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‘INDEPENDENCE PROOFS AND COMBINATORICS

James E, Baumgartnerl

ABSTRACT. This 1s an exposition, for non-logicians, of some appli-
cations of combinatorial set theory in the theory of forcing and generic
sets, It is argued that independence questions in logic are fundamentally
combinatorial, and that forcing is simply a translation process for con-
verting such independence questions into combinatorial propositions that
can be proved outright.

INTRODUCTION, One of the most frultful areas for the application of
combinatorics in mathematical logic has been the theory of forcing and
generic sets, As wlth most of the other areas of logic, the combinatorial
applications in forcing have been from that branch of the subject known
as Infinitary combinatorics or combinatorial set theory.

What makes the applications of combinatorics to forcing interesting
1s that forcing is itself a tool that can be applied to problems in many
different areas, both inside and outside logic. 1In pérticular, forcing
can be applied to problems in combinatorial set theory. Thus we shall be
talking about combinatorics as applied to forcing, as applied to combi-
natorics!

The thesis of the paper is quite easily set down. It 1s simply that
forcing 1s a translation technique for converting combinatorial proposi-
tions into combinatorial propositions, Given a proposition P, the theory
of forcing shows how to convert a question about the consistency of P
into a question about the provability (or, if you like, the truth) of
another proposition @, Thus, proving Q will show that P is con-
slstent, Moreover, if P 1s combilnatorial, so will be Q. Several
examples of this phenomenon are given in §§5-9, and the translation
process is explicitly exhibited in &8,

Since most of this symposium has been concerned with finite combi-
natorics, we have tried to make this paper comprehensible to anyone famil-
lar with that subject. The examples from combinatorial set theory
involve intersection properties of sets and the partition calculus, both
of which have interesting finite analogues. Complete proofs are given
(in 8§82 and 3) of all necessary comblnatorial results,

Forcing is introduced in §4 by means of eight axioms,which are
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accompanied by an interpretation 1n intuitive terms., The exposition 1is
complete enough to handle most elementary forcing proofs but (we hope )
simple enough to be understood by a reader who has never seen the notion
before. |

§§5-7 are devoted to a proof of the consistency of the partition
relation R2 %»[&1]30. This result is part of the folklore of combinato-

rial set theory. The expert will see at once that the partial ordering

used for this result is just Cohen's original ordering for showing the con-
R .
sistency of 2 O >R, but in a slightly different form.

§88 and 9 are concerned with problems about almost disjoint sets.
The paper ends with the proof of a speclal case of a result in [1].

The reader interested in seeing more combinatorial set theory should
consult [8]. '

We use standard set-theoretical notation throughout, If A 1s & set
then |A| 1s the cardinality of A and [A]® 1is the set of n-element
subsets of A, '

We assume that ordinal numbers have been defined so that each ordinal
coincides with the set of its predecessors, Thus o € B and a < B are
synonymous for ordinals. Since the axiom of choilce is assumed, every set
is equipotent with some ordinal number., The least ordinal of cardinality
Ra is denoted by P, and Wy = w, Thus ® 1is the set of all nonneg-
ative integers, and Wy is the set of all countable (or finite) ordinal
numbers. The purpose of this approach 1s to guarantee that Wy is a
canonical set of cardinality Ra. Usually Ra i{s defined so that

Ra = Wy but this fact plays no role in the paper.

o. INTERSECTION PROPERTIES OF SETS. A family F of sets 1s called a
A-system iff there is a set A (called the kernel of the A-system) such
that AN B =A whenever A, Be F and A + B.

ErdBs and Rado [3] have made an extensive study of A-systems; all we
shall need here, however, 1s the following theorem, due to Mazur [6].

THEOREM 2.1. (Mazur) If F 1is an uncountable family of finite sets,
then there is an uncountable A-system F' c F.

PROOF. Without loss of generality, we may assume that all the
elements of F have cardinality n. The proof goes by induction on n,
For n =1 the result is trivial, Suppose n =m+ 1, We consider two
cases,

CASE 1. There is some a such that (A € F: a € A} 1is uncountable,
Let F, = (A - {a}: a € A, A € F}. By inductive hypothesis there is an un-
countable A-system F, ¢ F;. But then F! = (BU (a): B e F,} 1s an un-
countable A-system contained in F.

