# CURVES AND FUNCTION FIELDS 

## 1. Algebras over a field

T\&N. $K$-algebra

## 2. Valuation rings

$K$ is a field. $R \leq K$ means that $R$ is a subring of $K$.
$\mathbf{T} \& \mathbf{N}$. The notation $(R, M)$ will mean that $R$ is a local ring, i.e. there exists a unique maximal ideal $M$.

Lemma 2.1. Let $(R, M)$ be a local ring and $A$ a fintely generated ideal such that $A M=$ $A$. Then $A=0$.

Proposition 2.2. Let $(R, M)$ be a local domain with $M=(t)$ for $t \neq 0$ and put $A:=\bigcap_{i} M^{i}=\bigcap_{i}\left(t^{i}\right)$. Then
(1) for each $s \in R \backslash A$ there exist unique $i \geq 0$ and $u \in R^{*}$ such that $s=t^{i} u$,
(2) if $A$ is finitelly generated, then $A=0$.

Corollary 2.3. If $(R, M)$ is a noetherian local domain with the fraction field $K$ and $M=(t)$ for some $t \in M$, then
(1) for each $s \in R \backslash\{0\}$ there exist unique $i \geq 0$ and $u \in R^{*}$ such that $s=t^{i} u$,
(2) for each $s \in K \backslash\{0\}$ there exist unique $i \in \mathbb{Z}$ and $u \in R^{*}$ such that $s=t^{i} u$,

Lemma 2.4. Let $R \leq K, \alpha \in K \backslash R$ such that $\alpha^{-1} \notin R$. If $J$ is a proper ideal of $R$, then either $J[\alpha] \subsetneq R[\alpha]$ or $J\left[\alpha^{-1}\right] \subsetneq R\left[\alpha^{-1}\right]$.
$\mathbf{T} \& \mathbf{N}$. If $R \leq K, R$ is called a valuation ring (VR) of $K$ if for every $\alpha \in K \backslash\{0\}$ either $\alpha \in R$ or $\alpha^{-1} \in R . R$ is a VR if it is VR in its fraction field. $R$ is uniserial, if for every pair of ideals $I, J$ either $I \subseteq J$ or $J \subseteq I$.
Proposition 2.5. If $R \leq K$ and $I$ is an ideal such that $0 \neq I \neq R$, then there exists a valuation ring $S$ of the field $K$ with the maximal ideal $M$ for which $R \subseteq S \subsetneq K$ and $I \subseteq M$.

Lemma 2.6. Let $R$ and $S$ be noetherian VR's of $K$ with maximal ideals $M=R \backslash R^{*}$, $N=S \backslash S^{*}$, then
(1) $M$ and $N$ are principal,
(2) $R$ and $S$ are maximal proper subrings of $K$,
(3) $M \subseteq N$ iff $M=N$ iff $R=S$ iff $R \subseteq S$.

Lemma 2.7. Let $a, b \in K[x, y]$ be coprime, then
(1) $(a, b) \cap K[x] \neq 0$,
(2) if $P$ is a prime ifdeal containing $(a, b)$, then $P$ is a maximal ideal of $K[x, y]$.

Corollary 2.8. Prime ideals of $K[x, y]$ are exactly:
(a) $\{0\}$, (b) ( $p$ ) for $p \in K[x, y]$ irreducible, (c) maximal ideals.
$\mathbf{T \& N}$. A map $\nu: K \rightarrow \mathbb{Z} \cup\{\infty\}$ is a discrete valuation of $K$ if for each $a, b \in K$ :
(D1) $\nu(a b)=\nu(a)+\nu(b)$,
(D2) $\nu(a+b) \geq \min (\nu(a), \nu(b))$,
(D3) $\nu(a)=\infty$ iff $a=0$.
$\nu$ is the trivial discrete valuation if $\nu\left(K^{*}\right)=0$. We will suppose that all discrete valuations are nontrivial.

Let $R$ be a noetherian domain and $p \in R$ a prime element. For each $a, b \in R \backslash\{0\}$ define $\nu_{p}(a)=\max i \mid p^{i} / a$ and $\nu_{p}\left(\frac{a}{b}\right)=\nu_{p}(a)-\nu_{p}(b)$.

Example 2.9. Let $R \leq K, R$ be noetherian, $K$ the fraction field of $R$ and $p$ a prime. Then $\nu_{p}$ is a correctly defined discrete valuation of $K$.

Definition. Let $R \leq K . R$ is said to be a discrete valuation ring (DVR), if there is a discrete valuation $\nu$ such that $R=\{a \in K \mid \nu(a) \geq 0\}$.
Proposition 2.10. Let $R$ be a domain. with $M=(t)$ for $t \neq 0$ and put $A:=\bigcap_{i} M^{i}=$ $\bigcap_{i}\left(t^{i}\right)$. Then the following is equivalent:
(1) $R$ is a discrete valuation ring,
(2) $R$ is a noetherian valuation ring,
(3) $R$ is a local principal ideal domain,
(4) $R$ is a a noetherian local ring with a principal maximal ideal.
$\mathbf{T \& N}$. If $R$ is a DVR with the maximal ideal $(t)$ then $t$ is called a $u$ niformizing element and $\nu_{t}$ is called a normalized discrete valuation.

