ESSENTIALLY ADS MODULES AND RINGS

M. TAMER KOSAN, TRUONG CONG QUYNH, AND JAN ZEMLICKA

ABsTRACT. This paper introduces the notion of essentially ADS (e-ADS) mod-
ules. Basic structural properties and examples of e-ADS modules are pre-
sented. In particular, it is proved that (1) The class of all e-ADS modules
properly contains all ADS as well as automorphism invariant modules. e-ADS
modules serves also as a tool for characterization of various classes of rings. It
is shown that: (2) Ris a QF-ring if and only if every projective right R-module
is e-ADS; (3) R is a semisimple Artinian ring if and only if every e-ADS module
is injective. The final part of this paper describes properties of e-ADS rings,
which allow to prove a criterion of e-ADS modules for non-singular rings: (4)
Let R be a right non-singular ring and @ be its the right maximal ring of
quotients. Then R is a right e-ADS ring if and only if either eQ % (1 — €)@
for any idempotent e € R or R & My (A) for a suitable right automorphism
invariant ring A.

1. INTRODUCTION

The absolute direct summand (ADS) property for modules was introduced by
Fuchs in [6] and recently was intensively studied by Alahmadi, Jain and Leroy in
[1]. Recall that a right module M over a ring R is said to be ADS if for every
decomposition M =S @& T and every complement 7" of S, we have M = S & T".

In recent works [5, 8, 12], the notion of automorphism invariant modules was
shown to be and important tool for finding correspondences between various con-
cept of injectivity. A module M is called automorphism invariant if it is invari-
ant under automorphisms of its injective hull, equivalently if every isomorphism
between two essential submodules of M extends to an automorphism of M [8].
Quasi-injective modules are automorphism invariant. Assume that an R-module
M has a decomposition M = S & T such that T is a complement of S, T"NT =0
and SN(T" @ T) <¢ S. It is easy to see (cf. Lemma 2.4) that E(S) = E(T),
where E denotes the injective hull. In light of this observation, we define es-
sentially ADS-modules (shortly e-ADS), as an R-module M such that for every
decomposition M = S & T of M and every complement 7" of S with 7" NT = 0
and SN (T"aT) <° S, we have M = S @ T'. This definition naturally gener-
alizes both notions mentioned above. Furthermore, recall that when a module M
is quasi-continuous, for each decomposition M = A @ B, A and B are relatively
injective. This property of modules is known to be equivalent to ADS modules
([1, Lemma 3.1]) and automorphism invariant modules ([8, Theorem 5]). Since an
R-module M is e-ADS if and only if for each decomposition M = A@ B, A and B
are relatively automorphism invariant (see Lemma 2.8), e-ADS modules arise as a
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generalization of quasi-continuous modules, ADS modules as well as automorphism
invariant modules. The goal of this paper is to present a list of significant structural
properties of e-ADS modules and to exhibit relations with other notions. We show
that e-ADS as well as automorphism invariant or ADS modules have a description
in the language of the lattice theory (Lemmas 2.1, 2.15, 4.4). Important for further
study is the division of the class of e-ADS modules into trivial and non-trivial case
(cf. Theorem 2.9). Moreover it is proved in Theorem 2.9 that, if E(A) ¥ E(B)
for each decomposition M = A @ B, then M is e-ADS. On the other hand if M
is an e-ADS module with a decomposition M = A @ B such that E(A) = E(B),
then A 2 B and the modules A and B are automorphism invariant. This result
is key to our work and is used to characterize many well-known classes of modules
in terms of e-ADS modules. For example, we show in Theorem 2.18 that for an
e-ADS module M with a decomposition M = A & B such that E(A) = E(B), M
satisfies the exchange property if and only if End(M) is semiregular.

The final part of the article is devoted to rings which are e-ADS as right modules
over themselves. By applying elementary lattice theoretical tools on rings induced
by idempotents we characterize when non-singular rings are e-ADS. Based on the
key observation that a non-trivial e-ADS ring is isomorphic to a 2 x 2 full matrix
ring over an automorphism invariant ring (Lemma 4.9) we prove a characterization
of non-singular e-ADS rings. Namely, a non-singular ring is e-ADS if and only if
it is either trivial e-ADS or it is a product of a self-injective ring and a matrix
ring M>(S) over an automorphism invariant ring S with many central idempotents
(Theorem 4.11).

Throughout this article, unless otherwise stated, all rings have unity and all
modules are unital. For a submodule N of M, we use N < M (N < M) to
mean that N is a submodule of M (respectively, proper submodule), and we write
N <¢ M to indicate that N is an essential submodule of M. For any term not
defined here the reader is referred to [2], [4] and [9].