CASE 2. TFor all a, (A€ F: a € A} 1s at most countable, Now we
construct by transfinite inductlon a sequence <Aa: a < w1> of elements
of F so that if a < B then Aa n AB = 0, Given AB for all B < a,
we know that U{AB: B < a} 1s countable, so by the hypothesls for this

case (A e F: 88< a AN Ay # 0} 1s countable, so A, may be chosen
disjoint from all the AB: B <K a,
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Two séts A and B are sald to be almost disjoint if
|A N B| < |A], |B]. For finite sets this simply says neither is included
in the other, but for infinite sets it is quite an interesting notion,
An Infinite set X may be decomposed into no more than |X| disjoint
sets, but what 1f the sets are only required to be almost disjoint?

THEOREM 2,2, (Sierpifski) There is a family F of pairwise almost dis-
. R
Joint subsets of w such that |F| = 2 0,

PROOF, For each real number X, let <xn: n € w> be a sequence of
rational numbers converging to x. Then the sets {xn: ne€wl are almost-

disjoint. Since the rationals are countable and the reals have cardinality
N .
2 O, this completes the proof,

R

THEOREM 2,3, (Sierpifiski-Tarski) Assume 2 0. R,. Then there is s
N

family F of subsets of @, such that |[F| =2 1, [A] = R

AePF, and |ANB| L Ry whenever A, B e F and A # B,

1 for all

PROOF, It 1s possible to give a proof similar to the one above, but
the followlng is a little more direct. Let X be the set of all functions
: N
mapping @), into (0,1}, Then |X| =2 L If feX and a<w let
fla denote the restriction of f to a (={B: B < a}). For each °f, let
Ap = {fla: a < wl}. Then if f 4 g, |As N Agl < Ry, Also, IAfl = N

Finally, it will suffice to observe that (fla: f € X, a < wl} has
X

lo

cardinality 2 © = R,. But this is clear,

It 1s natural to ask whether the continuum hypothesis can be elimi-
nated from Theorem 2.3, It is shown in [1] that it can be replaced by a
much weaker cardinality assumption, but that it cannot be eliminated al-
together, The latter result will occupy us in §9,

3. THE PARTITION CALCULUS. We shall be interested in two kinds of par-
tition relations,

Let «, A, and u Dbe cardinal numbers (possibly finite), and let n
be a positive integer. If A 1is a set then [A]n ~denotes the set of
n-element subsets of A,

The symbol « —-(A)S means that if |A| =«, |C| = u, and
f: [A]n-» C, then there must exist B € A such that |B| =2 and f 1is
constant on [B]n. The set B 1s sald to be homogeneous for f,

The symbol « — [A]& 1s defined exactly as above except that we only
require that the range of f on [B]n is not all of C, We say B is
weakly homogeneous for f,

In this notation Ramsey's Theorem may be expressed as

n .
Ry = (RO)k for all finite n and k,

Since we will only be interested in the case n = 2, both these
partition relations may be regarded as graph-coloring properties, For
example, K — t%]s says that 1f the edges of the complete graph on «
vertices are colored with L colors then there is a complete subgraph
of cardinality A which omits at least one of the colors,
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We will need the following theorem, which is a specilal case of a

theorem of Erdbs and Rado [4].
R

THEOREM 3.1. Suppose 2 O =®,, Then Rp=— (Rl)ﬁo.

PROOF. Partition relations of this form where k, A and W are
positive lntegers are usually proved by constructing trees with suffi-
ciently long branches, and this theorem is Just the sanme, The only differ-
ence is that the tree 1s not finite in height,

Suppose |A] = R, and h: [A]Z.-»ux

Let F denote the set of all functions mappling ®, into , If
f ¢ F and a < w,, then f|la denotes the restriction of f to
a (={B: B<al}). The objects of the form fla form a tree if we put £l8
above f|a whenever a < B.

Let f ¢ F. By induction on a < @ we.will obtain A(fla) € A and
(1f A(fla) 4 0) an element a(fla)e A(fla).

Let A(f|0) = A. |

If o is a limit ordinal, let A(fla) = n{A(f|B): B < al.

If a=p+ 1, then let A(fla) = (a ¢ A(f[B): a % a(f|B) and
n{a,a(£|B)} = £(B)}.

In each case, let a(fla) € A(fla) 1if possible.