Example 2.11. For $R$ noetherian and $p$ a prime element, the localiyation $R_{(p)}$ is a DVR.
Lemma 2.12. Let $R \leq K$ and $R$ be a DVR with a uniformizing element $t$, then for each discrete valuation $\mu$ with $R=\{a \in K \mid \mu(a) \geq 0\}$ there exists unique $k \in \mathbb{N}$ for which $\mu=k \nu_{t}$.
Lemma 2.13. If $\nu$ is a discrete valuation and $\nu(a) \neq \nu(b)$, then $\nu(a+b)=\min (\nu(a), \nu(b))$.
T\&N. Let $L$ be an AFF over $K$. We say that $R$ is a valuation ring of the AFF $L$ over $K$, if $R$ is a valuation ring and $K \subseteq R . \nu$ is a (normalized) discrete valuation of the AFF $L$ over $K$, if $\nu$ is a (normalized) discrete valuation and $\nu\left(K^{*}\right)=0$.

Define $\nu_{\infty}\left(\frac{a}{b}\right)=\operatorname{deg}(a)-\operatorname{deg}(b)$ for $a, b \in K[x]$ on the AFF $K(x)$.
Proposition 2.14. Normalized discrete valuation (NDV) of the AFF $K(x)$ over $K$ is either $\nu_{\infty}$ or $\nu_{p}$ for prime $p \in K[x]$.

Theorem 2.15. Let $L$ be an AFF over $K, P \in \mathbb{P}_{L / K}$ and $\tilde{K}$ the field of constants of $L$. Then
(1) $\tilde{K} \subseteq \mathcal{O}_{P}$,
(2) $\mathcal{O}_{P}$ is a uniquely defined discrete valuation ring,
(3) $\operatorname{deg} P$ is finite.

Let $L$ be an AFF over $K$ and $\tilde{K}$ be its field of constants.
$\mathbf{T} \& \mathbf{N}$. For $P \in \mathbb{P}_{L / K}$ denote by $\nu_{P}=\nu_{t}$ the NDV determined by $\mathcal{O}_{P}$ where $P=(t)$. Let $a=\sum a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \in K\left[x ? 1, \ldots, x_{n}\right]$. Then multa $a=\min \left(\sum_{j=1}^{n} i_{j} \mid a_{i_{1} \ldots i_{n}} \neq 0\right)$.

Lemma 2.16. If $z \in L \backslash \tilde{K}$, then there exist $P, Q \in \mathbb{P}_{L / K}$ for which $\nu_{P}(z)>0$ and $\nu_{Q}(z)<0$.
Lemma 2.17. Let $z \in L \backslash \tilde{K}, a \in K[x], P \in \mathbb{P}_{L / K}$. Then
(1) $\nu_{P}(z) \geq 0$ implies $\nu_{P}(a(z)) \geq 0$,
(2) $\nu_{P}(z)>0$ implies $\nu_{P}(a(z))=\operatorname{mult}(a) \cdot \nu_{P}(z)$,
(3) $\nu_{P}(z)<0$ implies $\nu_{P}(a(z))=\operatorname{deg}(a) \cdot \nu_{P}(z)$

## 3. Weierstrass equation polynomials

$K$ is a field.

T\&N.

## Lemma 3.1.

## Lemma 3.2.

Proposition 3.3. Let $w \in K[x, y]$ be a WEP and $\sigma \in \operatorname{Aff} 2(\mathrm{~K})$. Then the following is equivalent:
(1) there exists $\lambda \in K^{*}$ such that $\lambda \sigma^{*}(w)$ is a WEP,
(2) there exists a WEP $\tilde{w}$ such that $\left(\sigma^{*}(w)\right)=(\tilde{w})$,
(3) there exists $c \in K^{*}, d \in K$ and $\mathbf{b} \in \mathbb{A}^{2}(K)$ such that $A=\left(\begin{array}{cc}c^{2} & 0 \\ d & c^{3}\end{array}\right)$ and $\sigma=\tau_{\mathbf{b}} \theta_{A}$.

Corollary 3.4.
Corollary 3.5.
Example 3.6.
Example 3.7.
T\&N.

## Lemma 3.8.

Lemma 3.9.
Lemma 3.10.

## Corollary 3.11.

Proposition 3.12. Let char $K \neq 2$ and $w=y^{2}-f(x)$ be a short WEP.
(1) $w$ has at most 1 singularity,
(2) if $K$ is perfect, then a singularity is $K$-rational,
(3) $w$ is smooth if and only if $f$ is separable.

## Example 3.13.

## 4. Coordinate rings

$K$ is a field and $\bar{K}$ its algebraic closure. $\mathbb{X}:=\left\{x_{1}, \ldots, x_{n}\right\}$.
$\mathbf{T} \& \mathbf{N}$. Let $U \subseteq \mathbb{A}^{n}$. Then

$$
I_{U}=\{a \in K[\mathbb{X}] \mid a(\alpha)=0 \forall \alpha \in U\}, \bar{I}_{U}=\{a \in \bar{K}[\mathbb{X}] \mid a(\alpha)=0 \forall \alpha \in U\}
$$

and $I_{\alpha}=I_{\{\alpha\}}, \bar{I}_{\alpha}=\bar{I}_{\{\alpha\}}$.