2. e-ADS MODULES

Let M and N be two modules. The module M is called automorphism N-
invariant if for any essential submodule A of IV, any essential monomorphism from
A to M can be extended to some g € Hom(N, M) ([12]).

We note that M is automorphism invariant if M is automorphism AM-invariant
by [8, Theorem 2].

Lemma 2.1. Let M and N be modules and X = M & N. The following conditions
are equivalent:

(1) M is automorphism N -invariant.
(2) For any complement K of M in X with KNN =0 and MN(K®N) <¢ M,
the module X has a decomposition X = M & K.

Proof. Consider the natural projections mp; : X — M and my : X — N. Note that
7 (K) =M N (K + N) for each submodule K of X.

(1) = (2) Let K be a complement of M in X with KNN = 0 and mp(K) <°® M.
Clearly, M @ K = M @ ny(K) so that my(K) is essential in N. Consider the
homomorphism 6 : 7n(K) — 7 (K) defined by 8(n) = m whenever k = m+n € K
for k€ K,m € M,n € N. It is easy to see that € is an isomorphism (K NN = 0 by
the assumption). Since M is automorphism N-invariant, the homomorphism 6 can
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be extended to some g : N — M. Set T := {n+g(n)|n € N}. Clearly, M T = X
and T contains K essentially by modularity. Since K is a complement, we obtain
T=K.

(2) = (1) Let A be an essential submodule of N and f: A — M be an essential
monomorphism. Set H := {a — f(a)| : a € A}. Clearly, HONN =0, HNM =0
and mp (H) = f(A) is essential in M. Then M @ H = M @ nny(H) = M @ A,
which is essential in X. Let K be a complement of M in X containing H. Then
H <°¢ K. Hence KN N = 0 because H N N = 0. Moreover, mp(H) < mp(K)
which implies that 7y (K) <¢ M. By the assumption, we have M & K = X. Now
let m: M @& K — M be the projection. Then writing an element a € A in the form
a=a — f(a) + f(a), the restriction of 7 to N is the desired extension of f. O

Lemma 2.2 ([12, Theorem 2.2]). The following are equivalent for modules M and
N:

(1) M is automorphism N -invariant.
(2) a(N) < M for every isomorphism « : E(N) — E(M).

As an immediate consequence of Lemmas 2.1 and 2.2 , we obtain the following
observation.

Corollary 2.3. If M and N are relatively automorphism invariant modules and
E(M)= E(N), then M = N

Lemma 2.4. Let M be a module with a decomposition M = S& T. If T' is a
complement of S with T'NT =0 and SN (T" ®T) < S, then T ®T' <®* M and
E(S) =2 E(T).

Proof. Note that S & T’ <¢ M because T" is a complement of S. Since
TeaSN(TeD)CTeT andTa[SN(T'eT)]<*TeS=M,

we get T @ T" <¢ M. Moreover, the injective hulls E(S), E(T) and E(T"') can be
taken as submodules of the injective hull E(M) such that S <¢ E(S), T <¢ E(T)
and T <¢ E(T"). Since SNT' =0=TnNT', it is easy to see that

ES)NE(T)=0=E(T)n E(T").
On the other hand,
E(S)+E(T")=EM)=E(T)+ E(T")

because both E(S)+ E(T') = E(S)® E(T') and E(T)+ E(T') = E(T)® E(T") are
injective submodules of E(M), and both S @ T" and T @ IT" are essential in E(M).
Thus

E(T) = (E(T) + E(T")/E(T") = EM)/E(T")
(E(S)+ E(T"))/E(T) = E(S).

O
In light of Lemma 2.4, we call M an essentially ADS-module, shortly e-ADS,

if for every decomposition M = S & T of M and every complement T’ of S with
T"NT=0and SN(T"®T) <*S, we have M =S T
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Clearly, ADS-modules are e-ADS. The following examples show that the converse
is not true in general and that the class of e-ADS modules is not closed under taking
direct summands, respectively.

Example 2.5. Let T be a torsion abelian group which is not divisible and put
M :=7Z @ T. Then every decomposition M = A @ B contains a subgroup which is
isomorphic to Z while the second is torsion, hence E(A) 2 E(B). By Lemma 2.4,
there exists no a decomposition satisfying the hypothesis of the definition of e-ADS
exists. So that the conditions for having an e-ADS modules are vacuously satisfied
and the module is e-ADS. Hence it is an e-ADS abelian group.

