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Abstract. This paper introduces the notion of essentially ADS (e-ADS) mod-
ules. Basic structural properties and examples of e-ADS modules are pre-
sented. In particular, it is proved that (1) The class of all e-ADS modules
properly contains all ADS as well as automorphism invariant modules. e-ADS
modules serves also as a tool for characterization of various classes of rings. It
is shown that: (2) R is a QF-ring if and only if every projective right R-module
is e-ADS; (3) R is a semisimple Artinian ring if and only if every e-ADS module
is injective. The �nal part of this paper describes properties of e-ADS rings,
which allow to prove a criterion of e-ADS modules for non-singular rings: (4)
Let R be a right non-singular ring and Q be its the right maximal ring of
quotients. Then R is a right e-ADS ring if and only if either eQ 6�= (1 � e)Q
for any idempotent e 2 R or R �= M2(A) for a suitable right automorphism
invariant ring A.

1. Introduction

The absolute direct summand (ADS) property for modules was introduced by
Fuchs in [6] and recently was intensively studied by Alahmadi, Jain and Leroy in
[1]. Recall that a right module M over a ring R is said to be ADS if for every
decomposition M = S � T and every complement T 0 of S, we have M = S � T 0.

In recent works [5, 8, 12], the notion of automorphism invariant modules was
shown to be and important tool for �nding correspondences between various con-
cept of injectivity. A module M is called automorphism invariant if it is invari-
ant under automorphisms of its injective hull, equivalently if every isomorphism
between two essential submodules of M extends to an automorphism of M [8].
Quasi-injective modules are automorphism invariant. Assume that an R-module
M has a decomposition M = S � T such that T 0 is a complement of S, T 0 \ T = 0
and S \ (T 0 � T ) �e S. It is easy to see (cf. Lemma 2.4) that E(S) �= E(T ),
where E denotes the injective hull. In light of this observation, we de�ne es-
sentially ADS-modules (shortly e-ADS), as an R-module M such that for every
decomposition M = S � T of M and every complement T 0 of S with T 0 \ T = 0
and S \ (T 0 � T ) �e S, we have M = S � T 0. This de�nition naturally gener-
alizes both notions mentioned above. Furthermore, recall that when a module M
is quasi-continuous, for each decomposition M = A � B, A and B are relatively
injective. This property of modules is known to be equivalent to ADS modules
([1, Lemma 3.1]) and automorphism invariant modules ([8, Theorem 5]). Since an
R-module M is e-ADS if and only if for each decomposition M = A�B, A and B
are relatively automorphism invariant (see Lemma 2.8), e-ADS modules arise as a
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generalization of quasi-continuous modules, ADS modules as well as automorphism
invariant modules. The goal of this paper is to present a list of signi�cant structural
properties of e-ADS modules and to exhibit relations with other notions. We show
that e-ADS as well as automorphism invariant or ADS modules have a description
in the language of the lattice theory (Lemmas 2.1, 2.15, 4.4). Important for further
study is the division of the class of e-ADS modules into trivial and non-trivial case
(cf. Theorem 2.9). Moreover it is proved in Theorem 2.9 that, if E(A) 6�= E(B)
for each decomposition M = A � B, then M is e-ADS. On the other hand if M
is an e-ADS module with a decomposition M = A � B such that E(A) �= E(B),
then A �= B and the modules A and B are automorphism invariant. This result
is key to our work and is used to characterize many well-known classes of modules
in terms of e-ADS modules. For example, we show in Theorem 2.18 that for an
e-ADS module M with a decomposition M = A � B such that E(A) �= E(B), M
satis�es the exchange property if and only if End(M) is semiregular.

The �nal part of the article is devoted to rings which are e-ADS as right modules
over themselves. By applying elementary lattice theoretical tools on rings induced
by idempotents we characterize when non-singular rings are e-ADS. Based on the
key observation that a non-trivial e-ADS ring is isomorphic to a 2 � 2 full matrix
ring over an automorphism invariant ring (Lemma 4.9) we prove a characterization
of non-singular e-ADS rings. Namely, a non-singular ring is e-ADS if and only if
it is either trivial e-ADS or it is a product of a self-injective ring and a matrix
ring M2(S) over an automorphism invariant ring S with many central idempotents
(Theorem 4.11).

Throughout this article, unless otherwise stated, all rings have unity and all
modules are unital. For a submodule N of M , we use N � M (N < M) to
mean that N is a submodule of M (respectively, proper submodule), and we write
N �e M to indicate that N is an essential submodule of M . For any term not
de�ned here the reader is referred to [2], [4] and [9].

