Variants of absolute direct summand property

J. Žemlička

12th International Algebraic Conference in Ukraine,
July 2–6, 2019, Vinnytsia
ADS-modules

Type-ADS modules

Essentially ADS modules

Rings
In the sequel R denotes an associative ring with unit and M a right R-module.
In the sequel R denotes an associative ring with unit and M a right R-module.

A right module M over R is called ADS (absolute direct summand) if $M = S \oplus T'$ for every submodules S, T, T' such that $M = S \oplus T$ and T' is a complement of S.

Example (1) If every idempotent of R is central (in particular if R is commutative or reduced), then R is ADS.

Example (2) Every cyclic module over commutative ring is ADS.
- In the sequel R denotes an associative ring with unit and M a right R-module.

- A right module M over R is called ADS (absolute direct summand) if $M = S \oplus T'$ for every submodules S, T, T' such that $M = S \oplus T$ and T' is a complement of S.

Example

1. If every idempotent of R is central (in particular if R is commutative or reduced), then R_R is ADS.
2. Every cyclic module over commutative ring is ADS.
A module A is \textit{B-injective} if every homomorphism $C \to A$ for every submodule $C \leq B$ can be extended to a homomorphism $B \to A$.

\textbf{Theorem (Alahmadi, Jain Leroy, 2012)}

\textit{The following is equivalent:}

1. M is ADS
2. A and B are mutually injective modules for every $M = A \oplus B$,
3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

\textbf{Theorem (Alahmadi, Jain Leroy, 2012)}

Let R be an simple ring. If R is ADS, then either R is indecomposable or R is a right self-injective regular ring.
A module A is B-injective if every homomorphism $C \to A$ for every submodule $C \leq B$ can be extended to a homomorphism $B \to A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

(1) M is ADS

(2) A and B are mutually injective modules for every $M = A \oplus B$.

(3) A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

Let R be an simple ring. If R is ADS, then either R is indecomposable or R is a right self-injective regular ring.
A module A is B-injective if every homomorphism $C \to A$ for every submodule $C \leq B$ can be extended to a homomorphism $B \to A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

1. M is ADS
2. A and B are mutually injective modules for every $M = A \oplus B$,
A module A is B-injective if every homomorphism $C \to A$ for every submodule $C \leq B$ can be extended to a homomorphism $B \to A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

1. M is ADS
2. A and B are mutually injective modules for every $M = A \oplus B$,
3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.
A module A is B-injective if every homomorphism $C \rightarrow A$ for every submodule $C \leq B$ can be extended to a homomorphism $B \rightarrow A$.

Theorem (Alahmadi, Jain Leroy, 2012)

The following is equivalent:

1. M is ADS
2. A and B are mutually injective modules for every $M = A \oplus B$,
3. A is a bR-injective module for every $M = A \oplus B$ and $b \in B$.

Theorem (Alahmadi, Jain Leroy, 2012)

Let R be an simple ring. If R_R is ADS, then either R_R is indecomposable or R is a right self-injective regular ring.
Let A and B be submodules of M.
Let A and B be submodules of M.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.
Let A and B be submodules of M.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.

- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule
Let A and B be submodules of M.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.

- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

Lemma

Let $M = A \oplus B$. Then the following conditions are equivalent:

1. A is a type submodule of M.
2. B is a type submodule of M.
3. $A \perp B$.
Let A and B be submodules of M.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.

- A is called a *type* submodule, if A is a complement submodule in M and there exists a submodule

Lemma

Let $M = A \oplus B$. Then the following conditions are equivalent:

1. A is a type submodule of M.
2. B is a type submodule of M.
3. $A \perp B$.

- $M = A \oplus B$ is a *type decomposition*, if A and B are type submodules of M.
Let A and B be submodules of M.

- $A \perp B$ if there are no nonzero submodules $C \leq A$ and $D \leq B$ such that $C \cong D$.

- A is called a type submodule, if A is a complement submodule in M and there exists a submodule $M = A \oplus B$ is a type decomposition, if A and B are type submodules of M.

An R-module M is type-ADS if for every type decomposition $M = A \oplus B$ and every arbitrary type complement C of A, we have $M = A \oplus C$.
Example

(1) Every ADS module is type-ADS.

(2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.
Example

(1) Every ADS module is type-ADS.

(2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

The following is equivalent:
Example

(1) Every ADS module is type-ADS.

(2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

(1) M is type-ADS,
Example
(1) Every ADS module is type-ADS.
(2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:
(1) M is type-ADS,
(2) A and B are mutually injective modules for every type decomposition $M = A \oplus B$,
(3) A is a bR-injective module for every type decomposition $M = A \oplus B$ and $b \in B$.

Corollary A type direct summand of a type-ADS module is type-ADS.
Example

(1) Every ADS module is type-ADS.