On the other hand, since 7' is not divisible, we obtain 7' is not Z-injective and
so M is not ADS by [1, Lemma 3.1].

Example 2.6. Put M := Z ® Z, ® Z,> for some prime number p. Then M is
e-ADS by Example 2.5. Since Z, is not automorphism Z,:-invariant, we obtain
that Z, ® Z,> is not e-ADS by Lemma 2.8.

Let us mention the following equivalent conditions for a module to be e-ADS.

Theorem 2.7. The following conditions are equivalent for a module M :
(1) M is e-ADS.
(2) For every decomposition M = S& T, if T' is a complement of S in M and
T is a complement of T' in M, then M = S & T'.

Proof. (1) = (2) Suppose that M = S @& T is a decomposition of M, T is com-
plement of S and T is a complement of 77 in M. Then SN (17" & T) <°¢ S since
ToT <¢ M. By (1), we have M = S T".

2)= 1) Let M =Sa&T of M and SN(T" & T) <° S for a complement 7" of
S with 7"NT = 0. By Lemma 2.4, T & T' <® M. Since T is a direct summand of
M, we get T is a complement of 7' in M. By (2), we have M = S & T". O

In [1, Lemma 3.1], it is shown that an R-module M is ADS if and only if for
each decomposition M = A @ B, A and B are mutually injective.

Lemma 2.8. An R-module M is e-ADS if and only if for each decomposition
M = A& B, A and B are relatively automorphism invariant.

Proof. This is clear from Lemma 2.1. O
The following characterization proves to be quite useful.

Theorem 2.9. Let M be an R-module.
(1) If E(A) 22 E(B) for each decomposition M = A& B, then M is e-ADS.
(2) If M is an e-ADS module with a decomposition M = A & B such that
E(A) = E(B), then A = B and the modules A and B are automorphism
imnvariant.

Proof. (1) This follows from Lemmas 2.2 and 2.8.
(2) By Lemma 2.8 and Corollary 2.3, we have A = B. Thus A is automorphism
A-invariant, i.e. automorphism invariant. O

In the following observation, we continue to obtain equivalent conditions for a
module to be e-ADS.
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Theorem 2.10. The following conditions are equivalent for a module M :

(1) M is e-ADS,

(2) Assume that M has a decomposition M = A @ B. For any isomorphism
f € Hom(E(B),E(A)), the module M has a decomposition M = A® X,
where X = {b+ f(b)| b € B, f(b) € A}.

(3) For every decomposition M = A @ B such that E(A) = E(B), the module
A = B is automorphism invariant.

(4) Fither E(A) ¢ E(B) for every decomposition M = A ® B or there exists
an automorphism invariant module X for which M =2 X & X and for
every two decompositions X = P ® Q1 = P> @ Qo with E(Py) ® E(Py) =
E(Q1)® E(Q2) we have (P ® P2) = (Q1 ® Q2) is automorphism invariant.

Proof. (1) = (2) We show that X = {b+ f(b)|b € B, f(b) € A} is a complement, of
Ain M. Notice that ANX =0, XNB=0and AN (X @ B) <® A. Let L be a
submodule of M such that LN A =0 and X < L. Consider the natural projections
w4 and wp of M onto A and B, respectively.

Claim: 74(z) = frp(z) for all x € L: Assume that there exists z € L such
that (74 — frp)(z) # 0. Since A <¢ E(A), there exists r € R such that 0 #
(ma— frg)(xr) € A. As xr € L and wg(ar) + frp(zr) € X C L, we have

wa(ar) — frp(ar) = or — (xp(zr) + frp(zr)) € ANL =0,

a contradiction. Thus w4(z) = frg(z) for all z € L.
For x € L, we have

z =ma(z) +7mg(z) = f(rp(z)) + 75(z) € X,

which implies L C X.

(2) = (3) If the module M has a decomposition M = A@ B for an isomorphism
f € Hom(E(B),E(A)), we obtain M = A® X with X ={b+ f(b)| b€ B, f(b) €
A}. Clearly, f(B) < A and hence A is automorphism B-invariant by Lemma 2.2.
Symmetrically, f(A) < B and so A is automorphism and A = B.

(3) = (1) This is a direct consequence of Lemma 2.8.

(1) = (4) This follows from Theorem 2.9(2).

