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MONOTONE CIRCUITS FOR CONNECTIVITY REQUIRE
SUPER-LOGARITHMIC DEPTH*

MAURICIO KARCHMERTt: aND AVI WIGDERSONY

Abstract. It is proved here that every monotone circuit which tests si-connectivity of an undirected graph
on n nodes has depth log? #). This implies a superpolynomial (n™'®™) lower bound on the size of any
monotone formula for s-connectivity.

The proof draws intuition from a new characterization of circuit depth in terms of communication com-
plexity. Within the same framework, a very simple and intuitive proof is given of a depth analogue of a theorem
of Khrapchenko concerning formula size lower bounds.

Key words. circuit complexity, communication complexity, monotone circuits. graph connectivity
AMS(MOS) subject classifications. 06E30, 94A05, 94C10

1. Introduction. The circuit complexity of Boolean functions has been studied for
the past forty years, but its main problem remains unsolved: we have no example of a
simple function (say in NP) that requires super linear circuit size or super logarithmic
(bounded fan-in) circuit depth. The reason is, perhaps, that although the circuit model
is elegantly simple, our understanding of the way it computes is, at the most, vague.

In the last years, however, advance has been surprisingly fast. On the one hand,
results of Andreev [An] and Razborov [Ra], improved by Alon and Boppana [AB],
give exponential size lower bounds for monotone circuits. On the other hand, results of
a long list of authors (e.g., [Aj], [FSS1, [Y1], [H]) give exponential size lower bounds
for constant depth circuits. More than the results themselves, perhaps the main contri-
bution of the mentioned papers has been the development of some general techniques
for proving lower bounds, such as random restrictions and circuit approximation. These
techniques, however, turn out to be difficult to apply to other problems so that new ideas
have been sought.

In this paper we show the equivalence between circuit depth and the communication
complexity of a certain related problem.' We believe that the later model is much more
appealing for both showing and understanding upper bounds, as well as for proving lower
bounds. This characterization is reminiscent of, but somehow more explicit and intuitive
than, the well known relationship between circuits and alternating machines [Ru]. This
characterization allows us to view computation top-down (from output to input) and
apply such techniques as random restrictions in that direction (rather than the common
bottom-up approach). We argue the relevance of this model by presenting a very simple
proof of a theorem of Khrapchenko, and by proving the first super-logarithmic (in the
size of the circuit) depth lower bound for monotone circuits.

Though the mentioned results of Andreev and Razborov give exponential (in log 1)
depth lower bounds for monotone circuits computing certain functions, the depth lower
bound is always logarithmic in the size bound. That is, the techniques apply to size rather
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! Yannakakis independently discovered this equivalence { KPPY].
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256 M. KARCHMER AND A. WIGDERSON

than to depth. We present a technique which captures, in a strong way, the essence of
circuit depth. We give here a tight 2(log? ) depth bound for st-connectivity, ? a function
which has O(n? log n) size, O(log? n) depth monotone circuits. As a consequence, we
get nonpolynomial (n™!°2™) size lower bounds for monotone formulas computing sz-
connectivity and hence separate the monotone analogues of NC' and AC!.

While our proof bears no obvious similarity to the methods of Razborov and An-
dreev, we point out the important role that (different) nontrivial results from extremal
set theory play in both cases.

It is interesting to note here the different character of the connectivity and majority
functions in the Boolean and arithmetic monotone circuits models. Shamir and Snir
[ShS] showed an Q(log? n) depth bound for both functions in the arithmetic model. The
difficulty in applying these techniques to Boolean circuits are the axioms x V xy = x and
its dual, which do not hold in rings. Indeed, Valiant [ V] (by probabilistic methods) and
Ajtai, Komlos, and Szemerédi [ AKS] (by explicit constructions) showed that these axioms
make a difference for the majority function which admits O(log n) depth monotone
Boolean circuits. Our result says that, unlike for majority, for connectivity the situation
in the Boolean case is very similar to the arithmetic one.

It is worthwhile to mention that our results apply to undirected graph st-connectivity,
a function that, in some models, is easier than its directed version. For example, see
[AKLLR] for some relevant evidence. More recently, Ajtai and Fagin [ AF] show that,
while undirected st-connectivity is definable in monadic second order logic, the directed
case is not.