## Lemma 4.1.

Proposition 4.2. If $P$ is a prime ideal of $K[\mathbb{X}]$ such that $P \cap K\left[x_{i}\right] \neq 0$ for all $i=1, \ldots n$, then there exists $\alpha \in \mathbb{A}^{n}$ for which $P=I_{\alpha}$
Proposition 4.3. If $P$ is a prime ideal of $K[x, y]$, then either (a) $P=\{0\}$, or (b) $P=(p)$ for $p \in K[x, y]$ irreducible, or (c) $P$ is maximal and there exists $\alpha \in \mathbb{A}^{n}$ for which $P=I_{\alpha}$.
Corollary 4.4. Let $P$ be a nonzero prime ideal of $K[x, y]$.
(1) $P$ is maximal iff there exists $\alpha \in \mathbb{A}^{n}$ for which $P=I_{\alpha}$ iff $V_{P}$ is finite.
(2) there exists $p \in K[x, y]$ irreducible such that $P=(p)$ iff $V_{a} \subsetneq \mathbb{A}^{2}$ is infinite.
(3) If $p, q \in K[x, y]$ are irreducible such that $q \notin(p)$, then $V_{\{p, q\}}=V_{p} \cap V_{q}$ is finite.

## Example 4.5.

## Lemma 4.6.

Proposition 4.7. Let $w \in K[x, y]$ be irreducible, $C=V_{w}, \alpha=x+(w), \beta=y+(w) \in$ $K[C] \subset K(C)=K(\alpha, \beta)$. Then
(1) $\alpha$ is transcendental iff $\operatorname{deg}_{y} w>0$,
(2) if $\alpha$ is transcendental, then $[K(C): K]=\operatorname{deg}_{y} w$,
(3) $K(C)$ is an AFF over $K$.

Corollary 4.8. Let $L=K(\alpha, \beta)$. Then $L$ is an AFF if and only if there exists an irreducible affine curve $C \subset \mathbb{A}^{2}$ such that $L \cong \cong_{K} K(C)$.
Lemma 4.9.
Lemma 4.10.
Corollary 4.11.
Example 4.12.
T\&N.

## 5. Places

$$
K \text { is a field and } w=y g(x, y)+h(x)+y \in K[x, y] \text { where }
$$ $h \in K[x], g \in K[x, y], m:=\operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$.

$\mathbf{T} \& \mathbf{N}$. Let $a=\sum_{i, j \geq 0} a_{i j} x^{i} y^{j}$, then define:

$$
\begin{aligned}
& \mu(a):=\operatorname{mult}\left(a\left(x, y^{m}\right)\right), \\
& s(a):=\{(i, j) \mid i, j \geq 0, i+j m=\mu(a)\}, \\
& S(a):=\sum_{(i, j) \in s(a)} a_{i j} x^{i} y^{j} .
\end{aligned}
$$

$\mathbf{T \& N}$. Denote by $\Lambda$ the $K$-endomorphims of $K[x, y]$ defined by the rule

$$
\Lambda(u(x, y)):=u(x,-h(x)-y g(x, y))
$$

for every $u \in K[x, y]$.
Lemma 5.1. For every $i, j \geq 0 \mu\left(\Lambda\left(x^{i} y^{j}\right)\right)=i+j m$ and there exists $\lambda \in K \backslash\{0\}$ such that $S\left(\Lambda\left(x^{i} y^{j}\right)\right)=\lambda x^{i+j m}$.

## Example 5.2.

Lemma 5.3. There exists $P \in \mathbb{P}_{L / K}$ such that $\nu_{P}(\alpha)>0 \nu_{P}(\beta)>0$. Moreover, then $\nu_{P}(\beta)=m \nu_{P}(\alpha)$.
Lemma 5.4. Let $u \in K[\alpha, \beta] \backslash\{0\}$ and $k:=\mu(u)$. Then there exist $\lambda \in K^{*}$ and $b \in K[x, y]$ such that $\mu(b)>k$ and $u=\lambda x^{k}+b(\alpha, \beta)$.
Proposition 5.5. There exists a unique $P \in \mathbb{P}_{L / K}$ such that $\nu_{P}(\alpha)>0 \nu_{P}(\beta)>0$. For such $\nu_{P}(\alpha)=1$ and $\nu_{P}(\beta)=m$ and $\nu_{P}\left(u \cdot v^{-1}\right)=\mu(u)-\mu(v)$ for each $u, v \in K[\alpha, \beta] \backslash\{0\}$.
$L$ is an algebraic function field over $K$ given by the equality $w(\alpha, \beta)=0$ for $w=y g(x, y)+h(x)+y$ where $h \in K[x], g \in K[x, y], \operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$.

## Example 5.6.

Observation. For each $\sigma \in A f f_{2}(K)$ there exists a unique $\bar{\sigma} \in A f f_{2}(L)$ such that $\sigma(\gamma)=\bar{\sigma}(\gamma)$ for each $\gamma \in \mathbb{A}^{2}(K)$
$\mathbf{T} \& \mathbf{N} . \bar{\sigma}$ denotes the extension of $\sigma$ from the last observation.
$L$ is an algebraic function field over $K$ given by the (general) equality $f(\alpha, \beta)=0$.