Tt is easy to see that if a ¢ A and @ < W5 then either a = a(f|B)
for some f ¢ F and B < a or else there 1s £ ¢ F such that a e A(f|a)
Note that if fla 4 gla t?en A(fla) n A(gla) = O.

0

Now there are only 2 elements of the form a(f|a), and since

N
2 0. X, there must be a € A such that a 4 a(fla) for all f e F and

a < @. Choose g€ F so that a ¢ A(g|a) for all a < ®;. Then

A(gla) 4 0 for all o so© a(g|a) always exists, Denote a(gla) by ag,.
Notice that if a < B, then since ag € A(g|(a+l)) we have

h[aa,aﬁ} = g(a). Since g: @, —® there is k € w such that g'l{k] is

uncountable, But then {aa: a € g’lik}] is homogeneous for h, '

This argument can easlly be generalized to larger cardinals,
We will not need any specific results about the "square-bracket'" re-
lation, but by way of orientation we mention the following:
R

(1) "1r 2 0 =R, then Ry 7 [x1]§ (ErdBs-Hajnal-Rado [2])

(2) B, 4 %1 (Galvin [5]) !
Ry Ry .2

(3 20412 O (snelan [5))

R
It is open whether Rl-ﬂ [Rl]g or 2 °_ [Rl]2 is consistent with
0

3
the axioms of set theory.
In §7 we will show the consistency of X, # R, 5 .
0
4, TFORCING., Few recent developments in mathematics have had as much
impact on Cohen's theory of forcing and generic sets, Almost overnight,
1iterally hundreds of long-outstanding problems in set theory were solved.

Nor have the applications of forcing been confined to set theory. The



INDEPENDENCE PROOFS AND COMBINATORICS 39

technique has been used in measure theory, topology, homological algebra
and other areas. The surprising thing is that so few mathematicians are
familiar with forcing. There seems to be a feeling, that forcing is a mys-
terious technique which one must be a logician to understand,

Nothing could be farther from the truth, After all, Cohen wasn't a
logician when he discovered forcing!

One of the remarkable things about forcing 1s that the proof that the
technique works has almost nothing to do with the way it 1s applied. 1In
an effort to dispel some of the mystery about it, therefore, we present
here a falirly conclse axiomatic treatment of fbrcing which is still com-
plete enough for most applications, The reader who wants to sée a proof
of the axioms 1s welcome to track one down (see [7], for example), but
should be‘warned that the time would be better spent in learning some of
‘the applications of forcing.

The theory of forcing provides a systematic way of imagining a uni-
verse for set theory which i1s larger than the real universe., This is nec-
essary to do in connection with problems such as whether the negation of
the Continuum Hypothesis (CH) is consistent'with the axioms of set theory,
If CH 1s false in the (real) universe of set theory then nothing more need
be done, but what if CH is true? Then it is necessary to imagine a possi-
ble world for set theory in which there are more than Rl real numbers,
and forcing shows the way.

Forcing begins with a partial ordering (P,S). We think of an element
p of P as giving a certain amount of information or evidence about the
imaginary universe of set theory (usually the information is about a cer-
tain object in the imaginary universe), We interpret p £ q as saylng
that q glves more information than p. Let v ‘denote the. imaginary
universe, '

Let us suppose that we are equipped with a language™ for talking about

V. Since all the real sets (belonging to the real universe) belong to

ﬁ, we willl need symbols to denote them as well as symbols to denote the
imaginary elements of V. Our convention 1s as follows: If x 1is a real
set then we simply use x to denote x; a symbol with a dot over it, like
f, denotes a (possibly) imaginary element. Now we are ready to talk about
forcing. Here are the axioms, but before trying to understand them please
read the explanation that comes afterward, There is a relation2 pﬂ-¢
(read "p forces ©" Dbetween certain p € P and certain assertions ¢
about V such that the following are true: '

AXIOM 1. plko and ¥  1iff pl-o and pl v. |

AXIOM 2. pl not' o irf (ve>p)af @ (F means "does not force"),

1

1This 1s Just the usual first-order language of set theory with added
symbols as indicated. Nearly all mathematical statements can be expressed
in this language, so we will usually speak mathematics instead‘of‘logic.

astrictly speaking, this 1s not true, For each positive integer n
there is a relation p 1% as above which works as long as ¢ has

quantifier-depth < n. Since none of our forcing arguments (and very few
of anybody else's) need ¢'s of arbitrarily large quantifier-depth, we
ignore this distinction,
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AXIOM 3. If A 1is a set then pll—('&’xeA)W(x) iff
(va>p) (r>q)(Zaer) rlko(a). |

AXIOM 4. If ple and q >p then alk 9.
AXIOM 5. If ¢ dimplies V .and pl- ¢, then plv.