(4) = (3) If E(A) 2 E(B) for each decomposition M = A & B, there is nothing
to prove. Assume that M has a decomposition M = X; & X5 for submodules X;
and X5 of M such that X = X; = X,. We suppose furthermore that M has an
another decomposition M = A @ B such that E(4) = E(B). By [3, Theorem
3], both the modules X3, X, and M satisfy the exchange property. Thus there
exist submodules P, C A, Q; C B such that M = X; & P, @ ;. Note that
X, = M/X, =2 P, & ()1 is automorphism invariant, hence there exist submodules
P, CA, Q> C Bsuchthat M =P, & Q1 ® P> ® Q». Clearly, as P, & P, C A and
Q1 ®Q2C B,weget A=P, & P, and B = Q1 @ Q», hence

E(P))® E(P,) = E(P, @& P,) = E(A)
and
B(Qr) & B(Q) = B(Qy & Q) = E(B).

Now, since E(A) = E(B), the hypothesis of (4) implies that A = B is automorphism

invariant. O

For modules M and N, N is said to be M-injective if every homomorphism
from each submodule of M to N extends to a homomorphism from M to N, and
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M and N are called relatively injective if IV is M-injective and M is N-injective.
The module M is called quasi-injective if M is M-injective. It is well-known that
a module is quasi-injective if and only if it is invariant under automorphisms and
idempotent endomorphisms of its injective hull.

In [8], Lee and Zhou discussed when an automorphism invariant module is quasi-
injective or injective and they obtained the following observation.

Lemma 2.11 ([8, Theorem 5]). If M & N is automorphism invariant, then M and
N are relatively injective.

Combining Lemmas 2.8 and 2.11, we have
Corollary 2.12. Every automorphism invariant module is e-ADS.

The following example shows that the converse of Corollary 2.12 is not true in
general.

Example 2.13. Take any continuous module M which is not quasi-injective (e.g.
if R is the ring of all sequences of real numbers that are eventually rational, then Ry
is continuous but not quasi-injective), then clearly M is ADS (and hence e-ADS)
but not automorphism invariant.

We recall Example 2.6. It also shows that e-ADS modules are not closed with
respect to general direct summands. On the other hand, Corollary 2.12 and The-
orem 2.9 prove that the class of all e-ADS modules is closed under taking some
important cases of direct summands. We can then show:

Corollary 2.14. Let M be an e-ADS module. If M has a decomposition M =
A ® B such that E(A) = E(B), then A is e-ADS.

In view of the claim of Theorem 2.9, we say that a module M is trivial e-ADS if
it has no a decomposition M = A @ B such that E(A) = E(B).

The following observation shows that the trivial e-ADS modules can be described
using lattices of their submodules.

Proposition 2.15. Let M be a module. Then M is trivial e-ADS if and only if
for every decomposition M = A @ B no complement of A is a complement of B.

Proof. Suppose that the module M has a decomposition M = A & B such that
E(A) =2 E(B). The isomorphism ¢ : E(B) = E(A) implies that the restriction
of ¢ on C = ¢ }(A) N N forms an essential monomorphism ¢ : C — A. Put
H = {c—¢(c)| : a € C}. Now if we follow the same way as in the proof of
(2) = (1) of Lemma 2.1, we have fixed a complement K of B containing H. Since
KNnB=0and AN (K + B) <¢ A, we obtain that K is complement of B.

Conversely, suppose that M has a decomposition M = A @ B and K is simulta-
neously complement of A and B. Then

E(M) = E(A) & E(K) = E(B) ® E(K),

hence E(A) 2 E(B) (here we notice that all injective hulls are considered as sub-
modules of E(A)). O

Now, we provide several useful necessary conditions of trivial e-ADS modules.

Lemma 2.16. Let M be a nonzero module. If every idempotent of End(M) can be
extended to a central idempotent of End(E(M)), then M is trivial e-ADS.
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Proof. Suppose that M has a decomposition M = A® B and consider an idempotent
e € End(M) defined by the rule e(a+b) = afor alla € A, b € B. By the hypothesis,
there exists a central idempotent é € End(E(M)) satisfying é(m) = e(m) for each
m € M. Now, assume that we have an isomorphism i : F(A) — E(B) and extend
it to an endomorphism j € End(E(M)) such that j(a + b) = i(a) for all a € E(A)
and b € E(B). Since A # 0 # B by the hypothesis and ¢ is an isomorphism,
i(A) N B is essential in E(B), hence there exists nonzero element a € A for which
0 #i(a) € B. As € is central, i.e. €j = jé, we have

0 #i(a) = j(a) = je(a) = jé(a) = &j(a) = eia) = 0,

a contradiction. O

Since every idempotent endomorphism of a module M can be extended to an
idempotent endomorphism of E(M) we obtain the following consequence:

Corollary 2.17. If M is a nonzero module such that every idempotent of End(E(M))
is central, then M is trivial e-ADS.