(2) Let \(R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \), where \(F \) is a field. Then \(R_R \) is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

(1) \(M \) is type-ADS,

(2) \(A \) and \(B \) are mutually injective modules for every type decomposition \(M = A \oplus B \),

(3) \(A \) is a \(bR \)-injective module for every type decomposition \(M = A \oplus B \) and \(b \in B \).
Example
(1) Every ADS module is type-ADS.
(2) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then R_R is type-ADS, however it is not ADS.

Theorem (Abdioğlu, Ž. 2018)
The following is equivalent:
(1) M is type-ADS,
(2) A and B are mutually injective modules for every type decomposition $M = A \oplus B$,
(3) A is a bR-injective module for every type decomposition $M = A \oplus B$ and $b \in B$.

Corollary
A type direct summand of a type-ADS module is type-ADS.
Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

(1) M is type-ADS.

(2) $\alpha(M) \leq M$ for all idempotents $\alpha \in \text{End}(E(M))$ such that $(1-\alpha)(E(M)) \cap M$ is a type direct summand of M.

(3) For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.

A submodule X of M is called fully invariant if for every $f \in \text{End}(M)$, $f(X) \leq X$.

Lemma

Let $M = \bigoplus_{i \leq n} M_i$. If each M_i is type-ADS fully invariant submodule of M and M_i is $\bigoplus_{j \neq i} M_j$-injective for all i, then M is type-ADS.

Example

Let $M_1 = \mathbb{Z}$ and $M_2 = \mathbb{Z}^2$ be \mathbb{Z}-modules. Then M_1 and M_2 are indecomposable, hence type-ADS, but $M = M_1 \oplus M_2$ is not type-ADS.
Theorem (Abdioğlu, Ţ. 2018)

The following is equivalent:

(1) M is type-ADS.
Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

1. M is type-ADS.
2. $\alpha(M) \leq M$ for all idempotents $\alpha \in \text{End}(E(M))$ such that $(1 - \alpha)(E(M)) \cap M$ is a type direct summand of M.

A submodule X of M is called fully invariant if for every $f \in \text{End}(M)$, $f(X) \leq X$.

Lemma

Let $M = \bigoplus_{i \leq n} M_i$. If each M_i is type-ADS fully invariant submodule of M and M_i is $\bigoplus_{j \neq i} M_j$-injective for all i, then M is type-ADS.

Example

Let $M_1 = \mathbb{Z}$ and $M_2 = \mathbb{Z}^2$ be \mathbb{Z}-modules. Then M_1 and M_2 are indecomposable, hence type-ADS, but $M = M_1 \oplus M_2$ is not type-ADS.
Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

1. M is type-ADS.
2. $\alpha(M) \leq M$ for all idempotents $\alpha \in \text{End}(E(M))$ such that $(1 - \alpha)(E(M)) \cap M$ is a type direct summand of M.
3. For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.
Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

1. M is type-ADS.
2. $\alpha(M) \leq M$ for all idempotents $\alpha \in End(E(M))$ such that $(1 - \alpha)(E(M)) \cap M$ is a type direct summand of M.
3. For every decomposition $E(M) = E_1 \oplus E_2$ where $E_1 \cap M$ is a type direct summand of M, $M = (E_1 \cap M) \oplus (E_2 \cap M)$.

A submodule X of M is called *fully invariant* if for every $f \in End(M)$, $f(X) \leq X$.

Lemma

Let $M = \oplus_{i \leq n} M_i$. If each M_i is type-ADS fully invariant submodule of M and M_i is $\oplus_{j \neq i} M_j$-injective for all i, then M is type-ADS.
Theorem (Abdioğlu, Ž. 2018)

The following is equivalent:

(1) \(M \) is type-ADS.

(2) \(\alpha(M) \leq M \) for all idempotents \(\alpha \in \text{End}(E(M)) \) such that \((1 - \alpha)(E(M)) \cap M \) is a type direct summand of \(M \).

(3) For every decomposition \(E(M) = E_1 \oplus E_2 \) where \(E_1 \cap M \) is a type direct summand of \(M \), \(M = (E_1 \cap M) \oplus (E_2 \cap M) \).

A submodule \(X \) of \(M \) is called \textit{fully invariant} if for every \(f \in \text{End}(M) \), \(f(X) \leq X \).

Lemma

Let \(M = \bigoplus_{i \leq n} M_i \). If each \(M_i \) is type-ADS fully invariant submodule of \(M \) and \(M_i \) is \(\bigoplus_{j \neq i} M_j \)-injective for all \(i \), then \(M \) is type-ADS.

Example

Let \(M_1 = \mathbb{Z} \) and \(M_2 = \mathbb{Z}_2 \) be \(\mathbb{Z} \)-modules. Then \(M_1 \) and \(M_2 \) are indecomposable, hence type-ADS, but \(M = M_1 \oplus M_2 \) is not type-ADS.
M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^e S$.

Theorem (Koşan, Quynh, Ž. 2019)

Let M be an R-module.

1. If $E(A) \cong E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.

2. If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

Example

1. Every ADS module is e-ADS.

2. Let T be a non-divisible torsion abelian group and $M = \mathbb{Z} \oplus T$. Since $E(A) \cong E(B)$ for every $M = A \oplus B$, M is an e-ADS abelian group and it is not ADS, since T is not \mathbb{Z}-injective.