AXIOM 6.1 1f o 1is one of the axioms of ZFC (zermelo-Fraenkel set theory
together with the axiom of choice), then Y¥p plk ®.

The set-theorist approachlng a forcing problem tends to think rather
1ike a detective tryihg fo solve a crime., In particular, plk ¢ may be
interpreted as saying that on the basis of the evidence p Wwe are forced
to conclude that ¢ 1is true,

With this interpretation, Axiom 1 is clear, Axiom 2 says, quite
reasonably, that we can only conclude that @ is false if no concelvable
further evidence could possibly convince us that ¢ 1s true.

Axiom 3 can be treated similarly. One is tempted to suppose that
plF (ZxeA)e(x) 1ff JaeA pl- o(a), but a moment's reflection shows that this
cannot be true, Sherlock Holmes could certainly conclude on the basis of a
piece of evidence that one of the people in the room committed the murder,
even if he didn't know which one digd it. All that 1is required is that no
conceivable further evidence should exonerate all the suspects. And that
i{s exactly what Axiom 3 says. 4

The rest of the axioms are self-explanatory. Of course Axiom 6 is a
very remarkable and deep fact, and we do not mean to suggest that 1t is
obvious,

‘The reader may find 1t instructive to deduce the following from the
axioms and Justify it detective-theoretically:

plko or ¥  iff (vaep)(d&r>q) rlke or rl-v.

(Hint: disjunction is definable in terms of conjunction and negation.)
As another exercise, try:

ol (vxeh)o(x) 1iff va ¢ A pl-o(a).

Now suppose Vp pl®. We assert that (1f ZFC is consistent) ¢ 1s
consistent with ZFC., If not, then not ¢ 1is implied
by finitely many axioms of ZFC, so by Axioms 5 and 6, Vp plk not o,
and this contradicts Axiom 2. The consistency of ZFC 1is required because
Axioms 1-6 are proved 1ln ZFC,

Hence to show the consistency of some proposition ¢ with ZFC, we
need only find some partial ordering P such that (vpeP) plk o.

The reader who is meeting with forcing for the first time may now find
1t convenient to skip to the next section, where an example i1s given which
should make the notion a little clearer.

The rest of this section is devoted to a discussion of the kinds of
imaginary sets that can occur in V,

1Since there are axioms of ZFC of arbitrary large quantifier-depth,
this should really be replaced by infinitely many axloms (one for each @,
for instance) but this is a minor point,
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It turns out that V 1s generated by a very important imaginary set
é, which we can think of as the set of all true or correct information
in P, _

Let us say that p and q are compatible if (ZreP)p,q < r; other-
wise p and q are incompatible,. ‘We can think of incompatible p and
q as glving conflicting information about V.

Let us say that a set G E'P is generic 1if

(1) if pe G and q<p then q e G,
(2) if p,qe G then p and q are compatible.
(3) for any ¢ there is p ¢ G such that plF® or pl not 0.

Thus G consists of compatible information, and by (3) G gives us com-
plete information about V. It should not come as a surprise, then, that
V 1s generated by a generic set,

AXIOM 7. There 1s a symbol G such that vp pl "G 1is generic and
p e G".

Note that plFp € G simply says that on the basis of the information
p, we conclude that p 1s correct,

AXIOM 8, v¥p pl "every element of V 1is definable from G together
with finitely many real sets",

The careful reader will object that statement (3) in the definition
of generic is illegal since, contrary to the proviso in an earlier foot-
note, the quantifier-depth of ¢ 1is not bounded. There is a way around
this difficulty, but since it results in a less transparent statement we
have reserved 1t for the end of this section so that the reader who is not
bothered by such things can simply skip it.