Lemma 5.7. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \mathbb{A}^{2}(K), A \in \mathrm{GL}_{2}(K), \sigma:=\theta_{A} \tau_{-\gamma},(u, t):=\bar{\sigma}(\alpha, \beta)$, $w_{\sigma}:=\left(\sigma^{-1}\right)^{*}(f)$. Then
(1) $L$ is an algebraic function field over $K$ given by $w_{\sigma}(u, t)=0$.
(2) If $f$ is smooth at $\gamma \in V_{f}(K)$, then there exists $A$ such that either $w_{\sigma}=y$ or $w_{\sigma}=y g(x, y)+h(x)+y$ where $h \in K[x] \backslash\{0\}, g \in K[x, y], \operatorname{mult}(h) \geq 2$, $\operatorname{mult}(g) \geq 1$.
(3) Let $t_{\gamma}(f)=a_{1}\left(x-\gamma_{1}\right)+a_{2}\left(y-\gamma_{2}\right)$ for $\gamma \in V_{f}(K)$, then $A$ is a matrix form (2) (i.e. $\sigma:=\theta_{A} \tau_{-\gamma}$ satisfies that $w_{\sigma}=y g(x, y)+h(x)+y$ for $h \in K[x] \backslash\{0\}, g \in K[x, y]$, $\operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1)$ if and only if there is $\left(b_{1}, b_{2}\right) \in K^{2} \backslash \operatorname{Span}\left(\left(a_{1}, a_{2}\right)\right)$ such that $A=\binom{b_{1}, b_{2}}{a_{1}, a_{2}}$.
Theorem 5.8. Let $f$ be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K)$.
(1) There exists a unique $P \in \mathbb{P}_{L / K}$ such that $\nu_{P}\left(\alpha-\gamma_{1}\right)>0 \nu_{P}\left(\beta-\gamma_{2}\right)>0$.
(2) If $l=l_{0}+l_{1} x+l_{2} y \in K[x, y]$ where $l_{0}, l_{1}, l_{2} \in K$ then it holds for $P$ from (1):

$$
\nu_{P}(l(\alpha, \beta)) \begin{cases}=0 & \text { if } l(\gamma) \neq 0 \\ =1 & \text { if } l(\gamma)=0 \text { and } l \notin\left(t_{\gamma}(f)\right) \\ \geq 2 & \text { if } l(\gamma)=0 \text { and } l \in\left(t_{\gamma}(f)\right)\end{cases}
$$

$L$ is an algebraic function field over $K$ given by the (general) equality $f(\alpha, \beta)=0$ with $\operatorname{deg} f \geq 2$, which is simultaniously given by the equality $w_{\sigma}(u, v)=0$ where $w_{\sigma}=y g(x, y)+h(x)+y$ for $h \in K[x] \backslash 0, g \in K[x, y], \operatorname{mult}(h) \geq 2, \operatorname{mult}(g) \geq 1$.

T\&N. Let $p \in K[x]$ and $\gamma \in K$. The multiplicity of (the root) $\gamma$ of (the polynomial) $p$ is a non-negative integer $k$ satisfying $(x-\gamma)^{k} \mid p$ and $(x-\gamma)^{k+1} \nless p$.
Proposition 5.9. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K), \frac{\partial f}{\partial y}(\gamma) \neq 0, \lambda, \mu \in K$ such that $\gamma_{2}=\lambda \gamma_{1}+\mu$. Then there exists a unique $P \in \mathbb{P}_{L / K}$ for which $\left\{\alpha-\gamma_{1}, \beta-\gamma_{2}\right\} \subset P$, and $\nu_{P}(\beta-\lambda \alpha+\mu)$ is equal to the multiplicity of the root $\gamma$ of the polynomial $\hat{f}(x)=f(x, \lambda x+\mu)$.

## Example 5.10.

$\mathbf{T \& N}$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K) \subset \mathbb{A}^{2}(K)$. Then $(f) \subseteq I_{\gamma}=\left(x-\gamma_{1}, y-\gamma_{2}\right)$. Denote by

$$
R_{\gamma}:=K[x, y]_{\left(I_{\gamma}\right)}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in K[x, y]: b(\gamma) \neq 0\right\}
$$

the localization of $K[x, y]$ in the maximal ideal $I_{\gamma},\left(I_{\gamma}\right)=\left\{\left.\frac{a}{b} \in R_{\gamma} \right\rvert\, a \in I_{\gamma}\right\}$ denotes the (unique) maximal ideal of $R_{\gamma}$ and $\omega_{\gamma}: R_{\gamma} \rightarrow L$ is defined by the rule $\omega_{\gamma}\left(\frac{a}{b}\right)=\frac{a(\alpha, \beta)}{b(\alpha, \beta)}$.

Denote

$$
{ }_{f} \mathcal{O}_{\gamma}:=\left\{\rho \in L \mid \exists r \in R_{\gamma}: \omega_{\gamma}(r)=\rho\right\}, \quad{ }_{f} \mathcal{P}_{\gamma}:=\left\{\rho \in L \mid \exists r \in\left(I_{\gamma}\right): \omega_{\gamma}(r)=\rho\right\} .
$$