2. e-ADS modules

Let M and N be two modules. The module M is called automorphism N -
invariant if for any essential submodule A of N , any essential monomorphism from
A to M can be extended to some g 2 Hom(N;M) ([12]).

We note that M is automorphism invariant if M is automorphism M -invariant
by [8, Theorem 2].

Lemma 2.1. Let M and N be modules and X =M �N: The following conditions
are equivalent:

(1) M is automorphism N -invariant.
(2) For any complement K of M in X with K\N = 0 and M\(K�N) �e M ,

the module X has a decomposition X =M �K.

Proof. Consider the natural projections �M : X !M and �N : X ! N . Note that
�M (K) =M \ (K +N) for each submodule K of X.

(1)) (2) Let K be a complement ofM in X with K\N = 0 and �M (K) �e M .
Clearly, M � K = M � �N (K) so that �N (K) is essential in N. Consider the
homomorphism � : �N (K)! �M (K) de�ned by �(n) = m whenever k = m+n 2 K
for k 2 K;m 2M;n 2 N . It is easy to see that � is an isomorphism (K \N = 0 by
the assumption). Since M is automorphism N -invariant, the homomorphism � can
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be extended to some g : N !M . Set T := fn+ g(n)jn 2 Ng. Clearly, M �T = X
and T contains K essentially by modularity. Since K is a complement, we obtain
T = K.

(2)) (1) Let A be an essential submodule of N and f : A!M be an essential
monomorphism. Set H := fa � f(a)j : a 2 Ag. Clearly, H \ N = 0, H \M = 0
and �M (H) = f(A) is essential in M . Then M � H = M � �N (H) = M � A,
which is essential in X. Let K be a complement of M in X containing H. Then
H �e K. Hence K \ N = 0 because H \ N = 0. Moreover, �M (H) � �M (K)
which implies that �M (K) �e M . By the assumption, we have M �K = X. Now
let � :M �K !M be the projection. Then writing an element a 2 A in the form
a = a� f(a) + f(a), the restriction of � to N is the desired extension of f . �

Lemma 2.2 ([12, Theorem 2.2]). The following are equivalent for modules M and
N :

(1) M is automorphism N -invariant.
(2) �(N) �M for every isomorphism � : E(N)! E(M).

As an immediate consequence of Lemmas 2.1 and 2.2 , we obtain the following
observation.

Corollary 2.3. If M and N are relatively automorphism invariant modules and
E(M) �= E(N), then M �= N

Lemma 2.4. Let M be a module with a decomposition M = S � T . If T 0 is a
complement of S with T 0 \ T = 0 and S \ (T 0 � T ) �e S, then T � T 0 �e M and
E(S) �= E(T ).

Proof. Note that S � T 0 �e M because T 0 is a complement of S. Since

T � [S \ (T 0 � T )] � T � T 0 and T � [S \ (T 0 � T )] �e T � S =M;

we get T � T 0 �e M . Moreover, the injective hulls E(S), E(T ) and E(T 0) can be
taken as submodules of the injective hull E(M) such that S �e E(S), T �e E(T )
and T 0 �e E(T 0). Since S \ T 0 = 0 = T \ T 0, it is easy to see that

E(S) \ E(T 0) = 0 = E(T ) \ E(T 0):

On the other hand,

E(S) + E(T 0) = E(M) = E(T ) + E(T 0)

because both E(S)+E(T 0) = E(S)�E(T 0) and E(T )+E(T 0) = E(T )�E(T 0) are
injective submodules of E(M), and both S � T 0 and T � T 0 are essential in E(M).
Thus

E(T ) �= (E(T ) + E(T 0))=E(T 0) = E(M)=E(T 0)
= (E(S) + E(T 0))=E(T 0) �= E(S):

�

In light of Lemma 2.4, we call M an essentially ADS-module, shortly e-ADS,
if for every decomposition M = S � T of M and every complement T 0 of S with
T 0 \ T = 0 and S \ (T 0 � T ) �e S, we have M = S � T 0.
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Clearly, ADS-modules are e-ADS. The following examples show that the converse
is not true in general and that the class of e-ADS modules is not closed under taking
direct summands, respectively.

Example 2.5. Let T be a torsion abelian group which is not divisible and put
M := Z� T . Then every decomposition M = A�B contains a subgroup which is
isomorphic to Z while the second is torsion, hence E(A) 6�= E(B). By Lemma 2.4,
there exists no a decomposition satisfying the hypothesis of the de�nition of e-ADS
exists. So that the conditions for having an e-ADS modules are vacuously satis�ed
and the module is e-ADS. Hence it is an e-ADS abelian group.