Call a set D c P dense in P iff (vpeP)(Zp)q € D. Now replace
(3) by

(3') If D 1is a (real) set and D 4s dense in P, then DN G 4 O,

Note that (3') implies (3) since for any ¢ (p: pll® or plF not o)
i1s dense in P (use Axiom 2), ‘

The reader who prefers to think in terms of models of set theory may
find the imaginary universe v uncongenial, If that should happen then
let us remark that under certain circumstances the imaginary can be made
real, If M 1s a countable model of set theory and (P,g) € M then there
1s a set G c P satisfying (1), (2), and (3') for all D ¢ M, and there
1s a model N of ZFC such that G ¢ N and for all ®, ¢ - is true in N
1ff dp ¢ G pl-® (where the interpretation of G in N 1s G and other
terms are similarly interpreted).

5. AN EXAMPLE, Let us consider the problem of showing the consistency of
the partition relation R2 %»[Rl]g . Note that this is a nontrivial prob-
0
R
lem since, by Theorem 3.1, if R_ 4 (X )2 then 2 © > X..
2 1 &O <72

Recall that R, 5 [R ]2 means that if |A,| = X, then there is
2 1 RO 0 2
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F: [AO]2 — @ such that for any B C Ao,‘if |Bl = R, then the range of

F on [B]2 is ®, Let us keep AO _fixed for the rest of the paper.
If we try to construct an imaginary universe V in which

R2~#-[R1]§0 is true, then we must make sure that there is a function F

in V as above (of course F will probably be imaginary). Thus a natural
partial ordering to consider is one whose elements give information about
ﬁ. One such ordering 1s the set P of all functions p such that for
some finite subset X of Agq, p:[Xz]-» w, Put p<Lq 1ff pcad (1.e.,
1ff domain(p) c domain(q) and q agrees with p on domain(p)). We 1n-

terpret p as telling us the values of F on [X]Q.
#ACT. There is F such that vp bl "F: (4,2 —© end pe B,

Simply let F be Ulp: p e G} and apply Axiom 7. The detalls are
left to the reader,
2

Now we prove VD plk R, + [Rl]RO‘

6. AVOIDING CARDINAL COLLAPSE. Suppose A and B are infinite sets.
Then to say that |A]| 4 |B| 1s to say that there is no one-to-one function
mapping A onto B. Now, the nonexistence of such a function is really
more a deficiency in the universe of set theory than it is an intrinslc
property of the sets A and B, In particular, it is quite possible that
in imagining the universe V we may inadvertently imagine the existence of
a one-to-one correspondence f between A and B, This phenomenon 1s
known as cardinal collapse, Sometimes it is induced deliberately, but in

our case it would be a disaster. 1If, for example, AO became a countable
set in V then F would be utterly useless for proving that 82-%-[R1]§ .
0

Thus we must show that for the P of §5, cardinal collapse does not occur.
Let us remark that cardinal collapse never occurs for finite sets. No
amount of imagining could ever produce a one-to-one correspondence between
s set with no element and a set with one element.
A partial ordering (P,<) 1is sald to have the countable chailn
condition (the c.c.c.) 1ff every set of pairwise incompatible elements 1is
countable (or finite).

THEOREM 6.1. If (P,<) has the c.c.c. and A and B are infinite sets
such that |A| < |B|, then Y¥p e P plk |A] < |B].

PROOF. It will suffice to show that if pl £: A =B, then pl- "the
range of f 1is not all of B".

suppose 4y, 9 >p, & ¢A, by, by, €B, by 4 b,, and qlﬂ-f(a) = by
and qgﬂ-f(a) = b,. Then q, and q, must be incompatible, since if
r>aq,, 4 we would have by Axiom 4 -rﬂ-f(a) = b, and f(a) = by, &
contradiction, Hence {b: ¥q > P gl £(a) = b} must be countable since
P has the c.c.c, It follows immediately that 1if
Y = {b: (Hqu)(aaeA)QH-f(a) = b}, then |Y| = |A|. Hence there is beB-Y.
We claim plFb ¢ range £, and this will complete the proof,

If pf b ¢ range f, then by Axiom 2 there is g 2>p such that
qlk b ¢ range £, 1.e., alF (EaeA)f(a) - b, Hence by Axiom 3 there is Tr 24



INDEPENDENCE PROOFS AND COMBINATORICS 43

and a € A such that r|-f(a) = b. But then b e Y, which is impossible,
It remains only to show the following:
THEOREM 6.2, The partial ordering (P,{) of §5 has the c.c.c,