If $f$ is fixed we will write $\mathcal{O}_{\gamma}$ instead ${ }_{f} \mathcal{O}_{\gamma}$ and $\mathcal{P}_{\gamma}$ instead ${ }_{f} \mathcal{P}_{\gamma}$.
Lemma 5.11. If $f$ is singuar at $\gamma \in V_{f}(K)$, then $\mathcal{O}_{\gamma}$ is not a valuation ring.
Lemma 5.12. Let $L$ be an algebraic function field over $K$ given by the equality $w_{\sigma}(u, v)=$ 0 where $w_{\sigma}=y g(x, y)+h(x)+y$ for $h \in K[x], g \in K[x, y]$, mult $(h) \geq 2$, mult $(g) \geq 1$. Suppose that $P \in \mathbb{P}_{L / K}$ such that $u, v \in P, \nu_{P}(u)=1$. If $z \in K[u, v] \backslash\{0\}$, then there exists $a, b \in K[x, y]$ with $a(0) \neq 0, b(0) \neq 0$ (i.e. $\operatorname{mult}(a)=\operatorname{mult}(b)=0)$ and $\frac{z}{u^{\nu}((z)}=\frac{a(u, v)}{b(u, v)} \in_{w} \mathcal{O}_{(0,0)}^{*}={ }_{w} \mathcal{O}_{(0,0)} \backslash{ }_{w} \mathcal{P}_{(0,0)}$
Proposition 5.13. Let $f$ be smooth at $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K)$ and $P \in \mathbb{P}_{L / K}, \frac{\partial f}{\partial y}(\gamma) \neq 0$ such that $\nu_{P}\left(\alpha-\gamma_{1}\right)>0, \nu_{P}\left(\beta-\gamma_{2}\right)>0$. Then
(1) there exists $u \in P_{\gamma}$ such that $\nu_{P}(u)=1$ and $\frac{z}{u^{\nu P(z)}} \in \mathcal{O}_{\gamma}^{*}$ for each $r \in K[\alpha, \beta]$.
(2) $P=P_{\gamma}$.

## Example 5.14.

$L$ is an AFF over $K$ given by the equality $f(\alpha, \beta)=0$ for transcendental $\alpha, \beta$.

Lemma 5.15. Let $P \in \mathbb{P}_{L / K}$ and $\tilde{P}=P \cap K[\alpha, \beta]$.
(1) If $K[\alpha, \beta] \subseteq \mathcal{O}_{P}$, then $\tilde{P}$ is a maximal ideal of $K[\alpha, \beta], \operatorname{dim}_{K}(K[\alpha, \beta] / \tilde{P})<\infty$, $\nu_{P}(\alpha) \geq 0$, and $\nu_{P}(\beta) \geq 0$.
(2) If $K[\alpha, \beta] \nsubseteq \mathcal{O}_{P}$, then $\tilde{P}=0$ and either $\nu_{P}(\alpha)<0$ or $\nu_{P}(\beta)<0$.
(3) If $K[\alpha, \beta] \nsubseteq \mathcal{O}_{P}$ and $f$ is WEP, then $\nu_{P}(\alpha)<0, \nu_{P}(\beta)<0$ and $3 \nu_{P}(\alpha)=2 \nu_{P}(\beta)$.

Proposition 5.16. Let $P \in \mathbb{P}_{L / K}$, $\operatorname{deg} P=1, f$ be smooth at all points $\gamma \in V_{f}(K)$. Then the following conditions are equivalent:
(1) $K[\alpha, \beta] \subseteq \mathcal{O}_{P}$,
(2) there exists unique $\left(\gamma_{1}, \gamma_{2}\right) \in V_{f}(K)$ for which $\nu_{P}\left(\alpha-\gamma_{1}\right)>0$ and $\nu_{P}\left(\beta-\gamma_{2}\right)>0$,
(3) there exists unique $\gamma \in V_{f}(K)$ for which $P=P_{\gamma}$.

Corollary 5.17. If $f$ is a WEP smooth at all points $\gamma \in V_{f}(K)$ and $P \in \mathbb{P}_{L / K}$ is a place of degree 1 , then either there exists $\gamma \in V_{f}(K)$ for which $P=P_{\gamma}$ or $\alpha^{-1}, \beta^{-1} \in P$.
Lemma 5.18. Let $n \geq 1$ and $P_{1}, \ldots, P_{n}$ be pairwise distinct places. If $\nu_{i}:=\nu_{P_{i}}$ for all $i$, $a_{1}, \ldots a_{n} \in L$ and $z \in \mathbb{Z}$, then
(1) there exists $s \in L^{*}$ such that $\nu_{1}(s)>0$ and $\nu_{i}(s)<0$ for all $i=2, \ldots, n$,
(2) there exists $t \in L$ such that $\nu_{i}\left(t-a_{i}\right)>z$ for all $i=1, \ldots, n$.

Theorem 5.19 (Weak Approximation Theorem). Let $n \geq 1$ and $P_{1}, \ldots, P_{n}$ be pairwise distinct places. If $a_{1}, \ldots a_{n} \in L$ and $z_{1}, \ldots, z_{n} \in \mathbb{Z}$, then there exists $s \in L$ such that $\nu_{P_{i}}\left(s-a_{i}\right)=z_{i}$ for all $i=1, \ldots, n$.
$\mathbf{T} \& \mathbf{N}$. If $W$ is a subspace of a $K$-space $V$, we say that $B$ is a linearly independent set (a basis) of $V$ modulo $W$ if $\{b+w \mid b \in B\}$ forms a linearly independent set (a basis) of the factor $V / W$.