A right R-module M is said to satisfy the exchange property if for every right
R-module A and any two direct sum decompositions A = M; & N = ®;c1A; with
My = M, there exist submodules B; of A; such that A = My & (€41 B;).

A ring R is called semiregular if, for every a € R, there exists b € R such that
bab = b and and a — aba € J(R) ([10]).

Theorem 2.18. Let M be a non trivial e-ADS module. Then

(1) M satisfies the exchange property.
(2) End(M) is semiregular.

Proof. (1) By Theorem 2.9(2), we obtain M = A @® A where A is automorphism
invariant. Moreover, A satisfies the exchange property by [3, Theorem 3]. Hence M
satisfies the exchange property because the class of modules satisfying the exchange

property is closed under taking finite direct sums.
(2) It follows from Theorem 2.9(2), [3, Proposition 1] and [11, Theorem 29]. O

Recall an easy observation about central idempotents.

Lemma 2.19. Let A and B be direct summands of a module M and f a central
idempotent of End(M). If A= B, then f(A) = f(B).

Proof. Let ¢ : A — B be an isomorphism and consider the natural projection
wa : M — A and the natural embedding vg : B — M. Put h = vgymwa € End(M).
Since f is a central idempotent we get h = fhf® (1— f)h(1— f), hence fhf induces
an isomorphisms between f(A) and f(B). O

Note that direct sums of two e-ADS modules need not be e-ADS (as it can
be illustrated, e.g. by the direct sum of two trivial e-ADS modules Zs and Zj).
The following theorem shows some kind of restrictive closure property of e-ADS
modules.

Theorem 2.20. Let M be a trivial e-ADS and N a nontrivial e-ADS module. If
Hom(E(M), E(N)) =0 = Hom(E(N), E(M)), then M & N is trivial e-ADS.
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Proof. Let X = M & N and assume that there exists a decomposition X = A ¢ B
such that E(A) and E(B) are isomorphic. Note that we may suppose all modules
and their injective hulls as submodules of E(X).

Since N satisfies exchange property by Theorem 2.18, there exist submodules
C C Aand D C B such that X = N @ C & D. Obviously, M =2 X/N = C @ D.
Thus E(M) = E(C)®E(D) where E(C) and E(D) are considered as submodules of
E(A) and E(B), respectively. Note that there are injective submodules E4 C E(A)
and Ep C E(B) for which E4 ® E(C) = E(A) and Ep @ E(D) = E(B). Now it
is easy to see that E(N) = E4 @& Eg. By the hypothesis, we get End(E(X)) =
End(E(M)) x End(E(N)), hence there exists a central idempotent f € End(E(X))
for which f(E(X)) = E(M) and (1 — f)(E(X)) = E(N). By Lemma 2.19, we
obtain that f(E(A)) = f(E(B)). As f(E(A)) = E(C) and f(E(B)) = E(D), a
contradiction. O

3. CLASSES OF e-ADS MODULES AND SOME RING CONDITIONS

Let o[M] denote the Wisbauer category of a module M, i.e. the full category
of R-Mod consisting of submodules of quotients of direct sums of copies of M (see
[14]).

Theorem 3.1. The following conditions are equivalent for a module M :
(1) M is semisimple.
(2) Every module in o[M] is e-ADS.
(3) Ewvery finitely generated module in o[M] is e-ADS.
(4) Every 4-generated module in o[M] is e-ADS.

Proof. (1) = (2) = (3) = (4) are clear.
(4) = (1) Let N € o[M] be a cyclic module and z € M. Then

(N@®zR)® (N & zR)

is a 4-generated module in o[M] and hence is e-ADS by the hypothesis. By Lemma
2.8, N & xR is automorphism N & zR-invariant and N is zR-injective by Lemma
2.11. By [9, Theorem 1.4], N is M-injective. Thus M is semisimple by [4, Corollary
7.14]. O

Theorem 3.1 gives immediately the following.

Corollary 3.2. A ring R is semisimple Artinian if and only if every 4-generated
R-module is e-ADS.

The following observation gives an another characterization of e-ADS modules
in the category o[M].

Theorem 3.3. The following conditions are equivalent for a module M :
(1) M is semisimple.

(2) The direct sum of every two e-ADS modules in o[M] is e-ADS.

(3) Every e-ADS module in o[M] is M -injective.

(4) The direct sum of any family of e-ADS modules in o[M] is e-ADS.

