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LARGE SMALL MODULES OVER VON NEUMANN
REGULAR RINGS

JAN ŽEMLIČKA

Abstract. The paper summarizes and partially deepens known results
about von Neumann regular rings over which there exist infinitely gen-
erated small modules i.e. such modules M that the functor Hom(M,−)
commutes with direct sums. As consequences of listed facts we prove a
criterion of existence of infinitely generated small modules over continu-
ous regular rings and sufficient conditions over general simple and right
self injective rings.

Compactness conditions for module categories are studied from 60’s in
the context of representable equivalence of module categories; motivation
for this research is connected with searching of generalizations of the Morita
theorem. Among modules satisfying some version of compactness condition
the notion of a small module is defined by very straightforward and natural
way: a module M is small provided the covariant functor Hom(M,−) com-
mutes with direct sums of all modules. Hyman Bass in [3, p.54] made an
observation that there are examples of infinitely generated small modules
however they are not easy to find. Basic properties of small modules are
proved in the pioneer work [11] and lattice theoretical approach is intro-
duced in the papers [8, 9]. Recall that a module M is small if and only if it
is not a union of a countable infinite strictly increasing chain of its submod-
ules. This notion is studied under various terms, all are inspired by one of
the equivalent definition conditions: module of type Σ [11], dually slender
[6, 19, 12, 16, 18], Σ-compact, U-compact [2], and small module [14, 15, 5].

Obviously, the class of all small modules contains all finitely generated
modules, however many examples of infinitely generated small modules are
known. It leads to definition of right steady rings over which every right
small module is finitely generated. Several interesting classes of rings are
known to be right steady (right noetherian, right perfect, right semiartinian
with countable socle length, polynomials in countably many variables over
a field), and on the other hand, it is proved about large classes of rings that
they are not right steady (such as infinite products of rings, endomorphism
rings over an infinitely generated vector space, polynomials in uncount-
ably many variables). However a module-theoretic criterion of steadiness
is known [16], general ring-theoretic characterization remains to be an open
question.
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Recall that a ring R is called Von Neumann regular (abelian regular)
if for every x ∈ R there exists y ∈ R such that x = xyx (x = x2y).
Abelian regular rings can be characterized as precisely those regular rings
whose all idempotents are central [7, Theorem 3.5]. Since the border be-
tween steady and non-steady rings divides the class of all regular rings
(even commutative semiartinian regular, cf. [6]) into two large and rel-
evant classes, the natural question arises, how infinitely generated small
modules (and their representative classes) over von Neumann regular rings
can look like. Besides known (and partially generalized) results from the
papers [5, 6, 11, 12, 14, 15, 16, 18, 19] we present necessary conditions of
steadiness for general simple rings (Proposition 4.3) and general right self-
injective rings (Proposition 4.5) and two criterion for particular classes of
rings. Corollary 4.6 contains an easy module-theoretic criterion of steadi-
ness of right self injective rings and Theorem 4.7 characterizes right steady
right continuous regular rings.

Throughout the paper a ring R means an associative ring with unit, and a
module means a right R-module. We will say regular instead von Neumann
regular. We denote by J(R) Jacobson radical and by Soc(R) the right socle
of any ring R. E(M) means an injective envelope of M . R is said to be
semisimple if R = Soc(R). A primitive factor of a ring is a factor modulo
annihilator of a simple module. Obviously, every abelian regular ring has
all primitive factors simple.

For further notation, we refer to [7] and [13].

1. Basics

Before we focus on classes of small modules over regular rings, we recall
several general properties that we need (and use without explicit quotations)
in the following sections. First, we list equivalent conditions of smallness:

Lemma 1.1. [14, Lemma 1.2][5, Lemma 1.1], [11, 1o] Let M be a module.
Then the following conditions are equivalent:

(1) M is small;
(2) the functor Hom(M,−) commutes with countable direct sums;
(3) the functor Hom(M,−) commutes with (countable) direct sums of

injective modules;
(4) if M =

⋃
i<ω Mi for an increasing chain of submodules Mi ⊆ Mi+1 ⊆

M , i < ω, there exists n such that M = Mn;
(5) if M =

∑
i<ω Mi for a system of submodules Mi ⊆ M , i < ω, there

exists n such that M =
∑

i<n Mi.