The paper is organized as follows: In § 2 we define the communication game and
show its equivalence to circuit depth; in § 3 we give a simple proof of a theorem of
Khrapchenko. In § 4 we give the lower bound for connectivity.

2. Communication complexity and circuit depth. In this section we show the equiv-
alence between circuit depth and a problem in communication complexity. We will be
considering circuits over the basis { vV, A, —} where {V, A }-gates have fan-in 2 and
—-gates are only applied to input variables. For a function f, d(f) is the minimum depth
of a circuit computing f.

Let By, B) < {0, 1}" such that B, N B, = &. Consider the following game between
players I and II: Player I gets x € B, while player II gets y € B,; their goal 1s to find a
coordinate { such that x; # y;. Let C(B,, By) be the minimum number of bits they have !
to communicate in order for both to agree on such a coordinate. Note that unlike standard
problems in communication complexity [ Y1], the task of the players here is to solve a
search, rather than a decision, problem.

THEOREM 2.1. For every function f : {0, 1}" — {0, 1} we have

d(fy=C(f7(1), 7(0)).

Proof. The proof follows from the following two lemmas. (i
LEMMA 2.1. For all functions f and all By, B, < {0, 1}" such that By = f ~*(0) and
B, = f7'(1) we have

C(By,Bo)=d(/f).

Proof. The proof is shown by induction on d(f).
If d(f) = 0 then f is either x; or x;. In either case, we have that for all x € B, and
Y € By, x; # y; so that i is always an answer and C(B,, B,) = 0.

2 We present here an improved and simplified version of an early result of ours giving a @(log? n/log log n)
bound. This was possible after Hastad formulated and proved Lemma 4.1. A similar improvement was inde-
pendently discovered by Boppana.
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For the induction step we suppose that S =51 A fa(the case £ =, V f, is treated
similarly) so that d(f) = max (d(f,), d(f>)) + 1. Let B} = B, N SiN0) forj=1, 2.
By induction we have that C(B,, B}) < d(f;)forj=1,2. Consider the following protocol
for B, and By: player II sends a 0O if y € B}, otherwise he sends a 1; the players then
follow the best protocol for each of the subcases. We have

C(By,By) =1 + max (C(B.,B{)))é 1+ max (d(f))=d(f). O
Jj=12 j=12

The converse is as follows.
LEMMA 2.2, Let By, B, < {0, 1}" such that B, N By = . Then, there exists a
Junction f with By < f7(0) and B, = f~'(1) such that

d(f)=C(B,,By).

Proof. The proof is shown by induction on C(B,, By).

If C(B,, By) = 0 then there exists an i such that for all x € B, and for all y € B,
X; # y;. It is clear that for all x’, x” € B, we have X; = x7 and the same holds for all y’,
V" € By. Without loss of generality x; = 1 so that letting /= x; we have By < f'(0) and
B < f(1).

To prove the induction step, we assume that player II sends the first bit (the other
case is treated similarly). For some partition B, = By U B, player II sends a 0 if ye
Bj§, a 1 otherwise; the players then continue with the best protocol for each of the sub-
cases and

C(B,,Bo)= 1+ max (C(B,,B%)).
Jj=1.2

By induction, there exist fi, f, so that Bjc fj_'(O), B c f]l(l) and d(f) =
C(B,, By) for j = 1, 2. Taking now f = f; A f; we have

Bic /TN f3(1)=1""(1)
Bo=ByUB3c f71(0)Uf3'(0)=f~'(0)

and

d(f)S1+ max (d(f))=1+ maxZ(C(Bl,B{,))=C(BK,Bo). g
Jj=12 j=1

For monotone circuits we can give a modified version of Theorem 2.1 that captures,
in a nice way, the restrictions of monotone computation. A minterm (maxterm) of a
monotone function f is a minimal set of variables where, if we set to 1 (0), f will be
equal to 1 (0) regardless of the other variables. Define min (f), Max (f) as the set of
minterms, respectively, maxterms, of /. It is easy to see that every minterm intersects
every maxterm. We will look at minterms and maxterms as subsets of [~].2 For a mono-
tone function f, let d,,( /) be the minimum depth of a monotone circuit computing f.

