ..., x , y ...
I logical connectives

I constants > (true) and ⊥ (false)
I a unary connective ¬ (negation)
I binary connectives ∧ (conjunction) and ∨ (disjunction)

I brackets: (,)



Propositional (DeMorgan) formulas

Finite words of DeMorgan alphabet made by applying finitely many
times in arbitrary order the following rules:

I constants and atoms are formulas

I if α is a formula, so is (¬α)

I if α, β are formulas, so are (α ∧ β) and (α ∨ β)

Capital letters A,B, ... will denote formulas.
A subformula of a formula α is any subword of α that is a formula.



Lemma of unique readability

If α is a formula then exactly one of the following occurs:

I α is a constant or an atom

I there are formulas β, γ such that α = (β ∧ γ)

I there are formulas β, γ such that α = (β ∨ γ)



Definitions

A literal (`) is an atom or its negation.
`1 := ` and p0 := ¬p and (¬p)0 := p
A term is a conjunction of literals.
A clause is a disjunction of literals.
The expression α(p1, ..., pn) means all atoms in α are among
p1, ..., pn (but not all of them have to occur)



Truth assignment

Any function

h : Atoms → {0, 1}

is extended to the function h∗ assigning the truth value to any
formula by the following:

I h∗(>) = 1 and h∗(⊥) = 0

I h∗(¬α) = 1− h∗(α)

I h∗(α ∧ β) = min(h∗(α), h∗(β))

I h∗(α ∨ β) = max(h∗(α), h∗(β))

Given h(pi ) =: bi ∈ {0, 1}, h∗(α) =: α(b1, ..., bn).
1 and 0 represent the truth values true and false.
.



Boolean functions

f : {0, 1}n → {0, 1}

Formula α(p1, ..., pn) defines a Boolean truth table function:

ttα = (b1, ..., bn) 7→ α(b1, ..., bn)

Every Boolean function f is equal to the tt function of the formula∨
b̄∈{0,1}n,f (b̄)=1

pb1
1 ∧ ... ∧ pbn

n (disjunctive normal form (DNF))

or of the function∧
b̄∈{0,1}n,f (b̄)=0

p1−b1
1 ∨ ...∨p1−bn

n (conjunctive normal form (CNF))



Monotone Boolean functions

A boolean function f is monotone iff
∧

i (ai ≤ bi ) implies
f (a1, ..., an) ≤ f (b1, ..., bn).
A DNF formula of a monotone f can be written without negation:
E.g. if f (0, a2, ...) = 1 then f (1, a2, ...) = 0 and the terms
p0

1 ∧ pa2
2 ∧ ... and p1

1 ∧ pa2
2 ∧ ... can be merged into pa2

2 ∧ ....



Other connectives

Other languages may use other connectives, possibly with higher
arity, such as:

a|b = 1 iff (a ∧ b) = 0 (Sheffer’s stroke (NAND))

⊕(a1, ..., an) = 1 iff
∑
i

ai ≡ 1 mod 2 (parity)

THk(a1, ..., an) = 1 iff
∑
i

ai ≥ k (threshold)

When passing from one language to another, how does the size of
the formula grow?



Formula size

Given a DeMorgan formula α, we construct a labeled directed
binary tree Sα inductively as follows:

α is an atom or a constant α

α = (¬β) ¬

β

α = (β ◦ γ) where ◦ is ∧ or ∨ ◦

β γ

The size of a formula α is the number of vertices of Sα.
Arrows in Sα define a partial order.



Formula size and string length relationship

Since every connective comes with two brackets, the length of the
string representing α is

i + 3(|Sα| − i) ≤ 3|Sα|

where i is the number of leaves of Sα.
When α has n atoms represented by binary words, this increases to

log n · i + 3(|Sα| − i) ≤ (3 + log n) · |Sα| ≤ (3 + log |Sα|) · |Sα|



Negation normal form

The formulas α, β are logically equivalent (|=|) iff

∀ā ∈ {0, 1}n : α(ā) = β(ā)

DeMorgan laws state that

¬(α ∧ β) |=| (¬α ∨ ¬β) and ¬(α ∨ β) |=| (¬α ∧ ¬β)

A formula is in negation normal form (NNF) iff negations are
applied only to atoms and there are no constants.
Every formula can be transformed into NNF by DeMorgan laws
and contracting subformulas with constants.
For a formula α in NNF, we define its size (|Sα|) to be the number
of leaves in Sα.