As we need finer tools for working with small modules, we define for
every uncountable cardinal λ a stronger notion; we say that a module M
is λ-reducing, provided every less-then-λ-generated submodule N ⊆ M is
contained in a suitable finitely generated submodule of M . If κ ≥ λ, it
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is easy to see that M is λ-reducing and small whenever it is a κ-reducing
module. On the other hand, for a field F every non-principal maximal ideal
of the ring Fω is an example of a small module which is not ω1-reducing by
[15, Example 2.6].

The following observation is essential from the point of view of our ap-
proach:

Proposition 1.2. [17, Proposition 1.3] Let λ be an uncountable cardinal.
The both classes of all λ-reducing and of all small modules are closed under
taking homomorphic images, extensions and finite sums.

Among weaker notions then smallness we recall the notion of a self-small
module only, which is defined as a module M such that the covariant functor
Hom(M,−) commutes with direct powers of M .

Note that finitely generated modules satisfies all the conditions of com-
pactness defined above and recall that a ring R is right (strongly) steady
if every right (self-small) small module is finitely generated. We obtain as
an easy consequence of [4, Proposition 3.7] the following criterion of strong
steadiness for regular rings:

Proposition 1.3. Let R be a regular ring. Then R is right (left) strongly
steady iff it is semisimple.

Proof. As the maximal ring of quotients of every strongly steady regular ring
R is semisimple by [4, Proposition 3.7], R contains no infinite orthogonal set
of idempotents, hence R is semisimple as well. The converse is trivial. ¤

Before we illustrate that the question of steadiness of regular rings is very
far from being clear, we state some closure conditions of the class of general
steady rings, which plays an important role for our approach.

Proposition 1.4. [5, Lemma 1.9], [15, Theorem 2.5], [6, Lemma 1.7] The
class of all right steady rings is closed under factorization, finite products
and Morita equivalence.

The following example shows that no infinite product of rings is right
steady.

Example 1.5. Let (Ri| i < κ) be an infinite system of non-zero rings.
Then the product R =

∏
i<κ Ri is not right steady [15, Theorem 2.5]. Let

κ = λ+ > ω1 and for every i < κ define an idempotent ei ∈ R by the
conditions ei(j) = 1 if j ≤ i and ei(j) = 0 elsewhere. Then the ideal⋃

i<κ eiR is λ-reducing but it is not κ-reducing.

The idea of [15, Lemma 2.2, Theorem 2.5] can be easily generalized in the
following lemma, which we will need in the last section of this paper.

Lemma 1.6. Let R be a ring, E the set of all central idempotents of R and
X an infinite set. If there exists an injective homomorphism of the lattice
(P (X),∪,∩) to the lattice (E, ·,∨) where e∨f = e+f−ef , then R is neither
right nor left steady.
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Proof. Let f : P (X) → E be an injective lattice homomorphism. Denote by
F the set of all filters on X and by I the set of all right ideals of R. Similarly
as in [15, Lemma 2.2] define a mapping ϕ : F → I by the rule ϕ(F ) =∑

Y ∈F f(Y )R. Suppose that ϕ(F ) =
⋃

i<ω In for an increasing chain of right
ideals In and put Fn = {Y ⊂ X| f(Y ) ∈ In} for each n. We show that Fn

is a filter. If Y ∈ Fn and Y ⊂ Z, then f(Z) = f(Y ∪Z) = f(Y ) · f(Z) ∈ In.
If Y1, Y2 ∈ Fn, we see f(Y1 ∩ Y2) = f(Y1) + f(Y2)− f(Y1)f(Y2) ∈ In. Hence
Z, Y1 ∩ Y2 ∈ Fn. Obviously F =

⋃
n<ω Fn, thus ϕ(F ) is small if F is not a

union of a strictly increasing chain of right ideals. Moreover, it is easy to
see that ϕ(F ) is a finitely generated (right) ideal iff F is a principal filter.
Now, using the same argument as in [15, Lemma 2.4] we find an infinitely
generated small right (and left) ideal as ϕ(U) for a non-principal ultrafilter
U on X. ¤

2. Regular rings with primitive factors artinian

We start this section with a general module-theoretic criterion of steadi-
ness.

Theorem 2.1. [16, Theorem 1.4] Let R be a ring and put κ = card(R)+.
Denote by S the representative set of all simple modules. Then R is not
right steady iff

∏
S∈S Sκ⊕⊕

S∈S E(S) contains an infinitely generated small
submodule.

Since many module-theoretic properties of regular rings with primitive
factors artinian are similar to the case of commutative regular rings, we
may generalize [16, Proposition 1.6].

Proposition 2.2. If R is a regular ring with primitive factors artinian,
each small module is embeddable in

∏
S∈S S(ω), where S is a representative

set of simple modules.