Proof. (1) = (4) = (2) They are obvious.

(2) = (3) Let N be an e-ADS module. By our assumption, (N & Ep(N)) &
(N ® Ep(N)) is e-ADS. Then N @& Ejps(N) is automorphism invariant. Hence N
is Ep(N)-injective by Lemma 2.11. It follows that N is M-injective.
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(3) = (1) We consider a family {S;|i € N}(C o[M]) of simple right R-modules. It
follows that @®;enS; is semisimple and so is e-ADS. By (3), ®;enS; is M-injective.
Therefore @®;enS; is a direct summand of @;enEn(S;). But @;enS; is essential
in @;enEpr(S;) and then @;enS; = @ienE; is M-injective. Thus M is locally
Noetherian. We can write Ep (M) = @®;c;K; for some indecomposable right R-
modules K; in o[M] by [14, 27.4]. We have that every K; is M-injective and obtain
that every K; is uniform. For each i € I, let 0 # = € K;. Since K, is uniform, xR
is uniform as well, hence zR is e-ADS. Then zR is M-injective by (3). It follows
that zR is a direct summand of K; and we have xR = K;. Thus K; is simple for
all i € I. That means Ey (M) is semisimple. Thus M is semisimple. O

Corollary 3.4. The following conditions are equivalent for a ring R:
(1) R is semisimple Artinian.

(2) The direct sum of every two e-ADS modules is e-ADS.

(3) Every e-ADS module is injective.

(4) The direct sum of any family of e-ADS modules is e-ADS.

We note that if M @& E(M) is e-ADS for an R-module M, then M = E(M) by
Theorem 2.9 and so M is injective.

Theorem 3.5. The following conditions are equivalent for a Ting R:
(1) R is right Noetherian.
(2) The direct sum of injective right R-modules is e-ADS.
(3) For any injective right R-module X, X™ is e-ADS.

Proof. (1) = (2) = (3) They are obvious.

(3) = (1) Let X be an injective module. Clearly, X & E(Rg) is also injective.
Let M = X @ E(Rg). Since 4-|N| = |N|, we obtain that (M®™)® =~ MM By (3),
M®™ g M®™ is automorphism invariant. It follows that M (™ is quasi-injective. On
the other hand, X™ is isomorphic to a direct summand of M ™. It implies that
XM is E(Rg)-injective and so X is injective. Hence R is right Noetherian. [

A ring R is called a right V-ring if every simple right R-module is injective.

Theorem 3.6. The following conditions are equivalent for a Ting R:
(1) R is a right V-ring,
(2) S® E(S) is e-ADS for every simple right R-module S.

Proof. (1) = (2) This is obvious.

(2) = (1) Assume that S @ E(S) is e-ADS for every simple right R-module S.
Let S be a simple right R-module. By the hypothesis, S & E(S) is e-ADS. Then,
by Theorem 2.9(1), S = E(S), and so S is injective. O

Theorem 3.7. The following conditions are equivalent for a Ting R:
(1) R is a QF-ring.
(2) FEvery projective right R-module is e-ADS.
(3) FEvery essential extension of any free right R-module is e-ADS.

Proof. (1) = (2) and (1) = (3) are obvious.

(2) = (1) Let I be a non-empty set. Clearly (R))* is also a projective module.
By (2), RD @R is automorphism invariant. It follows that R is quasi-injective.
Therefore RY) is injective. Thus R is Y-injective and so R is a QF-ring.
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(3) = (1) Let F be a free right R-module. Then F @& E(F) is an essential
extension of a free right module F?. By (3), F & E(F) is e-ADS, hence F is
injective. Now we have proved that every projective right R-module is injective.
Thus R is QF by the Faith-Walker theorem. O

4. THE STRUCTURE OF e-ADS RINGS

We say that a ring R is right e-ADS if it is an e-ADS module over itself. A right
e-ADS ring R is called trivial if Rp is trivial e-ADS, i.e. the module Rg does not
have a decomposition Rp = A @ B such that E(A) 2 E(B). Otherwise R is said
to be a nontrivial e-ADS ring.

Let R be a ring, e be an idempotent of R, S := eRe and n € N. Denote by
L(eR™) the lattice of all submodules of the projective R-module eR"™, and £(S™)
the lattice of all submodules of the free module S™. Define two mappings

®: L(eR") = L(S™)
and
U L(S™) = L(eR")
by the rules
®(I)=1Ie, 9(J)=JR
for arbitrary I € L(eR™) and J € L(S™).