Translating formulas: an example

Consider the binary parity (xor): α⊕ β |=| (α ∧ ¬β) ∨ (¬α ∧ β)
Subformulas with ⊕ can be replaced iteratively this way (from
simpler to complex ones).
E.g. p1 ⊕ (p2 ⊕ (p3 ⊕ ...)...) (parity of n atoms) has size n, but this
translation has size between 2n and 2n+1.



Logical depth

The logical depth of a formula α in a language L (`dp(α)) is
defined as

I `dp of atoms and constants is 0

I `dp(◦(β1, ..., βk)) = 1 + max(`dp(β1), ..., `dp(βk)
for ◦ a k-ary connective in L



Spira’s lemma

Lemma (Spira’s lemma)

Let T be a finite rooted k-ary tree, ordered from root down to
leaves, |T | > 1.
For a node a ∈ T , let Ta be a subtree of nodes b such that b ≤ a
and T a = T \ Ta (all b such that b ≮ a).
Then there is a node a in T such that

1

k + 1
|T | ≤ |Ta|, |T a| ≤ k

k + 1
|T |



Lemma (Spira’s lemma)

∀T tree, |T | > 1 ∃a ∈ T : 1
k+1 |T | ≤ |Ta|, |T a| ≤ k

k+1 |T |

Proof.
I Walk through T , starting at the root, always going into a

maximal subtree (with respect to size). The size can decrease
only to s ′ ≥ s−1

k .

I Stop at the first node a such that |Ta| ≤ (k/(k + 1))|T |.
Then also (1/(k + 1))|T | ≤ |Ta| (since by the bound above,
the previous subtree had size s ≤ k |Ta|; if
|Ta| < (1/(k + 1))|T | then s ≤ (k/(k + 1))|T | and we would
have stopped then).

I As |T a| = |T | − |Ta|, also
(1/(k + 1))|T | ≤ |T a| ≤ (k/(k + 1))|T |
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On the logical depth

Lemma
Let α be a formula in a language with at most k-ary connectives
and with size s.
Then, there is a logically equivalent DeMorgan formula β
of logical depth `dp(β) ≤ O(log(k+1)/k s) = O(log s).



Substitution

A substitution of formulas for atoms in a formula α(p1, ..., pn) is a
map assigning to each pi a formula βi .
The formula arising from applying the substitution is denoted by
α(p1/β1, ..., pn/βn) and constructed by simultaneously replacing all
occurences of pi in α by βi , i = 1, ..., n.



On the logical depth

Lemma
∀α formula with at most k-ary connectives, size s
∃β DeMorgan formula |=| α: `dp(β) ≤ O(log(k+1)/k s) = O(log s).

Proof.
I Assume atoms of α are p̄, let q be a new atom and γ(p̄, q)

and δ(p̄) formulas such that α = γ(q/δ)
(α is created by substituting δ for q in γ).

I α is equivalent to (γ(p̄, 1) ∧ δ) ∨ (γ(p̄, 0) ∧ ¬δ).
The logical depth of the new formula is
2 + max(`dp(γ), `dp(δ)).

I By Spira’s lemma, choose γ such that |γ|, |δ| ≤ k/(k + 1) · s.
By induction, we assume the statement holds for formulas of
the size smaller than s.
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Karchmer-Wigderson game

A multi-function defined on U × V with values in I 6= ∅
(U × V

multi−−−→ I ) is a relation R ⊆ U × V × i such that
∀ū ∈ U, v̄ ∈ V∃i ∈ I : R(ū, v̄ , i).
The task to find, given ū ∈ U, v̄ ∈ V any i ∈ I such that R(ū, v̄ , i)
leads to to a two player game.
The U-player receives ū, then V-player receives v̄ .
They exchange bits of information according to a
Karchmer-Wigderson protocol.



Karchmer-Wigderson protocol

The KW-protocol is a finite binary tree T such that

I each non-leaf is labeled by U or V and the two edges leaving
it are labeled by 0 or 1

I each leaf is labeled by some i ∈ I

together with strategies SU , SV for the players, which are functions
U × T0 (resp V × T0) → {0, 1} (T0 are the non-leaves of T ).



Karchmer-Wigderson protocol

I The players start at the root of T .

I If the current node x is a non-leaf, its label tells them who
should send a bit
(if it’s U, the U-player sends SU(ū, x), if V , the V-player
sends SV (v̄ , x)).
This bit determines the edge out of x and hence the next
node x ′ ∈ T .