Proof. Denote byM the set of all maximal ideals of R. First, note that every
simple module over regular ring with primitive factors artinian is injective
(see e.g. [1]), which implies that Jacobson radical of each module is zero
over such a ring. Moreover,

⋂
I∈MMI = 0.

Let M be a small module and I ∈ M. Since M/MI is a small semisim-
ple module (over R and R/I), there exists a natural number nI such that
M/MI ∼= (R/I)nI . Now we obtain a composition of natural embeddings
M ↪→ ∏

I∈MM/MI ↪→ ∏
S∈S S(ω), which finishes the proof. ¤

The following criterion is formulated for commutative regular rings in [16],
however it is actually proved for abelian regular rings:

Theorem 2.3. [16, Theorem 2.7] Let R be an abelian regular ring. Then
R is right steady if and only if the R-module R∗ = HomZ(R,Q/Z) contains
no infinitely generated small submodule.
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It is clear that noetherian regular rings (which are exactly semisimple
rings) are steady. In the case of regular rings with primitive factors artinian
we have a similar result for a weaker chain condition.

Theorem 2.4. [19, Theorem 9] Let R be a regular ring such that all ideals
are countably generated (as two-sided ideals). If all primitive factor-rings of
R are artinian, then R is right steady.

As the following example illustrates, the hypothesis of Theorem 2.4 that
R has artinian primitive factors is essential.

Example 2.5. Let a ring R satisfy the condition that the right module R2

is embeddable to R. Such a condition is true for the endomorphism ring of
an infinitely generated vector space, moreover, there are known examples of
countable directly infinite regular rings [7, Example 5.16]) for which it holds
true that R2 ↪→ R by [7, Proposition 5.8]).

Then every injective module over R is ω1-reducing. Hence a representative
class of small R-modules is proper and R is not right steady.

3. Semiartinian rings

Before we start to focus on the class of semiartinian rings, note that
semiartinian rings need not be regular; for example every right perfect ring
is right semiartinian. Nevertheless, we will see later in this section that
the question about existence of infinitely generated small modules can be
reduced at least in commutative case to the same question about a suitable
regular factor of a semiartinian ring. First recall needful notions and their
properties.

A module M is semiartinian if each non-zero factor-module of M contains
a simple submodule. We say that a strictly increasing chain of submodules
Ni of M , i ≤ σ, is the socle chain of M and an ordinal σ is the socle length
of M if

– Soc(M/Ni) = Ni+1/Ni;
– Nα =

⋃
i<α Ni whenever α is a limit ordinal;

– Nσ 6= Ni for every i < σ and Soc(M/Nσ) = 0.
It is well known that M is semiartinian if and only if M is equal to the
last member of the socle chain of M . A ring R is called right semiartinian
provided RR is a semiartinian module. Recall that every module over right
semiartinian ring is semiartinian and its socle length is upper bounded by
the socle length of RR [1, 10].

A similar chain condition as in Theorem 2.4 implies steadiness as the
following claim, formulated for semiartinian rings, shows

Theorem 3.1. [6, Theorem 2.2] Let R be a right semiartinian ring of count-
able socle length. Then R is right steady.

Relevance of the question which semiartinian rings are right steady is
illustrated in the paper [6], where large classes of examples of both steady
and non-steady (commutative regular) semiartinian rings are presented.
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Example 3.2. Let σ be an uncountable non-limit ordinal and κ be an infinite
cardinal such that κ+ ≤ card(σ).

(1) [6, Theorem 2.5] There exists a commutative steady semiartinian reg-
ular ring of the socle length σ.

(2) [6, Theorem 2.7] There exists a right semiartinian unit-regular prime
ring with the socle length σ which contains an infinitely generated κ-reducing
right ideal.

An easy ring-theoretic criterion of steadiness of abelian regular semiar-
tinian rings, which shows that the choice of an infinitely generated small
module as an ideal in [6, Theorem 2.7] was not accidental, is proved in the
paper [12].

Theorem 3.3. [12, Theorem 3.4] Let R be an abelian regular semiartinian
ring. Then the following conditions are equivalent:

(1) R is neither right nor left steady;
(2) There is an abelian regular factor-ring, R̄, of R and a member, I,

of the socle chain of R̄ such that I is an infinitely generated small
right or left R̄-module.

