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1 Circuit Complexity and the Polynomial-Time Hierarchy

We now show that although P /poly contains undecidable problems, it is unlikely to contain even
all of NP. This implies that circuits, despite having the advantage of being non-uniform, may not
be all that powerful.

Theorem 1.1 (Karp-Lipton). If NP C P/poly, then PH = ¥5 N N5.
The original paper by Karp and Lipton credits Sipser with sharpening the result.

Proof. Suppose to the contrary that NP C P/poly. We’ll show that this implies ¥5 = 5. From
the collapsing Lemma from Lecture 9 this will prove the Theorem.

(For convenience we use the dual form vs. what we did in class. It avoids a negation at the inner
level.) Let A € MY, Therefore there exists a polynomial-time TM M and a polynomial p such that

r€EAs vyl € {07 1}1)(‘33') 33/2 € {07 1}p(|m|) (M('rayhyQ) = 1)
The idea behind the proof is as follows. The inner predicate in this definition,
Sp(l'ayl) =1l EIyQ € {07 1}p(\x|) (M(zaylayQ) = 1)7

is an NP predicate. NP C P/poly implies that there exists a circuit family {C,} of size at most
q(|x| + |y1|) for some polynomial ¢ computing this inner predicate. Given that |y;| is p(|z|), this
is ¢1(|z]) = q(Jz| + |y1|) for some polynomial ¢;. We would like to simplify the definition of A
using this circuit family. by

x € A & Fcircuit [C,] Vy; € {0, 1}p(ah, C,, correctly computes f(z,y;) and Cy(x,y) = 1.

This would put A in 5, except that it is unclear how to efficiently verify that C,, actually computes
the correct inner relation corresponding to .

To handle this we modify the construction using the search-to-decision reduction for NP to say
that there is a polynomial-size multi-output circuit C/, that on input (z, ;) finds an assignment y,

1



that makes M (x,y1,y2) = 1 if one exists. Let ¢’ be the polynomial bound on the encoding of the
circuit as a function of |x|.

(Technically, we need to create a modified version of ¢ suitable for this reduction where

¢ (T, 91,5, ) = 1 & 3y € {0, 1370071l (M (2, y1, 44, v5) = 1).

Here 5 acts as a prefix of the assignment y, in the earlier definition of ¢. Note that we also have
¢ € NP. Therefore, using the assumption NP C P/poly, ¢’ is computed by a polynomial size
circuit family C. as before. The circuit to produce s, if it exists, runs the circuit family C,/ on
increasing lengths of ¢}, beginning with |y5| = 0 and ending with |y5| = p(|z|). Since the input
size varies, we need to include circuits for all of the input sizes in our guessed circuit.)

Now observe that since o(z,y;) = 1 iff there is a yp € {0, 1}70=) such that M (z,yy,15) = 1 we
have
z e A« 3[CL]{0,1371Dyy, € {0,131 (M (2,41, CL(z, 1)) = 1).

Since M is polynomial-time computable and C/,(x, y1) is polynomial-time computable given [C7],
x, and y; as inputs, this shows that A € Zg .

This proves that M5 C ¥5. This also implies that ¥5 = ¥5 N MY and that PH collapses to the
Y5 N5 level, finishing the proof. O

We now prove that even very low levels of the polynomial time hierarchy cannot be computed by
circuits of size n* for any fixed k. This result, unlike our previous Theorem, is unconditional; it
does not depend upon our belief that the polynomial hierarchy is unlikely to collapse.

Theorem 1.2 (Kannan). For all k, 5 N N5 ¢ SIZE(n%).

Proof. We know that SIZE(nk) C SIZE(n**!) by the circuit hierarchy theorem. To prove this
Theorem, we will give a problem in SIZE(n**!) and ¥5 N MY that is not in SIZE(n*).

We first show that such a problem can be found in ¥}, and then use Karp-Lipton Theorem above
to say that it must be found at lower levels. The general idea of the argument is that we can use
quantifiers to say that a circuit C' of a certain size is not equivalent to any circuit of at most some
smaller size:

Veircuits C”. (size(C") < n*) input y. C(y) # C'(y).

We know that such circuits of relatively small size exist but we need to settle on a fixed circuit C'
and define a function based on it. To do this we use quantifiers to fix the lexicographically first
such circuit.

For each n, let C, be the lexicographically first circuit on n inputs such that size(C,) > nk*!
and C,, is not equivalent to any circuit of size at most n*. (For lexicographic ordering on circuit
encodings, we’ll use the notation <.) Let {C,,}°, be the corresponding circuit family and let A
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be the language decided by this family. By our choice of C,,, A & SIZE(n¥). Also, size(A) is at
most kn**+t,

Claim: A € ¥¥.
The proof of this claim involves characterizing the set A using a small number of quantifiers. By
definition, x € A if and only if

3[0] € {0,1}P02D) (size(C) > |z A C(z) =1
A V[CT] € {0, 130 [size(C") < |of* — Fy € {0, 1} C"(y) # C(y)]
A VD] € {0, 13700 (([D] < [C]) A (size(D) > |z[*1)) —
3[C"] € {0, 171D ([size(C") < Jaf*) A (V' € {0,1}7. C"(y') = D(y)))

The second condition states that the circuit C'is not equivalent to any circuit C’ of size at most n*.
The third condition enforces the lexicographically-first requirement; i.e., if there is a lexicographically-
earlier circuit D of size at least |x|*1, then D is equivalent to a circuit C” of size at most |z|*.
These conditions uniquely identify C' and z is in A iff C'(x) = 1. When we convert this formula
into prenex form, all quantifiers, being in positive form, do not flip. This gives us that € A iff
3[C] VIC'|V[D] 3y 3[C"] Vy' . ¢ for a certain quantifier free polynomially decidable formula ¢.
M~ —— =

Hence A € X¥.
This proves the claim and imples that ¥ ¢ SIZE(n*). We finish the proof of the Theorem by
analyzing two possible scenarios:
a. NP Z P/poly. In this simpler case, for some B € NP C ¥5 NN, B ¢ P/poly. This implies
that B ¢ SIZE(n) and proves, in particular, that 5 N 5 & SIZE(nk).
b. NP C P/poly. In this case, by the Karp-Lipton Theorem, A € ¥f C PH = X5 NI} because

the polynomial time hierarchy collapses, and we are done.

This finishes the proof of the Theorem. [
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