Consider the following communication game ( the monotone game ) between players
I'and II. Let P, Q < 21" be such that for all p € P and for all g € Q we have pN g # &.
Player I gets a p € P while player Il gets a g € Q; their goal is to find an element in p N
q. Let C,,(P, Q) be the minimum number of bits they have to communicate in order
to find such an element.

THEOREM 2.2. For every monotone function f we have

dm(f)= Cpn(min (f), Max (/).

n)= {1, - n
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Proof. Note that in the base case of Lemma 2.1, if the circuit is monotone, we
always find a coordinate i such that x; = 1 while y; = 0. On the other hand, if the protocol
always gives a coordinate { with the above property, Lemma 2.2 gives a monotone circuit.

Let x € f7'(1) be the characteristic vector of a subset p < [#]. Similarly, let y €
f71(0) be the characteristic vector of the complement of a subset g < [n] (i.c., i€ g =
y: = 0). By the above argument, it is clear that the answer of the protocol will be an
element of p N ¢g. The theorem follows by noticing that it is enough to give a protocol
for (min (f), Max (f)) because the players, in case they get inputs p’ and ¢/, can always
behave as if they got p < p’ and ¢ = ¢’ where p € min (f) and g € Max (f). a

For proving lower bounds for the communication game, it may be convenient to
have more structure in the way the players behave. We would like to synchronize the
protocol so that the players communicate in rounds where players I and II send messages
of fixed lengths.

THEOREM 2.3. For any function f, there exists a protocol D where at each round
player 11 sends 2¢ bits while player 1 responds with a bits and such that the number k of
rounds satisfies

au)

a

k=

for the general game and

dm(f)

a

k

lIA

Jfor the monotone one.

Proof. Let C be the best circuit for /. The idea is to simulate a layers of C with a
round of D. Divide C into stages of depth 4 each and look at the subcircuits of each
stage. Each one computes a function which depends on at most 2 wires and, thus, can
be represented in Conjunctive Normal Form (CNF) with at most 224 clauses, each of
length at most 29 Following the proof of Lemma 2.1, it is easy to see that such a CNF
representation can be simulated by a round where player II sends 22 bits and player 1
sends a bits. The same holds for the monotone case. O

Of course, in Theorem 2.3, the roles of players I and II can be switched so that both
players send 2¢ and a bits per round, respectively.

3. Khrapchenko’s bound. As a nice application of Theorem 2.1, we give a simple
proof of a depth analogue of a theorem of Khrapchenko [K]. Let C, be the graph of the
n-cube with vertex set {0, 1}” and two nodes adjacent if and only if they differ in one
coordinate. Any subset 4 of edges induces a graph G, of C, in the natural way. For a
graph G4 and a node x, we denote d,(x), N4(x) as the degree of x in 4 and the set of
neighbors of x in 4, respectively. We drop the subindex A if no confusion arises. Let E
denote expectation with uniform distribution.

THEOREM 3.1 (Khrapchenko). Let By, B; < {0, 1}" such that B, B, = . Let
A=C,N(By X By). Then, for every function [ with By< f~'(0) and B, < f7'(1)
we have

1412

d(f)glogm.

Proof. Fix aprotocol D for the communication game and let C(x, y) be the number
of bits D uses on inputs x, y. We will prove that for (x, y) taken uniformly from A
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we have
| 4|?
{ Bo| | By ]|
so that by Lemma 2.1, we get d(f) 2 E(C(x, y)).
We view (*) as follows: Write
| 4] | 4] | 4]

= lo + log
|Bol 1Bi] ° | Bol | B |

(%) E(C(x,y))2 log

log

and note that | 4|/| By| and | 4|/| B,| are the average degrees of nodes in By and B,
respectively. In what follows, we will claim that the number of bits player I sends is at
least the logarithm of the average degree of nodes in B, (similarly with player 1I). In-
tuitively, this is so because even if player I knows y, he needs log d(y) bits to tell player
II which x he has.