PROOF., Suppose, on the contrary, that ‘A 1s an uncountable pairwise
incompatible subset of P, For each p ¢ P, domain(p) is a finite subset
of [Ao]e, sO0 by Theorem 2,1 there 1is uncountable B'E A such that
{domain(p): p € B} 1s a A-system with kernel A, If p ¢ B then plA
(the restriction of p to A) maps A into w, Since B 1is uncountable
there are p, @ ¢ B such that p ¢ q' but plA = qlA. But since
Domain(p) N domain (q) = A, p U q 1s a function, and hence there is r ¢ P
such that r > p, 9. Thus p and q are compatible, contradiction,

Notice the purely comblnatorial nature of this argument,

2
7. R, A ®1 1k,
Throughout this section (P,S) is the partial ordering of §5.
THEOREM 7.1. (VpeP) plR, A4 [R 15 .
0]

PROOF, In view of the results of the previous section it will suffice
to prove that if n € w and

plAca, and |A] =R,

then
(*) pln belongs to the range of F on [A]z.
Suppose (*) is false, Then by Axiom 2 there is p' > p such that
(**) p'lFn does not belong to the range of F on [A]B.

Let B= {ac Ay Ta>p' alla ¢ A}, We claim that p'lFA c B, If
not, then by Axiom 2 there is g > p' such that gql-(3a ¢ AO-B) aeA. By
Axiom 3 there is a ¢ A;-B and r >q such that rjFa ¢ A. But then
a € B, contradiction, Hence p'|FA ¢ B, It follows that B must be
uncountable,

For each a ¢ B choose p_ > p' such that p_lFa e A. Let X, be
a finite subset of A, such that Py [X } - W, We may assume a € X
since otherwise we could enlarge Py 'by adding a to Xa and by Axiom 4
it would still be true that P lFa e A, ,

Now by Theorem 2,1 there is uncountable C < B such that {Xa:ua e C}
form a A-system with kernel A Clearly there exist a, b ¢ C such that
a, b é A, a # b, and Pg I[A] = pb|[A] But then a ¢ X, and b ¢ Xy
so there 1s r: [X U X ] - W such that rl[X ] = Py rl[X ] = Py
and r{a,b) = n. "ince rlr c F (see the Fact in §5L we have
rFa, b ¢ A and F({a,b} = n. Hence rl-n belongs to the range
of F on [A]g, contradicting (**) and the fact that r > p'.

2
<

Once again, note the combinatorial nature of the proof, Except for
occasional fairly trivial appeals to the forcing axioms, the whole proof
rests on Theorem 2,1, It is also interesting to note that there is nothing

*

.
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special about R, in any of this 'We could have assumed \AO| = R3 and
proved Vp pH—R A Ry ]R , and so forth,

8. ALMOST DISJOINT SETS REVISITED.

In §8§5-7 we have seen an intersection property of sets (Theorem 2, 1)
used to obtain consistency results about partition relatlons, In §9 we
shall reverse the process, using a partition relation to prove a consis-
tency result about the maximum number of almost disjoint sets of a certaln
kind., Before we begin that argument, however, it will be helpful to see
how combinatorial questions about almost disjoint sets in V can be trans-
lated into purely combinatorial questions about real sets in the universe
of set theory.

Suppose (P,S) is a partial ordering such that cardinal collapse does
not occur under forcing with P, Then W, , the set of al} countable
ordinals, is still the set of all countable ordinals in V., Suppose
vp plF X c . For each a € O, let X, = {p: pllace X}. Then even
though X 1is imaginary, X 1is represented by the sequence <Xa: a e wl>,
which is a real set. It is not difficult to see that if
Kyt @€ 0> = <Y ae > then vp plX = Y. Note that each X, has
the property that if p e Xa and q > p, then q ¢ Xa‘ Let us call such
a sequence <Xa: a e wl> a pseudo-set,

Now suppose Vp plFX € ®, and !Xl = X;. What does this mean in
terms of the pseudo-set representing X° First note that this proposition
can ?e rewritten as Vp p”—k c and (va e wl)(EB € wl) a < B and
a € X. Using the forcing axioms, this is easily translated as
(vp ¢ P)(Va ¢ wl)(3q2>p)(EB € wl) a<PB and q ¢ Xg, & purely combinato-
rial assertion about <X Qe w >

Finally, suppose Yp pﬂ-x, Y cw and |k n ?] < Ry This can be re-
written as

vp olF X, é‘g ®, and (Za € wl)(VB € wl) i1f BeXNY then B< a,

and it translates as
(vp ¢ P)(3a ¢ wl)(a’qu)(erQ)(VB ¢ ) 1if r e XgN Y then B< a.