On the other hand, since T is not divisible, we obtain T is not Z-injective and
so M is not ADS by [1, Lemma 3.1].

Example 2.6. Put M := Z � Zp � Zp2 for some prime number p. Then M is
e-ADS by Example 2.5. Since Zp is not automorphism Zp2-invariant, we obtain
that Zp � Zp2 is not e-ADS by Lemma 2.8.

Let us mention the following equivalent conditions for a module to be e-ADS.

Theorem 2.7. The following conditions are equivalent for a module M :

(1) M is e-ADS.
(2) For every decomposition M = S � T , if T 0 is a complement of S in M and

T is a complement of T 0 in M , then M = S � T 0.

Proof. (1) ) (2) Suppose that M = S � T is a decomposition of M , T 0 is com-
plement of S and T is a complement of T 0 in M . Then S \ (T 0 � T ) �e S since
T � T 0 �e M . By (1), we have M = S � T 0.

(2) ) (1) Let M = S � T of M and S \ (T 0 � T ) �e S for a complement T 0 of
S with T 0 \ T = 0. By Lemma 2.4, T � T 0 �e M . Since T is a direct summand of
M , we get T is a complement of T 0 in M . By (2), we have M = S � T 0. �

In [1, Lemma 3.1], it is shown that an R-module M is ADS if and only if for
each decomposition M = A�B, A and B are mutually injective.

Lemma 2.8. An R-module M is e-ADS if and only if for each decomposition
M = A�B, A and B are relatively automorphism invariant.

Proof. This is clear from Lemma 2.1. �

The following characterization proves to be quite useful.

Theorem 2.9. Let M be an R-module.

(1) If E(A) 6�= E(B) for each decomposition M = A�B, then M is e-ADS.
(2) If M is an e-ADS module with a decomposition M = A � B such that

E(A) �= E(B), then A �= B and the modules A and B are automorphism
invariant.

Proof. (1) This follows from Lemmas 2.2 and 2.8.
(2) By Lemma 2.8 and Corollary 2.3, we have A �= B. Thus A is automorphism

A-invariant, i.e. automorphism invariant. �

In the following observation, we continue to obtain equivalent conditions for a
module to be e-ADS.
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Theorem 2.10. The following conditions are equivalent for a module M :

(1) M is e-ADS,
(2) Assume that M has a decomposition M = A � B. For any isomorphism

f 2 Hom(E(B); E(A)), the module M has a decomposition M = A � X,
where X = fb+ f(b)j b 2 B; f(b) 2 Ag.

(3) For every decomposition M = A � B such that E(A) �= E(B), the module
A �= B is automorphism invariant.

(4) Either E(A) 6�= E(B) for every decomposition M = A � B or there exists
an automorphism invariant module X for which M �= X � X and for
every two decompositions X = P1 �Q1 = P2 �Q2 with E(P1) � E(P2) �=
E(Q1)�E(Q2) we have (P1�P2) �= (Q1�Q2) is automorphism invariant.

Proof. (1)) (2) We show that X = fb+ f(b)jb 2 B; f(b) 2 Ag is a complement of
A in M . Notice that A \X = 0, X \ B = 0 and A \ (X � B) �e A. Let L be a
submodule of M such that L\A = 0 and X � L. Consider the natural projections
�A and �B of M onto A and B, respectively.
Claim: �A(x) = f�B(x) for all x 2 L: Assume that there exists x 2 L such
that (�A � f�B)(x) 6= 0. Since A �e E(A), there exists r 2 R such that 0 6=
(�A � f�B)(xr) 2 A. As xr 2 L and �B(xr) + f�B(xr) 2 X � L, we have

�A(xr)� f�B(xr) = xr � (�B(xr) + f�B(xr)) 2 A \ L = 0;

a contradiction. Thus �A(x) = f�B(x) for all x 2 L.
For x 2 L, we have

x = �A(x) + �B(x) = f(�B(x)) + �B(x) 2 X;

which implies L � X.
(2)) (3) If the module M has a decomposition M = A�B for an isomorphism

f 2 Hom(E(B); E(A)), we obtain M = A �X with X = fb + f(b)j b 2 B; f(b) 2
Ag. Clearly, f(B) � A and hence A is automorphism B-invariant by Lemma 2.2.
Symmetrically, f(A) � B and so A is automorphism and A �= B.