Corollary 5.20. (1) $\mathbb{P}_{L / K}$ is infinite,
(2)If $n \geq 1, e \geq 0$ and $P, P_{1}, \ldots, P_{n}$ are pairwise distinct places, then there exists a basis $B$ of the $K$-algebra $\mathcal{O}_{P}$ modulo $P$ such that $B \subset \bigcap_{j \geq 1} P_{j}$ (i.e. $\nu_{P_{j}}(b)>0$ for each $j$ and $b \in B$ ).
Proposition 5.21. Let $n \geq 1$ and $P_{1}, \ldots, P_{n}$ be pairwise distinct places and $\nu_{i}:=\nu_{P_{i}}$ for all $i$. If $s \in \bigcap_{i=1}^{n} P_{i}$ (i.e. $\nu_{P}(s) \geq 1$ for every $i$ ), then $[L: K(s)] \geq \sum_{i=1}^{n} \nu_{i}(s) \operatorname{deg} P_{i}$
Corollary 5.22. If $s \in L^{*}$, then the set $\left\{P \in \mathbb{P}_{L / K} \mid \nu_{P}(s) \neq 0\right\}$ is finite.
Corollary 5.23. If $f$ is a Weierstrass equaition polynomial and $L$ is given by $f(\alpha, \beta)=0$, then there exists unique $P_{\infty} \in \mathbb{P}_{L / K}$ such that $\nu_{P_{\infty}}(\alpha)<0$. Furthermore, $\operatorname{deg} P_{\infty}=1$, $\nu_{P_{\infty}}(\alpha)=-2$ and $\nu_{P_{\infty}}(\beta)=-3$.

Example 5.24. Let $f=y^{2}+y-\left(x^{3}+1\right)=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ and $\alpha:=x+(f)$, $\beta:=y+(f) \in K[x, y] /(f)$. Then $f$ is a Weierstrass equaition polynomial and $L:=$ $F_{2}(\alpha, \beta)$ is an AFF over $\mathbb{F}_{2}$ given by $f(\alpha, \beta)=0$.

Let $P \in \mathbb{P}_{L / K}$ of degree 1. Then $P \in\left\{P_{(1,0)}, P_{(1,1)}, P_{\infty}\right\}$, since $V_{f}\left(\mathbb{F}_{2}\right)=\{(1,0),(1,1)\}$.
By $5.20(1) \mathbb{P}_{L / K}$ is infinite. hence other places are of degree greater than 1 , for example for each ireducible $m \in \mathbb{F}_{2}[x]$ of degree greater than 1 , there exists $P_{m} \in \mathbb{P}_{L / K}$ sch that $m(\alpha) \in P_{m}$, thus $\operatorname{deg} P_{m} \geq \operatorname{deg}(m)>1$.

## 6. Divisors

Let $L$ be an AFF over $K$ and $\tilde{K}$ be its field of constants.

Definition. Let $\operatorname{Div}(\mathrm{L} / \mathrm{K})=\left\{\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \mid a_{p} \in \mathbb{Z}\right\}$ denote the free abelian group with the free basis $\mathbb{P}_{L / K}$ (hence only finitely many $a_{p}$ 's are non-zero) and operations

$$
\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \pm \sum_{P \in \mathbb{P}_{L / K}} b_{p} P=\sum_{P \in \mathbb{P}_{L / K}}\left(a_{p} \pm b_{p}\right) P, \quad \underline{0}=\sum_{P \in \mathbb{P}_{L / K}} 0 P .
$$

A formal sum $\sum_{P \in \mathbb{P}_{L / K}} a_{p} P$ is called a divisor (of the AFF). Degree of a divisor is defined by $\operatorname{deg}_{K}\left(\sum_{P \in \mathbb{P}_{L / K}} a_{p} P\right):=\sum_{P \in \mathbb{P}_{L / K}} a_{p} \operatorname{deg}_{K}(P)$.
Example 6.1. $\sum_{P \in \mathbb{P}_{L / K}} \nu_{p}(r) P$ is a divisor by 5.22 for each $r \in L^{*}$.
$\mathbf{T} \& \mathbf{N}$. A divisor $\sum_{P \in \mathbb{P}_{L / K}} \nu_{p}(r) P$ for each $r \in L^{*}$ is called principal divisor and it is denored by $(r), \operatorname{Princ}(\mathrm{L} / \mathrm{K}):=\left\{(r) \mid r \in L^{*}\right\}$.
$\mathbf{T} \& \mathbf{N}$. Let $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P, B=\sum_{P \in \mathbb{P}_{L / K}} b_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then let us denote:

$$
\max (A, B):=\sum_{P \in \mathbb{P}_{L / K}} \max \left(a_{p}, b_{p}\right) P, \quad \min (A, B):=\sum_{P \in \mathbb{P}_{L / K}} \min \left(a_{p}, b_{p}\right) P,
$$

$A_{+}:=\max (A, \underline{0}), A_{-}:=-\min (A, \underline{0})=(-A)_{+}$, and $A$ is positive if $A=A_{+}$.
Define relations $\leq(\geq$ is the oposite relation) and $\sim$ on $\operatorname{Div}(\mathrm{L} / \mathrm{K})$ :
$A \leq B(B \geq A)$ if $a_{p} \leq b_{p}$ for every $P \in \mathbb{P}_{L / K}$,
$A \sim B$ if $A-B \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$.
$\mathcal{L}(A):=\left\{r \in L^{*} \mid(r)+A \geq \underline{0}\right\} \cup\{0\}$.
$\mathbf{T} \& \mathbf{N} . \mathrm{Cl}(\mathrm{L} / \mathrm{K}):=\operatorname{Div}(\mathrm{L} / \mathrm{K}) / \operatorname{Princ}(\mathrm{L} / \mathrm{K})$ is the class group of the AFF.
If $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then $\mathcal{L}(A)$ is said to be the Riemann-Roch space of the divisor $A$ and $l(A)=\operatorname{dim}_{L / K} A=\operatorname{dim}_{K} \mathcal{L}(A)$.