The following facts about semiartinian rings [10] and about steady ideals
[19] are essential for characterization of steadiness of general commutative
semiartinian rings:

Lemma 3.4. [12, Lemma 3.5] Let R be a ring.
(1) R is left semiartinian iff J(R) is right T-nilpotent and R/J(R) is

left semiartinian.
(2) If R is left semiartinian, then R is right steady iff R/J(R) is right

steady.
(3) Let R be a commutative semiartinian ring. Then R/J(R) is abelian

regular and semiartinian.

The next criterion shows that the class of all commutative semiartinian
rings is very close to the class of all commutative regular rings from the
point of view of steadiness.

Theorem 3.5. [12, Criterion A] Let R be a commutative semiartinian ring.
Then the following conditions are equivalent:

(1) R is not steady;
(2) There is a two-sided ideal, L, of R such that J(R) ⊆ L and a mem-

ber, I, of the socle chain of the ring R/L such that I is an infinitely
generated small right R/L-module.

Theorem 3.3 can be generalized for semiartinian regular rings with prim-
itive factors artinian. Following this purpose, we recall some useful notions
with their basic properties.

An ideal J of a regular ring is said to be homogeneous if there exists n such
that for every maximal ideal I either J/JI ∼= Mn(K) for some skew-field K
or J/JI = 0.
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Lemma 3.6. [18, Lemma 2.5] Let R be a regular semiartinian ring with
primitive factors artinian, J a homogeneous ideal and x ∈ J . Then RxR is
generated by a central idempotent.

We say that an ideal J is 2-dually slender if J is not a union of a countably
infinite strictly increasing chain of ideals.

Proposition 3.7. [18, Proposition 2.7] Let R be a regular semiartinian ring
with primitive factors artinian and let J be an infinitely generated 2-dually
slender ideal. Then there exists a factor ring S of R, denote the natural
projection R → S by p, such that p(J) is an infinitely generated 2-dually
slender homogeneous ideal.

Theorem 3.8. [18, Theorem 2.8] Let R be a regular semiartinian ring with
primitive factors artinian such that at least one factor of R contains an
infinitely generated 2-dually slender ideal. Then there exists a factor of R
containing an infinitely generated small right (left) ideal.

Denote by (Sα | α ≤ σ + 1) the right socle chain of R and let {Pαβ | α ≤
σ, β < λα} be the representative set of the class of all simple modules such
that Pαβ is embeddable to R/Sα. Let M be a module and J an ideal. M is
said to be J-saturated provided that Pαβ is a subfactor of M for all those α
less then the socle length of M and all β < λα that Pαβ is a subfactor of J .

Lemma 3.9. Let R be a regular semiartinian ring with primitive factors
artinian which is not right steady.

(1) [18, Lemma 3.2] If M is a small module, J an ideal such that M =
MJ and M is J-saturated, then J is 2-dually slender.

(2) [18, Lemma 3.3] There exist a factor S of the ring R, an infinitely
generated small S-module M and a homogeneous ideal J ⊆ S such
that MJ = M .

(3) [18, Lemma 3.4] There exist a factor ring S of R, an infinitely gen-
erated ideal J ⊆ S and a J-saturated infinitely generated small S-
module M such that MJ = M .

Now, the following criterion is a straightforward generalization of The-
orem 3.3 using previous claims about homogeneous and 2-dually slender
ideals.

Theorem 3.10. [18, Theorem 3.5] Let R be a regular semiartinian ring with
primitive factors artinian. Then the following conditions are equivalent:

(1) R is right steady;
(2) R is left steady;
(3) There exists no infinitely generated (as a two-sided ideal) 2-dually

slender ideal of any factor-ring of R.
(4) There exists no infinitely generated small right (left) ideal of any

factor-ring of R.
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4. Regular and non-singular steady rings

First, we state a description of steadiness of simple and injective regular
rings, and then we prove several consequences and generalization of this
criterion.

Theorem 4.1. [6, Theorem 2.8][5, Proposition 11.1] Let R be a simple
regular ring. Then R is right steady iff R is semisimple.

[5, Proposition 11.1] even implies that every injective module over a simple
regular ring is small. Hence a representative set of small modules over any
simple regular ring is proper (cf. also Example 2.5 and [15, Example 2.8]).

Corollary 4.2. Let R be a regular ring. If there exists a maximal ideal I
such that R/I is not semisimple, then R is neither right nor left steady.

We will denote by Qmax(R) the maximal right ring of quotients of an
ring R. Recall that Qmax(R) ∼= End(E(R)) as rings, Qmax(R)R

∼= E(R) as
modules, and Qmax(R) is a self-injective regular ring whenever R is right
singular (i.e. if the right annihilator of ever non-zero element from R is
not essential in R), for further details see [13, Chapter XII]. Not that every
simple ring is singular.