We now proceed formally. For (x, y) € 4, let bi(x, ¥), bu(x, y) be the number of
bits player I and II send when the input to the protocol is (x, y). We have

1
E(C(x,y))=——[ > (bn(x,y)+bu(x,y))}
|A| (x,y)e A
1
=—[ > 2 buxy)t+ 2 2 bn(x,y)].
'A| xe By ye N(x) yeByxeN(y)
We claim:

o For any x € By, Z,enx) bu(x, ¥) Z d(x)log d(x). This is so because, even if
player 11 knows x, he has to tell player I which y he has.

o Similarly, for all y € By we have Z,enqyy b1(x, ) Z d(y) log d(y).

We now conclude that

1
E(C(X,y))z—[ 2 d(x)log d(x)+ 2 d(y)log d(y)]

B ‘Al xe B, y€By
1 [A] | 4] || |4 |4]?
z— log + > log =log ———
|A|[X§BIIB1| |Bi| e 1 Bol | Bol | B| | Bol
where the last inequality follows from the convexity of x log x. O

4. A lower bound for connectivity. In this section we give a Q(log? n) depth lower
bound for monotone circuits computing undirected graph st-connectivity. This section
is organized as follows: In § 4.1 we give some intuition and we state the main theorem;
in § 4.2 we give some definitions and useful lemmas; finally, in § 4.3 we give the proof
of the theorem.

4.1. Intnition. The function st-connectivity receives as input the adjacency matrix
of an undirected graph with two distinguished vertices s and ¢, and tests whether there
is a path from s to 7 or not. The function is obviously monotone with minterms corre-
sponding to minimal st-paths and maxterms corresponding to minimal st-cuts. We view
st-paths as ordered sets of vertices excluding s and ¢. We view st-cuts as partitions of the
set of vertices into two subsets, one containing s and the other containing 7. The minimal
cut contains all edges between the two subsets. A partition may be regarded as a coloring
g: V— {0, 1} where g(s) = 0 and g(¢) = 1. The game is as follows: Player I gets an st-
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path while player II gets a coloring of the nodes. Their goal is to find a bichromatic edge
in the path.

Let us look at the protocol based on the idea of raising the adjacency matrix of the
graph to the nth power: Player I sends the name of the middle vertex on his path; player
IT responds with the color of that vertex. The players then continue recursively on the
half path where a bichromatic edge is ensured to exist. Note that the protocol requires
O(log n) rounds in each of which player I sends log » bits and player II sends just one.

The crucial observation is that, even if player II were allowed to send O(n°) bits
each round (instead of one bit as in the protocol ), the players will still need many rounds.
Basically, this is because player I doesn’t know much about the nodes in player I’s path.
If he sends O(7°) bits and the path is of length O(n°), then the probability that player I
gets valuable information from player II is negligible. If we could prove a Q(log n) lower
bound for the number of rounds needed, we will be able to use Theorem 2.3 to get the
promised Q(log? n) depth lower bound for circuits.

Note the asymmetry between players I and II. Indeed, if the roles of both players
were switched so that player I would be the one who sends O(n°) bits per round, they
would be able to solve the problem in a constant number of rounds. This is consistent
with the intuition in Shamir and Snir in [ShS].

Define stconn(!) as the restriction of sz-connectivity to the case where player I gets
a path of length /. We state the main theorem of this section.

THEOREM 4.1. Suppose | = n'/'°. There exists an 0 < ¢ < § such that if D is a k-
round protocol for stconn(l) where at each round player 1 sends ¢ log n bits and player 11
sends n° bits, then k Z log [.

COROLLARY 4.1. The monotone depth complexity of st-connectivity is Q(log? n).

Proof. The proof follows from Theorems 2.3 and 4.1 by taking / = n'/'°, O

COROLLARY 4.2. The monotone formula size complexity of st-connectivity is n®8m

Proof. The proof follows by noting that the relation d(f) = O(log L(/)) holds also
in the monotone case [S]. a

Theorem 4.1 is a consequence of the following theorem. Let vector(!) be the game
where player I gets an (/ + 2)-vector p with p[0] = s and p[/ + 1] = ¢ and other entries
from [n] and player II gets a coloring g € {0, 1}" of [n] extended so that g(s) = 0 and
q(t) = 1. The goal of the players is to find an element v € [n] such that for some index
i, pli] = v and either g(p[i]) # q(pli + 1]) or g(p[i — 1]} # q(p[i]).