If $K=\tilde{K}$, then $L$ is a full constant AFF.
Lemma 6.2. If $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $A \leq B$, then $\mathcal{L}(A)$ is a subspace of $\mathcal{L}(B)$ and $\operatorname{dim}_{K}(\mathcal{L}(B) / \mathcal{L}()) \leq \operatorname{deg}_{K}(B-A)$.
Proposition 6.3. For $K=\tilde{K}$ (i.e. L is a full constant AFF ), and $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ :
(D1) if $A \geq \underline{0}$, then $1 \leq l(A) \leq \operatorname{deg} A+1$,
(D2) if $A<\underline{0}$, then $l(A)=0$,
(D3) $l(A)<l\left(A_{+}\right)<\infty$,
(D4) if $A \leq B$, then $\operatorname{deg} A-l(A) \leq \operatorname{deg} B-l(B)$.
Lemma 6.4. If $s \in L \backslash \tilde{K}$ (i.e. $s$ is transcendental over $K$ ), then there exists $B \in$ $\operatorname{Div}(\mathrm{L} / \mathrm{K})$ such that $B \geq \underline{0}$ and for each $k \geq 0$ :
(1) $(k+1)[L: K(s)] \leq l\left(k \cdot(s)_{-}+B\right)$,
(2) $(k+1)[L: K(s)] \leq k \cdot \operatorname{deg}\left((s)_{)}-+\operatorname{deg} B+1\right.$,
(3) $k[L: K(s)]-l\left(k \cdot(s)_{-}\right) \leq \operatorname{deg} B-[L: K(s)]$.

Theorem 6.5. If $K=\tilde{K}$ and $s \in L \backslash \tilde{K}$ (i.e. L is a full constant AFF and $s$ is transcendental over $K)$, then $\operatorname{deg}\left((s)_{-}\right)=\operatorname{deg}\left((s)_{+}\right)=[L: K(s)]$ and $\operatorname{deg}((s))=0$.
Corollary 6.6. If $A \sim B$, then (1) $\operatorname{deg} A=\operatorname{deg} B$ and (2) $\operatorname{dim}_{L / K} A=\operatorname{dim}_{L / K} B$.
Example 6.7. Let $L$ be an AFF over $\mathbb{F}_{2}$ given by $f(\alpha, \beta)=0$ for $f=y^{2}+y-\left(x^{3}+1\right) \in$ $\mathbb{F}_{2}[x, y]$ as in 5.24. We will compute principal divisors $(\alpha+1)$ adn $(\alpha+1)$.
(a) By $6.5 \operatorname{deg}\left((\alpha+1)_{+}\right)=\sum_{P: \alpha+1 \in P} \nu_{P}(\alpha+1) \operatorname{deg} P=\left[K: \mathbb{F}_{2}(\alpha+1)\right]=\left[K: \mathbb{F}_{2}(\alpha)\right]=$ 2. Since $\alpha+1 \in P_{(1,0)} \cap P_{(1,1)}$ we can see that $\operatorname{deg} P_{(1,0)}=\operatorname{deg} P_{(1,1)}=1$. Furthermore $\nu_{P_{\infty}}(\alpha+1)=\nu_{P_{\infty}}(\alpha)=-2$, hence $\mathbb{P}_{L / K}{ }^{(1)}=\left\{P_{(1,0)}, P_{(1,1)}, P_{\infty}\right\}$ is the set of all places of degree 1 and

$$
(\alpha+1)=1 \cdot P_{(1,0)}+1 \cdot P_{(1,1)}-2 \cdot P_{\infty}
$$

(b) Again by $6.5 \operatorname{deg}\left((\alpha)_{+}\right)=\sum_{P: \alpha \in P} \nu_{P}(\alpha) \operatorname{deg} P=\left[K: \mathbb{F}_{2}(\alpha)\right]=2$ and $\alpha$ is not an element of $P \in \mathbb{P}_{L / K}{ }^{(1)}$, thus there exists a unique $P_{\alpha}$ such that $\alpha \in P_{\alpha}$ and $\operatorname{deg} P_{\alpha}=2$ which means that

$$
(\alpha)=1 \cdot P_{\alpha}-2 \cdot P_{\infty}
$$

Proposition 6.8. For $K=\tilde{K}$ and $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ :
(D5) $l(B-A) \geq 1$ if and only if there exists $A^{\prime} \in \operatorname{Div}(\mathrm{L} / \mathrm{K})$ such that $A \sim A^{\prime} \leq B$,
(D6) if $l(B-A) \geq 1$, then $\operatorname{deg} A-l(A) \leq \operatorname{deg} B-l(B)$,
(D7) $l(A) \geq 1$ if and only if there exists $s \in L^{8}$ such that $A+(s) \geq \underline{0}$,
(D8) if $\operatorname{deg} A<0$, then $l(A)=0$,
(D9) $\mathcal{L}((s))=K s^{-1}=\left\{k s^{-1 \mid k \in K}\right\}$.
Lemma 6.9. Let $K=\tilde{K}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\operatorname{deg} A=0$. Then
(1) $l(A) \in\{0,1\}$,
(2) $l(A)=1$ if and only if $A \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$.

Theorem 6.10 (Riemann). If $K=\tilde{K}$, then there exists nonnegative integer $\gamma$ such that $\operatorname{deg}(A)-l(A)<\gamma$ for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
Definition. The minimal possible $\gamma$ from the Riemann theorem for $L$ over $\tilde{K}$ (i.e. minimal $\gamma$ for which $\operatorname{deg}(A)-l(A)<\gamma$ for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K}))$ is called the genus of the AFF $L$ over $K$.