Proposition 4.3. If R is a right steady simple ring, then Qmax(R) is iso-
morphic to a full matrix ring over a skew-filed.

Proof. First, we will prove that R has a finite right rank. Assume that⊕
n<ω rnR ⊆ R for a set of non-zero elements {rn} ⊂ R and let E be an

arbitrary injective module. Following the proof of [5, Lemma 1.10] we will
show that E is a small module. Assume that E is not small, i.e. there is a
countable chain of submodules Ei ( Ei+1 ( · · · ( E such that E =

⋃
i<ω Ei.

As R is simple, EnrnR = En for each n, hence there exists mn ∈ En such that
mnrn ∈ En\En−1. Since E is injective, the naturally defined homomorphism⊕

n<ω rnR → ∑
n<ω enrnR ⊆ E can be extended to a homomorphism ϕ :

R → E. As ϕ(R) is a cyclic module, there exists k such that all enrn ∈ Ek,
which is a contradiction with the choice of elements en.

We have proved that every injective module over a simple ring of an
infinite rank have to be small, so each right steady simple ring has finite right
rank. It implies that regular over-ring Qmax(R) is of a finite rank, hence it is
semisimple. Finally note that Qmax(R) is simple because R E Qmax(R) and
R ∩ I is a two-sided ideal of R whenever I is a two-sided ideal of Qmax(R),
which concludes the proof. ¤

The following criterion for steady self-injective regular rings has also ap-
peared as very useful for description of existence of infinitely generated self-
small modules over non-singular rings [4, Proposition 3.7].

Theorem 4.4. [6, Theorem 2.8] Let R be a right self-injective regular ring.
Then R is right steady iff R is semisimple.
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We prove several consequences of Theorem 4.4.

Proposition 4.5. If R is a right steady right self-injective ring, then R is
semiperfect.

Proof. Applying [13, Corollary XIV.1.3] we get that R/J(R) is right steady,
right self-injective and regular, hence it is semisimple by Theorem 4.4. As
all idempotents can be lifted modulo J(R) by [13, Corollary XIV.1.5], R is
semiperfect. ¤

Applying the previous proposition and [16, Corollary 1.5] we obtain a
module-theoretic criterion of steadiness of general self-injective rings.

Corollary 4.6. Let R be a right self-injective ring. Then R is right steady
iff E(R/J(R)) contains no infinitely generated small module.

We say that a lattice L(∧,∨) is upper (lower) continuous provided L is
complete and a ∧∨

B =
∨{a ∧ b| b ∈ B} (a ∨∧

B =
∧{a ∨ b| b ∈ B}) for

each a ∈ L and every linearly ordered subset B ⊂ L. A regular ring is called
right (left) continuous if the lattice of all its right principal ideals is upper
(lower) continuous.

As a consequence of the last theorem we can also characterize steadiness
of right continuous regular rings:

Theorem 4.7. Let R be a right continuous regular ring. Then R is right
steady iff R is semisimple.

Proof. Let R be right steady. By [7, Theorem 13.17] it is a direct product of
a continuous abelian regular ring and a right self-injective ring. Since right
steady right self-injective ring is semisimple by Theorem 4.4, it remains to
prove that every continuous abelian regular ring is right steady.

Suppose that R is a continuous abelian regular ring. We will need two
observations about Qmax(R): first, that it is abelian regular by [7, Theorem
3.8] and that R contains all idempotents of Qmax(R) by [7, Theorem 13.13].
Now, fix an orthogonal set {ei| i ∈ I} of idempotents in R such that

⊕
eiR E

RR. Note that Qmax(R) ∼= ∏
i eiR by [7, Proposition 9.10]. Assume {ei| i ∈

I} is infinite. As we have a lattice injective homomorphism of P (I)(∪,∩)
into the lattice of all (central) idempotents of R, we may apply Lemma 1.6,
which says that R is not right steady. Hence R contains no infinite set of
orthogonal idempotents, i.e. it is semisimple. ¤

Final two remarks are focused on regular subrings of right steady rings:

Proposition 4.8. [12, Corollary 4.2] Let S be a right steady ring and R be
its regular subring. Then R is right steady.

Proposition 4.9. [12, Proposition 4.3] Let R be a regular semiartinian ring.
Assume that the center, C, of R is not (right) steady. Then there exists an
ideal in a factor-ring of R which is infinitely generated and small as a right
and left module.
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