THEOREM 4.2. Suppose | = n'/'®. There exist an 0 < e < & such that if D is a k-
round protocol where at each round player 1 sends ¢ log n bits and player 11 sends n* bits,
and D solves the game vector(!) for a fraction tn™* of the possible vectors, then k = log /.

Note that in stconn(!) the players are asked to find a bichromatic edge, while in
vector(l) they are asked to find an endpoint of a bichromatic edge. Also, in stconn(l),
player I receives a simple path which can be viewed as a vector without repetitions. Given
this, Theorem 4.1 follows by noting that, by our choice of /, a protocol for stconn(l)
solves the game vector(/) for a fraction 1 — o(1) of the vectors.

To prove Theorem 4.2, we will assume, for contradiction, the existence of a k-round
protocol (k < log /) good for a large family of all possible vectors and a large family of
all possible colorings. We will pick a large subset of the vectors and colorings for which
players I and II sent the same message in the first round. We will give some extra infor-
mation (by applying a random restriction to the coloring of the nodes) to both players
s0 as to get smaller, yet nicer, subsets which are in 1-1 correspondence with a family of
vectors shorter in length (but of higher quality) and a family of colorings of fewer
nodes. The fact that the original protocol had (k — 1) rounds to go will allow us to find
a (k — 1)-round protocol for the smaller families. Repeating this k times will give us a

 —— —
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protocol without communication that solves a problem which cannot be solved without
any messages.

Note the top-down structure of the proof; essentially, the argument shows that, if
the output of a shallow circuit depending on a set of wires is in some sense complex,
then there is a wire which computes a complex subfunction. This is similar to the argument
used in [KPPY].

4.2. Notation and definitions. Let [n]’ denote the set of all /-vectors with entries
from [n]. An interval I = [[] is a subset of consecutive integers. For a vector p € [n)!
and an interval I < [/], p; is the projection of p into the interval /. For P < [n], P =
{pr: p€ P} is the projection of Pinto I. Note that P; < [n]'"'. Conversely, for p€ [n]'",
P < [n} and an interval I, let Extp,(p) = {§ € P: j; = p} be the set of extensions of p
in P within /. We will drop the subindices P and I if no confusion arises. For p € [n]/,
the support of p, supp (p), is defined as the set of nodes contained in p. When no confusion
arises, we will denote supp (p) by p. Given a partition of [/] into two intervals L and R,
we will denote a vector p € {n]' by (p., pr) where each entry is the projection of p into
the respective interval.

Similarly, for a coloring g € {0, 1}" and a subset 7 < [n], g7 is the projection of ¢
into 7 and for Q< {0, 1}", Or = {gr: g€ Q} is the projection of Q into 7. For g€
{0, 1}'"', Q< {0, 1}"and a subset T < [n], let Extor(q) = {G€ Q: {r=q} be the
set of extensions of ¢ in Q within T (again, we drop the subindices Q and T whenever
possible). For a restriction p : [#] > {0, 1, * }, we will denote by Q* the set of colorings
in Q consistent with p, (i.e., {g € Q: p(i) # * = p(i) = g;}).

For a subset A of a universe €, the density of 4, ug( 4), is defined as | 4]/|Q]. In
what follows, we will work with densities rather than with cardinalities. If Q is clear from
the context, we will drop the subindex and write u(A). The reader should be aware that
we may mix densities with respect to different universes in the same equation.

We will need the following combinatorial lemma due to Hastad: Let H € 4, X
-++ X Ay and for v € 4;, let Ext(v) = {u € H:u; = v}. Note that, though Ext,(v) =
H, Ext,(v) will be considered as a subset of H/A4; = A; X + -+ X A;jy X Aj4y X -+ X
A, and, in what follows, its density will be defined with respect to H/A4,.

LEMMA 4.1. Let HS Ay X -+ X Ay. Let Bi = {u € A;: p(Exty(u)) Z p(H)/2k}.
Then

. u(H)
[1uB)z2=——"

i=1

Proof. Say that a member (u,, - - -, t) of H is bad if for some I, u; ¢ B;. Let H be
the set of bad elements in H. We have

_ k kK (H H
WS 3 #( U Esz,(u))< wH) _uH),
i=1 \u%B i-1 2k 2
the lemma follows immediately, by noting that
k P
IT w(B)Z w(H)- p(H). g

i=1

COROLLARY 4.3. Ifk = 2, then there exists an i such that u( B;) Z (u(H)/2)"/.
COROLLARY 4.4. Pr(u(B;) <(u(H)/2)*'*y< 4 for i chosen randomly from

{1,...,[(}.