Lemma 4.1. ® and ¥ are well-defined monotonic mappings. Moreover, ® is a
lattice homomorphism and ¥ is compatible with the operation +.

Proof. Straightforward from the above notation. O

Note that the inclusion ¥(J; NJ2) C ¥(J;) N¥(J2) holds generally for arbitrary
J1,J2 € L(S™) but the following example shows that the reverse need not be true.

Example 4.2. Let R = {(a;;) € Msx3(Q)| az1 = aza = 0} be a subring of

1 00 1 00 1 00
matrix ring M3x3(Q). Pute:= [0 1 0}, f:=|1 0 0},9g:=1[2 0 0},
0 00 0 00 0 00
S :=¢eRe, J; := fS, and J5 := gS. Then it is easy to see that
JiNdy=0

and

0 0
JRNJLR={[0 0 | u,v € Q).
0 0

oS

Thus (J1 n JQ)R 7é JlR n JgR

Lemma 4.3. Let R be a ring and e € R be an idempotent such that ReR = R.
Then ® and ¥ are mutually inverse lattice isomorphisms.

Proof. Let S := ReR. Since both ® and ¥ are monotonic, it is enough to show that
Y and ¥ are identity mappings on £(S) and L(eR), respectively. Let I € L(eR)
and J € £(S). Since ReR = R, we get

Ud(I) =IeR=1ReR=1IR=1.
On the other hand S = eRe and J = Je imply that
¥ (J)=JRe=JeRe=JS =J.
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O

Recall that essentiality of modules can be expressed as a condition of lattices of
submodules:

Lemma 4.4. Let A C B are submodules of a module M. Then A <¢ B if and only
if there exists no submodule C C B such that ANC = 0.

Proof. This is well known. O

The following general consequence is a special case of [15, Theorem 1.2] for the
lattice isomorphism from Lemma 4.3.

Corollary 4.5. Let R and S be rings, M an R-module, N an S-module and K, L
submodules of M. Suppose that ¢ : L(Mp) = L(Ng) is an isomorphism of lattices
of all submodules of M and N. Then K is a complement of L if and only if ¢(K)
is a complement of ¢(L).

Lemmas 4.4, 2.1, 2.15 and Corollary 4.5 show that e-ADS, trivial e-ADS and
relative automorphism invariant are lattice conditions. Thus the assertions of the
following theorem hold true because lattices of all submodules of M and N are
isomorphic.

Theorem 4.6. Let R and S be rings, M an R-module and N an S-module. Assume
¢ : L(Mg) — L(Ng) is an isomorphism of lattices.
(1) M is (trivial) e-ADS if and only if N is a (trivial) e-ADS.
(2) If M = A® B, then N = ¢(A) ® ¢(B) and A is B-autornorphism invariant
if and only if p(A) is ¢(B)-automorphism invariant.

Let n € N and e be an idempotent of a ring R such that ReR = R. Recall that
L(eR%}) and L(SZ) are isomorphic lattices by Lemma 4.3 for every n € N, where
S = eRe.

Theorem 4.7. Let R be a ring, n € N and e € R be an idempotent such that
ReR = R.
(1) eR% is a (trivial) e-ADS module if and only if eR™e is (trivial) e-ADS as
a right eRe-module.
(2) Let eR™ = A® B. Then A is B-automorphism invariant if and only if Ae
1s Be-automorphism invariant.

(3) eR is automorphism invariant if and only if Ss is autormorphism invariant,
where S = eRe.

Proof. (1) and (2) follow immediately from Theorem 4.6.
(3) It suffices to apply (2) for the decomposition eR? = eR & eR. O

The next observation shows that the class of e-ADS rings is closed under taking
finite products.

Proposition 4.8. If R; and R, are e-ADS rings, then Ry x Ry is e-ADS as well.

Proof. Put R := R; X Ro and let e; be orthogonal central idempotents such that
R; = Re; for i = 1,2. It is easy to see that e; +e3 = 1, E(R) = E(R;) @ E(R,) and
E(R;) = E(R)e; for i = 1,2. Suppose that R = A ® B is a module decomposition,
C<¢A, D<®Band f:C — D is an isomorphism. Then f; : Ce; — De; defined
by fi(r) = re; is an isomorphism for each i = 1,2. We note that Ce; <¢ Ae; and
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De; <€ Be; for each i = 1,2. By the hypothesis, there exist extensions g; : Ae; —
Be; of f;. Clearly, g = g1 @ g2 : A — B extends f. O

We denote the set of all n x n matrices over a ring R by M, (R).