(3)) (1) This is a direct consequence of Lemma 2.8.
(1)) (4) This follows from Theorem 2.9(2).
(4)) (3) If E(A) 6�= E(B) for each decomposition M = A�B, there is nothing

to prove. Assume that M has a decomposition M = X1 �X2 for submodules X1

and X2 of M such that X �= X1
�= X2. We suppose furthermore that M has an

another decomposition M = A � B such that E(A) �= E(B). By [3, Theorem
3], both the modules X1, X2 and M satisfy the exchange property. Thus there
exist submodules P1 � A, Q1 � B such that M = X1 � P1 � Q1. Note that
X2

�= M=X1
�= P1 � Q1 is automorphism invariant, hence there exist submodules

P2 � A, Q2 � B such that M = P1 �Q1 � P2 �Q2. Clearly, as P1 � P2 � A and
Q1 �Q2 � B, we get A = P1 � P2 and B = Q1 �Q2, hence

E(P1)� E(P2) �= E(P1 � P2) �= E(A)

and
E(Q1)� E(Q2) �= E(Q1 �Q2) �= E(B):

Now, since E(A) �= E(B), the hypothesis of (4) implies that A �= B is automorphism
invariant. �

For modules M and N , N is said to be M -injective if every homomorphism
from each submodule of M to N extends to a homomorphism from M to N , and
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M and N are called relatively injective if N is M -injective and M is N -injective.
The module M is called quasi-injective if M is M -injective. It is well-known that
a module is quasi-injective if and only if it is invariant under automorphisms and
idempotent endomorphisms of its injective hull.

In [8], Lee and Zhou discussed when an automorphism invariant module is quasi-
injective or injective and they obtained the following observation.

Lemma 2.11 ([8, Theorem 5]). If M �N is automorphism invariant, then M and
N are relatively injective.

Combining Lemmas 2.8 and 2.11, we have

Corollary 2.12. Every automorphism invariant module is e-ADS.

The following example shows that the converse of Corollary 2.12 is not true in
general.

Example 2.13. Take any continuous module M which is not quasi-injective (e.g.
if R is the ring of all sequences of real numbers that are eventually rational, then RR
is continuous but not quasi-injective), then clearly M is ADS (and hence e-ADS)
but not automorphism invariant.

We recall Example 2.6. It also shows that e-ADS modules are not closed with
respect to general direct summands. On the other hand, Corollary 2.12 and The-
orem 2.9 prove that the class of all e-ADS modules is closed under taking some
important cases of direct summands. We can then show:

Corollary 2.14. Let M be an e-ADS module. If M has a decomposition M =
A�B such that E(A) �= E(B), then A is e-ADS.

In view of the claim of Theorem 2.9, we say that a module M is trivial e-ADS if
it has no a decomposition M = A�B such that E(A) �= E(B).

The following observation shows that the trivial e-ADS modules can be described
using lattices of their submodules.

Proposition 2.15. Let M be a module. Then M is trivial e-ADS if and only if
for every decomposition M = A�B no complement of A is a complement of B.

Proof. Suppose that the module M has a decomposition M = A � B such that
E(A) �= E(B). The isomorphism ' : E(B) �= E(A) implies that the restriction
of ' on C = '�1(A) \ N forms an essential monomorphism  : C ! A. Put
H := fc � '(c)j : a 2 Cg. Now if we follow the same way as in the proof of
(2)) (1) of Lemma 2.1, we have �xed a complement K of B containing H. Since
K \B = 0 and A \ (K +B) �e A, we obtain that K is complement of B.

Conversely, suppose that M has a decomposition M = A�B and K is simulta-
neously complement of A and B. Then

E(M) = E(A)� E(K) = E(B)� E(K);

hence E(A) �= E(B) (here we notice that all injective hulls are considered as sub-
modules of E(A)). �

Now, we provide several useful necessary conditions of trivial e-ADS modules.

Lemma 2.16. Let M be a nonzero module. If every idempotent of End(M) can be
extended to a central idempotent of End(E(M)), then M is trivial e-ADS.
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Proof. Suppose thatM has a decompositionM = A�B and consider an idempotent
e 2 End(M) de�ned by the rule e(a+b) = a for all a 2 A, b 2 B. By the hypothesis,
there exists a central idempotent ~e 2 End(E(M)) satisfying ~e(m) = e(m) for each
m 2 M . Now, assume that we have an isomorphism i : E(A)! E(B) and extend
it to an endomorphism j 2 End(E(M)) such that j(a+ b) = i(a) for all a 2 E(A)
and b 2 E(B). Since A 6= 0 6= B by the hypothesis and i is an isomorphism,
i(A) \ B is essential in E(B), hence there exists nonzero element a 2 A for which
0 6= i(a) 2 B. As ~e is central, i.e. ~ej = j~e, we have

0 6= i(a) = j(a) = je(a) = j~e(a) = ~ej(a) = ei(a) = 0;

a contradiction. �

Since every idempotent endomorphism of a module M can be extended to an
idempotent endomorphism of E(M) we obtain the following consequence:

Corollary 2.17. IfM is a nonzero module such that every idempotent of End(E(M))
is central, then M is trivial e-ADS.