I If the current node is a leaf, its label i is the output of the
play on (ū, v̄).

The label must be a valid value of the multi-function.
The communication complexity of R (CC (R)) is the minimum
height of a KW-protocol tree that computes R.



Karchmer-Wigderson multi-function

The KW-multi-function is a multi-function on disjoint
U,V ⊆ {0, 1}n with values in [n] for which a valid value for (ū, v̄)
is i iff ui 6= vi . It is denoted KW [U,V ].
If U is closed upwards or V downwards, the monotone KW m[U,V ]
has a valid value i iff ui = 1 ∧ vi = 0.



Karchmer-Wigderson theorem

Theorem (Karchmer and Wigderson)

Let U,V ⊆ {0, 1}n be disjoint. Then CC (KW [U,V ]) equals to
the minimum depth of a DeMorgan formula ϕ in the negation
normal form that separates U from V
(i.e. ϕ is constantly 1 on U and 0 on V ),
where we count depth of a literal as 0.

If U is closed upwards or V downwards then CC (KW m[U,V ])
equals to the minimum depth of a DeMorgan formula ϕ without
negations that separates U from V .



Theorem (Karchmer and Wigderson)

U,V ⊆ {0, 1}n disjoint, CC (KW [U,V ]) equals to the minimum
depth of a DeMorgan formula ϕ in NNF separating U from V .

Proof.
I Given a separating ϕ, the players start at the top connective

and walk down to smaller subformulas, maintaining an
invariant that the the surrent subformula gives value 1 for
ū ∈ U and 0 for v̄ ∈ V .

I That is true at the start. If the current connective is ∨, the
U-player indicates by one bit whetere the left or right
subformula is true.
If it is ∧, the V-player indicates which one is false.

I The literal they arrive at is a valid value for KW [U,V ]
(and also for KW m[U,V ] if there is no negation in ϕ).

I For the opposite direction, construct ϕ by induction on the
computational complexity of KW [U,V ] (resp. KW m[U,V ]).
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Krapchenko’s bound

Let Qn denote the graph of the n-cube (node set {0, 1}n, two
nodes adjacent iff they differ in one coordinate).
A subset A ⊆ Qn induces a subgraph GA of Qn; for a node x ,
denote dA(x), resp. NA(x) as the degree of x in A, resp. the set of
neighbours of x in A.

Theorem (Krapchenko)

Let U,V ⊆ {0, 1}n be disjoint, A = Qn ∩ (U ×V ). Then, for every
formula ϕ separating U and V , we mave

`dp(ϕ) ≥ log
|A|2

|U||V |
= log

|A|
|U|

+ log
|A|
|V |



Theorem (Krapchenko)

U,V ⊆ {0, 1}n disjoint, A = Qn ∩ (U × V ), ∀ϕ separating U,V :

`dp(ϕ) ≥ log |A|2
|U||V |

Proof.
I Fix a protocol, let C (ū, v̄) be the number of bits it uses on

ū, v̄ . We will prove that for inputs taken uniformly from A

E (C (ū, v̄)) ≥ log |A|2
|U||V | (where E is expected value).

I Let bX (ū, v̄) be the number of bits the player X sends on the
given input, then:

E (C (ū, v̄)) =
1

|A|
∑

(ū,v̄)∈A

(bU(ū, v̄) + bV (ū, v̄))

=
1

|A|
[
∑
v̄∈V

∑
ū∈N(v̄)

bU(ū, v̄) +
∑
ū∈U

∑
v̄ inN(ū)

bV (ū, v̄)]
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Theorem (Krapchenko)

U,V ⊆ {0, 1}n disjoint, A = Qn ∩ (U × V ), ∀ϕ separating U,V :

`dp(ϕ) ≥ log |A|2
|U||V |

Proof.
I For any v̄ ∈ V ,

∑
ū∈N(v̄) bU(ū, v̄) ≥ d(v̄) log d(v̄) (since even

if player U knows v̄ , they need to tell V what ū they have).
Analogically for ū ∈ U.

I E (C (ū, v̄)) ≥ 1
|A| [

∑
v̄∈V d(v̄) log d(v̄) +

∑
ū∈U d(ū) log d(ū)]

≥ 1
|A| [

∑
v̄∈V

|A|
|V | log |A||V | +

∑
ū∈U

|A|
|U| log |A||U| ] = log |A|2

|U||V |
I The result follows from the KW-theorem.
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Thank you for attention!