262 M. KARCHMER AND A. WIGDERSON

4.3. The proof.

Proof of Theorem 4.2. In what follows, all our protocols will be synchronized so
that at each round player I sends e log 7 bits and player II responds with »° bits. The
existence of ¢ will be clear from the proof, though we can check that ¢ = & suffices. We
will define a sequence of problems of different sizes as follows: We first define the param-
eters of the problems, let 7,,,, = log/ — 1.

Let ng = nand n,,, = n, — 4n!’?. Note that

(1) nI25n=n fort=tn,,.
Letly =/and /., = /,/2 and note that
(2) 2=L=] fort=ty,,.

Consider the following property:

H(t, k). There exist a collection of vectors P' < [n,}" of length 1,, and a collection
of colorings Q' < {0, 1}™ of [n,], with W(P*) Z tn™ and u(Q") = 272" such that there
exists a k-round protocol D' good for (P, 0%).

We will prove the following two claims:

CLAIM 4.1. Fort = tm, —H(1, 0).

CLAIM 4.2, Fort S tme H(t, k) > H(t + 1,k — 1).

It is clear that the two claims imply — H(0, .54 ) which in turn implies our theorem.

The first claim follows easily by noticing that there is not a single node (other than
s and ¢) which appears in every vector of P’ so that player II cannot know the answer.
To see this, note that the fraction of vectors of length /, which contain a given node is
1 = (1 — 1/n)"* < tn™". This is enough for proving the claim as both players must know
the answer. However, it can also be shown that, for most input pairs, player I will not
know the color of a single node in its vector.

The second claim will be proved by assuming H(¢, k) and constructing P'*', Q'*,
and D'*' so as to satisfy H(t + 1, k — 1). Take P, Q', and D* which satisfy H(t, k).
Let us look at the protocol after the first round. By the pigeonhole principle, there exist
P < P'with g(P) = {n " such that for every vector in P, player I sent the same message.
Similarly, there exists O = Q' with u(Q) = 27¥* " g0 that for every coloring of Q,
player II sent the same message.

Let L={1,---,[/2}and R={[/2+ 1, -, 1,} be a partition of the vector’s
coordinates into left and right intervals of the same length. We say that P is L-good if
many left projections of P have, each, many extensions to the right; that is, if

w({pr:m(Extpr(pr))Zn"%/32})2 tn,

R-goodness is defined similarly. The following lemma states that if we shrink the
length of the vectors to half and we restrict our family P to one of the intervals, then we
can improve the quality of our collection. This is one of our main ideas: Although we
cannot raise the absolute size of P, by reducing the size of the universe we can increase
its density.

LEMMA 4.2. P is either L-good or R-good.

Proof. The lemma follows using Corollary 4.3 and viewing P as a subset of
[r,]%+ X [n,)%r. O

Without loss of generality, assume that P is L-good and let 4 be the set of vectors
in Py with many extensions. The next lemma is the heart of our argument.

LEMMA 4.3. Ther
such that the following |
Gl: w(Q%1) 2272
G2: 3P < P such that

o VpeP, pLc

°oVp,p'eP, pr
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LEMMA 4.3. There exists a restriction p: [n]— {0, 1, *} with |p (%) = n,4,
such that the following properties hold:
Gl: p(Q8-1(,y) Z 2720+,

G2: 3P < P such that

oVpeP, pcp'(x) and pr<p (1)

°oVp,p'€P, pL#pL

o w(PL)z jn.

Assuming the lemma is true, we will finish the proof of the second claim.