Thus a question in V about the maximum size of a set of almost dis-
joint uncountable subsets of w, translates into a question in the real
universe of set theory about the maximum size of a collection of pseudo-
sets satisfying certain combinatorial conditions, Of course, the answer
to the question will depend on the partial ordering P, and one answer is
given in the next section, The point, however, is that forcing has been
used merely to translate one combinatorial assertion into another, The
mathematics of the situation is entirely combinatorial.

9. THE NUMBER OF ALMOST DISJOINT SETS., Here we show that the conclusion
of Theorem 2.3 cannot be proved without some special assumptions,

R
THEOREM 9.1, Suppose 2 © = X,. Let (P,<) be any partial ordering with

the countable chain condition. Then (vpeP) plk @, where 9 asserts that
every family of almost disjoint uncountable subsets of Wy has
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cardinality < Rz.

PROOF. Our principal tool is the partition relation Rj — (xz)ﬁl,
X

whilch may be proved from the assumption 2 1. Re in exactly the same
manner as Theorem 3,1, ' |

Suppose pl-"F 1is a one-to-one function with domain @z such that
(ﬁ(a): a e w3} is a family of almogt disjoint uncountable subsets of wl."
We use F_ as an abbreviation of F(a). . '

If a, Be g and a % B, then plt |7, N F5| < Rys 80O
plk(Ty € wl) sup(ﬁd,n ﬁs) =Y. NOW let
Xqp = (v € @2 8q > p al sup(F, n Fg)=v]. Note that if
qiﬂ-sup(Fa n FB) =y, for 1=1,2, and v, % v,, then q, and q, are
incompatible, Since P has the countable chain condition, then, XaB
must be countable, Let YGB be.the supremum of the ordinals in XaB'
Then vy,q € @ and clearly pﬂ-Fa N Fgc Yos-

Now define a partition function f: [w3]2-» @, by f{a,B) = Yap-

By R, = (X )2 , there is a homogeneous set B c w, such that |B| = R,.
3 2Ry c @3 2

Say f{a,B} =y for all {a,B} ¢ [B]z. Let ﬁa be a symbol to denote
F, - (6: 8 <y). Note that if (a,B) ¢ [B]z,.then pl-H, N ﬁs =0 and
H, and Hg are uncountable. But now pﬂ-”[Hq: a € B} 1is a set of pair-
wise disjoint nonempty subsets of w,", and this 1s a contradiction since

pl |B] = R, (by Theorem 6,1). This completes the proof,

Two remarks may help explain the significance of Theorem 9.1,
First, it is easy to find partial orderings (P,<) with the c.c.c. such
- R

that vp e P plk2 1 > N3. For example, consider the partial ordering P
of §5, defined for a set Ao such that |AO| = N3. For this P one can
X R

either prove directly that vp plF2 0 > R3 (so 2 1 > R3 also) or
observe that vp pH—R3 f»[&l]s and that Theorem 3.1 can be extended to
R 0

read that 1f 2 O =X, then R, = (8;) .
3 1 &O N
Thus it follows, as in the dgscussion in § 4, that if ZFC+2 1_ R2

is consistent then so is ZFC + 2 1 > R3 + ¢, and this shows that the con-
clusion of Theorem 2,3 is not provable in ZFC alone,
Second, there is a famous theorem of GBdel (see any advanced set

theory text) which says that if ZF 1s consistent (ZF 1is ZFC without
N

the axiom of choice) then so is ZFC + (va)2 & = X
remarks together, we obtain:

I Putting these two

R
CORCLLARY 9.2, If ZF 1s consistent, then so is ZFC + 2 1 > R3 + .

Once again the proof of Theorem 9.1 was almost entirely combinatorial.
\ R
Note also a very convenient feature of the proof: even though 2 1 = Rz

is false in V we are allowed to assume it (in the real universe) for the
purposes of the proof,
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