A right R-module M is said to satisfy the exchange property if for every right
R-module A and any two direct sum decompositions A = M1 �N = �i2IAi with
M1

�=M , there exist submodules Bi of Ai such that A =M1 � (�i2IBi).
A ring R is called semiregular if, for every a 2 R, there exists b 2 R such that

bab = b and and a� aba 2 J(R) ([10]).

Theorem 2.18. Let M be a non trivial e-ADS module. Then

(1) M satis�es the exchange property.
(2) End(M) is semiregular.

Proof. (1) By Theorem 2.9(2), we obtain M �= A � A where A is automorphism
invariant. Moreover, A satis�es the exchange property by [3, Theorem 3]. HenceM
satis�es the exchange property because the class of modules satisfying the exchange
property is closed under taking �nite direct sums.
(2) It follows from Theorem 2.9(2), [3, Proposition 1] and [11, Theorem 29]. �

Recall an easy observation about central idempotents.

Lemma 2.19. Let A and B be direct summands of a module M and f a central
idempotent of End(M). If A �= B, then f(A) �= f(B).

Proof. Let ' : A ! B be an isomorphism and consider the natural projection
�A :M ! A and the natural embedding �B : B !M . Put h = �B'�A 2 End(M).
Since f is a central idempotent we get h = fhf�(1�f)h(1�f), hence fhf induces
an isomorphisms between f(A) and f(B). �

Note that direct sums of two e-ADS modules need not be e-ADS (as it can
be illustrated, e.g. by the direct sum of two trivial e-ADS modules Z2 and Z4).
The following theorem shows some kind of restrictive closure property of e-ADS
modules.

Theorem 2.20. Let M be a trivial e-ADS and N a nontrivial e-ADS module. If
Hom(E(M); E(N)) = 0 = Hom(E(N); E(M)), then M �N is trivial e-ADS.
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Proof. Let X =M �N and assume that there exists a decomposition X = A�B
such that E(A) and E(B) are isomorphic. Note that we may suppose all modules
and their injective hulls as submodules of E(X).

Since N satis�es exchange property by Theorem 2.18, there exist submodules
C � A and D � B such that X = N � C �D. Obviously, M �= X=N �= C �D.
Thus E(M) �= E(C)�E(D) where E(C) and E(D) are considered as submodules of
E(A) and E(B), respectively. Note that there are injective submodules EA � E(A)
and EB � E(B) for which EA � E(C) = E(A) and EB � E(D) = E(B). Now it
is easy to see that E(N) �= EA � EB . By the hypothesis, we get End(E(X)) �=
End(E(M))�End(E(N)), hence there exists a central idempotent f 2 End(E(X))
for which f(E(X)) = E(M) and (1 � f)(E(X)) = E(N). By Lemma 2.19, we
obtain that f(E(A)) �= f(E(B)). As f(E(A)) = E(C) and f(E(B)) = E(D), a
contradiction. �

3. Classes of e-ADS modules and some ring conditions

Let �[M ] denote the Wisbauer category of a module M, i.e. the full category
of R-Mod consisting of submodules of quotients of direct sums of copies of M (see
[14]).

Theorem 3.1. The following conditions are equivalent for a module M :

(1) M is semisimple.
(2) Every module in �[M ] is e-ADS.
(3) Every �nitely generated module in �[M ] is e-ADS.
(4) Every 4-generated module in �[M ] is e-ADS.

Proof. (1)) (2)) (3)) (4) are clear.
(4)) (1) Let N 2 �[M ] be a cyclic module and x 2M . Then

(N � xR)� (N � xR)

is a 4-generated module in �[M ] and hence is e-ADS by the hypothesis. By Lemma
2.8, N � xR is automorphism N � xR-invariant and N is xR-injective by Lemma
2.11. By [9, Theorem 1.4], N isM -injective. ThusM is semisimple by [4, Corollary
7.14]. �

Theorem 3.1 gives immediately the following.

Corollary 3.2. A ring R is semisimple Artinian if and only if every 4-generated
R-module is e-ADS.

The following observation gives an another characterization of e-ADS modules
in the category �[M ].

Theorem 3.3. The following conditions are equivalent for a module M :

(1) M is semisimple.
(2) The direct sum of every two e-ADS modules in �[M ] is e-ADS.
(3) Every e-ADS module in �[M ] is M -injective.
(4) The direct sum of any family of e-ADS modules in �[M ] is e-ADS.