Lemma 4.9. If R is a non-trivial e-ADS ring, then there exists a right automor-
phism invariant ring S such that R = M5(S).

Proof. Since R is a non-trivial e-ADS ring, there exists an idempotent e € R for
which E(eR) = E((1 — e)R). Thus eR = (1 — e)R is automorphism invariant by
Theorem 2.9. Put S := eRe. Then

R = End(eR @ eR) = M,(S)
and S is a right automorphism invariant ring by Theorem 4.7(3). O

Let R be aring. Recall that R is said to be right non-singular if its right singular
ideal Z(R) = {r € R : rI = 0 for some essential right ideal I of R} is zero, and R
is called normal if if moreover its idempotents are central. Note that every abelian
regular ring or every product of rings without non-trivial idempotents can serve as
elementary examples of normal rings.

Proposition 4.10. Let R be a right non-singular normal automorphism invariant
ring. Then

(1) R is trivial e-ADS,

(2) M,(R) is non-trivial e-ADS.

Proof. Denote by @ the maximal right ring of quotients R. Obviously eQ) = E(eR)
for every idempotent e.

(1) As every central idempotent of R is a central idempotent of @), the assertion
follows from Lemma 2.16.

(2) By Theorem 4.7 it is enough to prove that M = R® R is a non-trivial e-ADS
module. Clearly, M cannot be trivial. So it suffices to prove Theorem 2.10(4).
Suppose R = ¢;R @ f;R for every i = 1,2, where (e;, f;) is a pair of orthogonal
idempotents such that e;Q ® e2Q = f1Q ® f2Q. We claim that A :=e; R ® es R =
B := fiR® f>2R (and that A is automorphism invariant).

Since R is a normal ring, i.e., all idempotents e;, f; of R, are central for each
1 =1,2, we have

eiQ) = eie;Q ®e;fiQ

fiQ = fie;Q & fif;Q
for i # j. Hence @ = e1eaQ X eg fo@Q X fre2Q X f1f2Q, where there is no nonzero
homomorphism between two distinct components. Thus

E(A) = e1Q + 2Q = (e162Q)®) ® €1 /rQ D e2£1Q
and

E(B) = fiQ+ £2:Q 2 (11fQ)? © e1f2Q ® e2/1Q.
We have observed that Hom(eje2Q, E(B)) = 0 as well as Hom(e1e2Q, E(B)) = 0
which implies that e;es = 0 = f fo. Hence

E(A) = e foQ ®exfi1Q = E(B)
and so
AZe o R®esf1 R B.
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Finally, since e; foR @ e» fi R is isomorphic to a direct summand of R which is
automorphism invariant, we obtain that A is automorphism invariant by [8, Lemma
4]. O

We finish the section with the following criterion.

Theorem 4.11. Let R be a right non-singular ring and Q) be its the mazximal right
ring of quotients. Then the following is equivalent:
(1) R is right e-ADS,
(2) Either eQ) 2 (1—e)Q for any idempotent e € R or R = Ms(S) for a suitable
right automorphism invariant ring S,
(3) Fither eQ 2 (1 — e)Q for any idempotent e € R or R = T x M»(S) for
a suitable self-injective ring T and a normal right automorphism invariant
ring S.

Proof. (1) = (2) If R is a right trivial e-ADS ring, then Q = E(R) has no a
decomposition @ = A @ B with a isomorphic summand, which implies that eQ 2
(1 —e)Q for any idempotent e € R.

If R is a non-trivial e-ADS ring, then there exists a right automorphism invariant
ring S such that R = M,(S) by Lemma 4.9.

(2) = (3) Assume R = M,(Sp) for a right automorphism invariant ring Sp.
Clearly, Sy is, moreover, non-singular, hence there exists a right selfinjective ring
S1 and a normal right automorphism invariant ring S such that Sp = S; x S by [5,
Theorem 7]. Now it is easy to see that

M5 (So) = My(Sy) x Ma(S)

and T = M>(Sp) is self-injective by [7, Corollary 9.3].

(3) = (1) We remark that the first condition implies that R is a trivial e-ADS
ring. Suppose that R = T x M5(S) where T is a self-injective ring and S is a normal
right automorphism invariant ring. Note that T is an e-ADS ring and Ms(S) is
e-ADS by Lemma 4.10. So, R is right e-ADS by Lemma 4.8. O

Corollary 4.12. Every simple non-trivial right e-ADS ring is necessarily self-
injective.

Proof. Tt follows from Theorem 4.11 and [5, Corollary 10]. O
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