3. Let $M = \mathbb{Z} \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p^2$ for some prime p. Then M is e-ADS and $\mathbb{Z}_p \oplus \mathbb{Z}_p^2$ is not e-ADS.
M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq^e S$

Theorem (Koşan, Quynh, Ž. 2019)

Let M be an R-module.

1. If $E(A) \ncong E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.
2. If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.
M is called an essentially ADS-module if $M = S \oplus T'$ for each decomposition $M = S \oplus T$ and each complement T' of S with $T' \cap T = 0$ and $S \cap (T' \oplus T) \leq S$

Theorem (Koşan, Quynh, Ž. 2019)

Let M be an R-module.

1. If $E(A) \not\cong E(B)$ for each decomposition $M = A \oplus B$, then M is e-ADS.
2. If M is an e-ADS module with a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then $A \cong B$ and the modules A and B are automorphism invariant.

Example

(1) Every ADS module is e-ADS.
(2) Let T be a non-divisible torsion abelian group and $M := \mathbb{Z} \oplus T$. Since $E(A) \not\cong E(B)$ for every $M = A \oplus B$, M is an e-ADS abelian group and it M is not ADS, since T is not \mathbb{Z}-injective.
(3) Let $M := \mathbb{Z} \oplus \mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ for some prime p. Then M is e-ADS and $\mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ is not e-ADS.
Theorem (Koşan, Quynh, Ž. 2019)

The following is equivalent:

1. \(M \) is e-ADS.
2. For every decomposition \(M = S \oplus T \), if \(T' \) is a complement of \(S \) in \(M \) and \(T \) is a complement of \(T' \) in \(M \), then \(M = S \oplus T' \).
3. \(A \) and \(B \) are relatively automorphism invariant for each decomposition \(M = A \oplus B \).

Lemma

Let \(M \) be an e-ADS module. If \(M \) has a decomposition \(M = A \oplus B \) such that \(E(A) \cong E(B) \), then \(A \) is e-ADS.

A module \(M \) is trivial e-ADS if it has no decomposition \(M = A \oplus B \) such that \(E(A) \cong E(B) \).

Lemma

\(M \) is trivial e-ADS if and only if for every decomposition \(M = A \oplus B \) no complement of \(A \) is a complement of \(B \).
Theorem (Koşan, Quynh, Ž. 2019)

The following is equivalent:

(1) M is e-ADS.

(2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

(3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Lemma

Let M be an e-ADS module. If M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

A module M is trivial e-ADS if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.

Lemma

M is trivial e-ADS if and only if for every decomposition $M = A \oplus B$ no complement of A is a complement of B.
Theorem (Košan, Quynh, Ž. 2019)

The following is equivalent:

(1) M is e-ADS.

(2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

(3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.
Theorem (Koşan, Quynh, Ž. 2019)

The following is equivalent:

(1) M is e-ADS.

(2) For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.

(3) A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Theorem (Koşan, Quynh, Ž. 2019)

The following is equivalent:

1. M is e-ADS.
2. For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.
3. A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Lemma

Let M be an e-ADS module. If M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

A module M is trivial e-ADS if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.
Theorem (Koşan, Quynh, Ž. 2019)

The following is equivalent:

1. M is e-ADS.
2. For every decomposition $M = S \oplus T$, if T' is a complement of S in M and T is a complement of T' in M, then $M = S \oplus T'$.
3. A and B are relatively automorphism invariant for each decomposition $M = A \oplus B$.

Lemma

Let M be an e-ADS module. If M has a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$, then A is e-ADS.

A module M is trivial e-ADS if it has no a decomposition $M = A \oplus B$ such that $E(A) \cong E(B)$.

Lemma

M is trivial e-ADS if and only if for every decomposition $M = A \oplus B$ no complement of A is a complement of B.
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)
Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)
Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

1. R is right e-ADS,
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).

Theorem (Abdioğlu, Ţ. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ţ. 2019)

*Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

1. R is right e-ADS,
2. Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(S)$ for a suitable right automorphism invariant ring S,
3. Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong T \times M_2(S)$ for a suitable self-injective ring T and a normal right automorphism invariant ring $S*.}
We say that a ring R is right type-ADS (e-ADS) if the module R_R is type-ADS (e-ADS).

Theorem (Abdioğlu, Ž. 2018)

Every right non-singular ring is right type-ADS.

Theorem (Koşan, Quynh, Ž. 2019)

Let R be a right non-singular ring and Q be its the maximal right ring of quotients. Then the following is equivalent:

(1) R is right e-ADS,

(2) Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong M_2(S)$ for a suitable right automorphism invariant ring S,

(3) Either $eQ \not\cong (1-e)Q$ for any idempotent $e \in R$ or $R \cong T \times M_2(S)$ for a suitable self-injective ring T and a normal right automorphism invariant ring S.