Proof. (1)) (4)) (2) They are obvious.
(2) ) (3) Let N be an e-ADS module. By our assumption, (N � EM (N)) �

(N � EM (N)) is e-ADS. Then N � EM (N) is automorphism invariant. Hence N
is EM (N)-injective by Lemma 2.11. It follows that N is M -injective.
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(3)) (1) We consider a family fSiji 2 Ng(� �[M ]) of simple right R-modules. It
follows that �i2NSi is semisimple and so is e-ADS. By (3), �i2NSi is M -injective.
Therefore �i2NSi is a direct summand of �i2NEM (Si). But �i2NSi is essential
in �i2NEM (Si) and then �i2NSi = �i2NEi is M -injective. Thus M is locally
Noetherian. We can write EM (M) = �i2IKi for some indecomposable right R-
modules Ki in �[M ] by [14, 27.4]. We have that every Ki isM -injective and obtain
that every Ki is uniform. For each i 2 I, let 0 6= x 2 Ki. Since Ki is uniform, xR
is uniform as well, hence xR is e-ADS. Then xR is M -injective by (3). It follows
that xR is a direct summand of Ki and we have xR = Ki. Thus Ki is simple for
all i 2 I. That means EM (M) is semisimple. Thus M is semisimple. �

Corollary 3.4. The following conditions are equivalent for a ring R:

(1) R is semisimple Artinian.
(2) The direct sum of every two e-ADS modules is e-ADS.
(3) Every e-ADS module is injective.
(4) The direct sum of any family of e-ADS modules is e-ADS.

We note that if M � E(M) is e-ADS for an R-module M , then M �= E(M) by
Theorem 2.9 and so M is injective.

Theorem 3.5. The following conditions are equivalent for a ring R:

(1) R is right Noetherian.
(2) The direct sum of injective right R-modules is e-ADS.

(3) For any injective right R-module X, X(N) is e-ADS.

Proof. (1)) (2)) (3) They are obvious.
(3) ) (1) Let X be an injective module. Clearly, X � E(RR) is also injective.

LetM = X�E(RR). Since 4 � jNj = jNj, we obtain that (M (N))(4) �=M (N). By (3),
M (N)�M (N) is automorphism invariant. It follows thatM (N) is quasi-injective. On
the other hand, X(N) is isomorphic to a direct summand of M (N). It implies that
X(N) is E(RR)-injective and so X(N) is injective. Hence R is right Noetherian. �

A ring R is called a right V-ring if every simple right R-module is injective.

Theorem 3.6. The following conditions are equivalent for a ring R:

(1) R is a right V-ring,
(2) S � E(S) is e-ADS for every simple right R-module S.

Proof. (1)) (2) This is obvious.
(2) ) (1) Assume that S � E(S) is e-ADS for every simple right R-module S.

Let S be a simple right R-module. By the hypothesis, S � E(S) is e-ADS. Then,
by Theorem 2.9(1), S �= E(S), and so S is injective. �

Theorem 3.7. The following conditions are equivalent for a ring R:

(1) R is a QF-ring.
(2) Every projective right R-module is e-ADS.
(3) Every essential extension of any free right R-module is e-ADS.

Proof. (1)) (2) and (1)) (3) are obvious.
(2)) (1) Let I be a non-empty set. Clearly (R(I))4 is also a projective module.

By (2), R(I)�R(I) is automorphism invariant. It follows that R(I) is quasi-injective.
Therefore R(I) is injective. Thus R is �-injective and so R is a QF-ring.
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(3) ) (1) Let F be a free right R-module. Then F � E(F ) is an essential
extension of a free right module F 2. By (3), F � E(F ) is e-ADS, hence F is
injective. Now we have proved that every projective right R-module is injective.
Thus R is QF by the Faith-Walker theorem. �

4. The Structure of e-ADS rings

We say that a ring R is right e-ADS if it is an e-ADS module over itself. A right
e-ADS ring R is called trivial if RR is trivial e-ADS, i.e. the module RR does not
have a decomposition RR = A � B such that E(A) �= E(B). Otherwise R is said
to be a nontrivial e-ADS ring.

Let R be a ring, e be an idempotent of R, S := eRe and n 2 N. Denote by
L(eRn) the lattice of all submodules of the projective R-module eRn, and L(Sn)
the lattice of all submodules of the free module Sn. De�ne two mappings

� : L(eRn)! L(Sn)

and
	 : L(Sn)! L(eRn)

by the rules
�(I) = Ie; 	(J) = JR

for arbitrary I 2 L(eRn) and J 2 L(Sn).