Let 0'*' = Q%-1(., and P'*' = P, and rename the coordinates so that [n,,,] =
p~'(%). Note that there is a natural 1-1 correspondence between Q'"! and Q* and be-
tween P'*! and P. Also note that for all g € Q” and for all p € P any bichromatic edge
lies in the interval L. The protocol D't ' on (P'*', Q'* ') simulates the remaining rounds
of the protocol D' on (P, Q”) by following the behavior of the associated vector and
coloring. O

Proof of Lemma 4.3. In what follows, we denote V' = [n,], v = n,, I=10,1'=1,,
for simplicity. The existence of a good restriction will be shown by probabilistic methods.
We will pick p uniformly from the set of all restrictions with lp~ (%) =v— 4o
and Pr(p(x) = 0|p(x) # *) = }, and show that, with positive probability, the condi-
tions of the lemma are fulfilled. Specifically, we will show that Pr (—G1) + Pr (—G2) =
I+ o0(1).

Let us start with G1: Intuitively, the following lemma says that, with high probability,
p does not give player I too much information about the colors of nodes in p 7! (*).

LEMMA 4.4, Pr(u(Q%-1sy) < 272070y = 1 + o(1).

Proof. Let a =2~%* " Picking p uniformly from all restrictions with lp H(*)| =
v— 4\/1—), is equivalent to picking randomly 7" = p H(1)YU p~!(0) among all 4Vv-subsets
of V, and then picking the restriction of p to T randomly among all vectors x in

»

{0, 1}*". Let k = Vu/4. Say T is bad if

, 27k
I‘({X:#(EXIQ.T(X));i}) < (%) ’

T is good otherwise. We have

Pr (u(QZ-x(.))<%{)§ Pr (T'is bad)+ Pr (MQ??"(')’%% e g°°d)'

Note that Q%-1(., = Exlpr(x). By the definition of goodness, and the choice of k,
the second term is bounded by 1 —(a/2)**=o0(1). Also note that «/2k=
220+ 1t remains to bound the first term: We pick a random 7 by first picking a
random partition of V into 4Vv-subsets and then picking a random subset from the
partition. We must show that for any partition, Pr (7 is bad) < i for a random T in the
partition. But this is precisely the content of Corollary 4.4. O

Now we take care of G2.

Let A* ={peA:pcp '(*)}. We say that p kills a vector pp € 4 if there is no
pr € Ext(py) with pgr < p~!(1). We will show that for every choice of p, u(4*) is large
and hence Pr(—G2) = Pr (3p; € 4 killed by p).

CLAIM 4.3. For every p, W(A*) Z n".

Proof. Recall that |p~'(#)]| =v — 4V so that [ VNp ' (#)] = 4Vo. Itis easy 1o see
that at most a fraction 1 — [(v — 4Vv)/v]" = in™ of the vectors in [v]" intersect
'\ p~'(#) so that at least a fraction in~* — $n™* Z §{n~* of them are in 4*. O
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We now use some combinatorics to bound the probability that there exists a vector
in A killed by p.

CLAIM 4.4, Pr(3Ap; € A killed by p) = o(1).
Proof. We have

Pr(3p €A killed by p) = | 4| -max {Pr(p, is killed by p) }
preA
so let us look at the worst possible p; € 4. Let F = (p is killed by p). Note that Pr(F)
depends only on p~'(1). We pick p~'(1) as follows: Pick a number ¢ between 0 and
4Vv according to the binomial distribution (i.e., Pr (1 = i) = (9)2-%)_ If t < Vb, we
assume that F fails. Otherwise, we pick a subset 7= p '(1) where | 7| = ¢ by choosing
Vv//' independent random vectors i+ W from [v]Y, putting all nodes in these vec-
torsin 7', and adding enough random nodes so that | 7| = ¢. It is clear that we are simulat-
ing our original distribution on p~'(1). We can now estimate Pr (F) by

Pr(F)= Pr(t<Vv)+ Pr(F|t= Vo)
<(2/e)" +Pr(Viy € Ext(p,))
=(2/€)" + (1 — p(Ext(p,)) "
Zexp(—n'd)

where we are using Chernoff ’s bound to estimate Pr (¢ < VB) [Ch].
Recalling that | A| is less than n""'", we easily conclude our calculations and get

Pr(3pedkilled by p)<n™'"-exp (—n'*)= o(1).

We have Pr(—G1) + Pr(—G2) = j + o(1) implying the existence of a good re-
striction._ Take any consistent extension of each p; € 4* not killed by p to form P. We
have u(P;) Z {n™* and Lemma 4.3 is proved. ]
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