Lemma 4.1. � and 	 are well-de�ned monotonic mappings. Moreover, � is a
lattice homomorphism and 	 is compatible with the operation +.

Proof. Straightforward from the above notation. �

Note that the inclusion 	(J1 \J2) � 	(J1)\	(J2) holds generally for arbitrary
J1; J2 2 L(S

n) but the following example shows that the reverse need not be true.

Example 4.2. Let R = f(aij) 2 M3�3(Q)j a31 = a32 = 0g be a subring of

matrix ring M3�3(Q). Put e :=

0
@
1 0 0
0 1 0
0 0 0

1
A, f :=

0
@
1 0 0
1 0 0
0 0 0

1
A, g :=

0
@
1 0 0
2 0 0
0 0 0

1
A,

S := eRe, J1 := fS, and J2 := gS. Then it is easy to see that

J1 \ J2 = 0

and

J1R \ J2R = f

0
@
0 0 u
0 0 v
0 0 0

1
A j u; v 2 Qg:

Thus (J1 \ J2)R 6= J1R \ J2R.

Lemma 4.3. Let R be a ring and e 2 R be an idempotent such that ReR = R.
Then � and 	 are mutually inverse lattice isomorphisms.

Proof. Let S := ReR. Since both � and 	 are monotonic, it is enough to show that
�	 and 	� are identity mappings on L(S) and L(eR), respectively. Let I 2 L(eR)
and J 2 L(S). Since ReR = R, we get

	�(I) = IeR = IReR = IR = I:

On the other hand S = eRe and J = Je imply that

�	(J) = JRe = JeRe = JS = J:
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�

Recall that essentiality of modules can be expressed as a condition of lattices of
submodules:

Lemma 4.4. Let A � B are submodules of a module M . Then A �e B if and only
if there exists no submodule C � B such that A \ C = 0.

Proof. This is well known. �

The following general consequence is a special case of [15, Theorem 1.2] for the
lattice isomorphism from Lemma 4.3.

Corollary 4.5. Let R and S be rings, M an R-module, N an S-module and K;L
submodules of M . Suppose that � : L(MR)! L(NS) is an isomorphism of lattices
of all submodules of M and N . Then K is a complement of L if and only if �(K)
is a complement of �(L).

Lemmas 4.4, 2.1, 2.15 and Corollary 4.5 show that e-ADS, trivial e-ADS and
relative automorphism invariant are lattice conditions. Thus the assertions of the
following theorem hold true because lattices of all submodules of M and N are
isomorphic.

Theorem 4.6. Let R and S be rings,M an R-module and N an S-module. Assume
� : L(MR)! L(NS) is an isomorphism of lattices.

(1) M is (trivial) e-ADS if and only if N is a (trivial) e-ADS.
(2) If M = A�B, then N = �(A)��(B) and A is B-automorphism invariant

if and only if �(A) is �(B)-automorphism invariant.

Let n 2 N and e be an idempotent of a ring R such that ReR = R. Recall that
L(eRnR) and L(S

n
S) are isomorphic lattices by Lemma 4.3 for every n 2 N, where

S = eRe.

Theorem 4.7. Let R be a ring, n 2 N and e 2 R be an idempotent such that
ReR = R.

(1) eRnR is a (trivial) e-ADS module if and only if eRne is (trivial) e-ADS as
a right eRe-module.

(2) Let eRn = A�B. Then A is B-automorphism invariant if and only if Ae
is Be-automorphism invariant.

(3) eR is automorphism invariant if and only if SS is automorphism invariant,
where S = eRe.

Proof. (1) and (2) follow immediately from Theorem 4.6.
(3) It su�ces to apply (2) for the decomposition eR2 = eR� eR. �

The next observation shows that the class of e-ADS rings is closed under taking
�nite products.

Proposition 4.8. If R1 and R2 are e-ADS rings, then R1 �R2 is e-ADS as well.

Proof. Put R := R1 � R2 and let ei be orthogonal central idempotents such that
Ri = Rei for i = 1; 2. It is easy to see that e1+e2 = 1, E(R) = E(R1)�E(R2) and
E(Ri) = E(R)ei for i = 1; 2. Suppose that R = A�B is a module decomposition,
C �e A, D �e B and f : C ! D is an isomorphism. Then fi : Cei ! Dei de�ned
by fi(r) = rei is an isomorphism for each i = 1; 2. We note that Cei �

e Aei and
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Dei �
e Bei for each i = 1; 2. By the hypothesis, there exist extensions gi : Aei !

Bei of fi. Clearly, g = g1 � g2 : A! B extends f . �

We denote the set of all n� n matrices over a ring R by Mn(R).

Lemma 4.9. If R is a non-trivial e-ADS ring, then there exists a right automor-
phism invariant ring S such that R �=M2(S).

Proof. Since R is a non-trivial e-ADS ring, there exists an idempotent e 2 R for
which E(eR) �= E((1 � e)R). Thus eR �= (1 � e)R is automorphism invariant by
Theorem 2.9. Put S := eRe. Then

R �= End(eR� eR) �=M2(S)

and S is a right automorphism invariant ring by Theorem 4.7(3). �

Let R be a ring. Recall that R is said to be right non-singular if its right singular
ideal Z(R) = fr 2 R : rI = 0 for some essential right ideal I of Rg is zero, and R
is called normal if if moreover its idempotents are central. Note that every abelian
regular ring or every product of rings without non-trivial idempotents can serve as
elementary examples of normal rings.

Proposition 4.10. Let R be a right non-singular normal automorphism invariant
ring. Then

(1) R is trivial e-ADS,
(2) M2(R) is non-trivial e-ADS.

Proof. Denote by Q the maximal right ring of quotients R. Obviously eQ = E(eR)
for every idempotent e.

(1) As every central idempotent of R is a central idempotent of Q, the assertion
follows from Lemma 2.16.

(2) By Theorem 4.7 it is enough to prove thatM = R�R is a non-trivial e-ADS
module. Clearly, M cannot be trivial. So it su�ces to prove Theorem 2.10(4).
Suppose R = eiR � fiR for every i = 1; 2, where (ei; fi) is a pair of orthogonal
idempotents such that e1Q� e2Q �= f1Q� f2Q. We claim that A := e1R� e2R �=
B := f1R� f2R (and that A is automorphism invariant).

Since R is a normal ring, i.e., all idempotents ei, fi of R, are central for each
i = 1; 2, we have

eiQ = eiejQ� eifjQ

fiQ = fiejQ� fifjQ

for i 6= j. Hence Q = e1e2Q � e1f2Q � f1e2Q � f1f2Q, where there is no nonzero
homomorphism between two distinct components. Thus

E(A) = e1Q+ e2Q �= (e1e2Q)
(2) � e1f2Q� e2f1Q

and

E(B) = f1Q+ f2Q �= (f1f2Q)
(2) � e1f2Q� e2f1Q:

We have observed that Hom(e1e2Q;E(B)) = 0 as well as Hom(e1e2Q;E(B)) = 0
which implies that e1e2 = 0 = f1f2. Hence

E(A) �= e1f2Q� e2f1Q �= E(B)

and so

A �= e1f2R� e2f1R �= B:
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Finally, since e1f2R � e2f1R is isomorphic to a direct summand of R which is
automorphism invariant, we obtain that A is automorphism invariant by [8, Lemma
4]. �

We �nish the section with the following criterion.

Theorem 4.11. Let R be a right non-singular ring and Q be its the maximal right
ring of quotients. Then the following is equivalent:

(1) R is right e-ADS,
(2) Either eQ 6�= (1�e)Q for any idempotent e 2 R or R �=M2(S) for a suitable

right automorphism invariant ring S,
(3) Either eQ 6�= (1 � e)Q for any idempotent e 2 R or R �= T �M2(S) for

a suitable self-injective ring T and a normal right automorphism invariant
ring S.

Proof. (1) ) (2) If R is a right trivial e-ADS ring, then Q �= E(R) has no a
decomposition Q = A � B with a isomorphic summand, which implies that eQ 6�=
(1� e)Q for any idempotent e 2 R.

If R is a non-trivial e-ADS ring, then there exists a right automorphism invariant
ring S such that R �=M2(S) by Lemma 4.9.

(2) ) (3) Assume R �= M2(S0) for a right automorphism invariant ring S0.
Clearly, S0 is, moreover, non-singular, hence there exists a right sel�njective ring
S1 and a normal right automorphism invariant ring S such that S0 �= S1�S by [5,
Theorem 7]. Now it is easy to see that

M2(S0) �=M2(S1)�M2(S)

and T =M2(S0) is self-injective by [7, Corollary 9.3].
(3) ) (1) We remark that the �rst condition implies that R is a trivial e-ADS

ring. Suppose that R �= T�M2(S) where T is a self-injective ring and S is a normal
right automorphism invariant ring. Note that T is an e-ADS ring and M2(S) is
e-ADS by Lemma 4.10. So, R is right e-ADS by Lemma 4.8. �

Corollary 4.12. Every simple non-trivial right e-ADS ring is necessarily self-
injective.

Proof. It follows from Theorem 4.11 and [5, Corollary 10]. �
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