The genus of the AFF will be denoted by $g$ in the sequel.

Lemma 6.11. There exists an integer $\gamma$ such that for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ with $\operatorname{deg}(A) \geq$ $\gamma$ it holds that $\operatorname{deg}(A)=l(A)+g-1$.
$\mathbf{T \& N}$. Let $\mathbb{P}:=\mathbb{P}_{L / K}$ and consider the Cartesion power $L^{\mathbb{P}}$ as a $L$-algebtra with operations defined in coordinates where $l \rightarrow l * 1 \in L^{\mathbb{P}}$ identifies elements of $L$ with constants of $L^{\mathbb{P}} . f \in L^{\mathbb{P}}$ is called adèle if the set $\{P \in \mathbb{P} \mid f(P) \neq 0\}$ is finite and $\mathcal{A}_{L / K}$ denotes the set of all adèles.

Let $A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then $\mathcal{A}_{L / K}(A):=\left\{f \in L^{\mathbb{P}} \mid \nu_{P}(f(P))+a_{P} \geq\right.$ $0 \forall P \in \mathbb{P}\}$ and $i(A):=g-1-\operatorname{deg}(A)-l(A) \geq 0$ is said to be the $i$ ndex of speciality of $A$. $A$ is called special if $i(A)>0$ and $A$ is called /nonspecial if $i(A)=0$.
Lemma 6.12. Let $K=\tilde{K}, A=\sum_{P \in \mathbb{P}_{L / K}} a_{p} P, B=\sum_{P \in \mathbb{P}_{L / K}} b_{p} P \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ and $s \in L^{*}$. Then
(1) if $A \leq B$, then $\mathcal{A}_{L / K}(A) \subseteq \mathcal{A}_{L / K}(B)$ and $\operatorname{dim}_{K}\left(\mathcal{A}_{L / K}(B) / \mathcal{A}_{L / K}(A)\right)=\operatorname{deg}(B-$ A),
(2) if $A \leq B$, then $\operatorname{dim}_{K}\left(\left(\mathcal{A}_{L / K}(B)+L\right) /\left(\mathcal{A}_{L / K}(A)+L\right)\right)=i(A)-i(B)$,
(3) $\mathcal{A}_{L / K}(A) \cap \mathcal{A}_{L / K}(B)=\mathcal{A}_{L / K}(\min (A, B)), \mathcal{A}_{L / K}(A)+\mathcal{A}_{L / K}(B)=\mathcal{A}_{L / K}(\max (A, B))$,
(4) $\operatorname{dim}_{K}\left(\mathcal{A}_{L / K} /\left(\mathcal{A}_{L / K}\right) /\left(\mathcal{A}_{L / K}(A)+L\right)=i(A)\right.$,
(5) $\mathcal{A}_{L / K}=\mathcal{A}_{L / K}(A)+L$ if and only if $i(A)=$,
(6) $s \mathcal{A}_{L / K}(A)=\mathcal{A}_{L / K}(A-(s))$

Lemma 6.13. Let $\mathcal{S} \varsubsetneqq \mathbb{P}_{L / K}, P_{1}, \ldots, P_{n} \in \mathcal{S}$ be pairwise distinct places, $a_{1}, \ldots a_{n} \in L$ and $z \in \mathbb{Z}$. Then there exists $t \in L$ such that $\nu_{P_{i}}\left(t-a_{i}\right)>z$ for all $i=1, \ldots, n$ and $\nu_{P}(t) \geq 0$ for all $P \in \mathcal{S} \backslash\left\{P_{1} \ldots, P_{n}\right\}$.
Theorem 6.14 (Strong Approximation Theorem). Let $\mathcal{S} \varsubsetneqq \mathbb{P}_{L / K},, P_{1}, \ldots, P_{n} \in \mathcal{S}$ be pairwise distinct places. If $a_{1}, \ldots a_{n} \in L$ and $z_{1}, \ldots, z_{n} \in \mathbb{Z}$, then there exists $s \in L$ such that $\nu_{P_{i}}\left(s-a_{i}\right)=z_{i}$ for all $i=1, \ldots, n$ and $\nu_{P}(s) \geq 0$ for all $P \in \mathcal{S} \backslash\left\{P_{1} \ldots, P_{n}\right\}$.

## 7. Weil differntials

Let $L$ be an AFF over $K$ of genus $g$ and $\tilde{K}$ be its field of constants.
$\mathbf{T} \& \mathbf{N}$. Let $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$. Then
$\Omega_{L / K}(A):=\left(\mathcal{A}_{L / K}(A)+L\right)_{K}^{o}=\left\{\omega \in \mathcal{A}_{L / K}{ }^{*} \mid \omega\left(\mathcal{A}_{L / K}(A)+L\right)=0,\right\}$
$\Omega_{L / K}:=\bigcup_{B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})} \Omega_{L / K}(B)=\left\{\omega \in \mathcal{A}_{L / K}{ }^{*} \mid \omega(L)=0, \exists B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K}): \omega\left(\mathcal{A}_{L / K}(B)\right)=0\right\}$
Elements of $\Omega_{L / K}$ are called Weil differntials (of the AFF).
Lemma 7.1. Let $\omega \in \Omega_{L / K} \backslash\{0\}$ and $K=\tilde{K}$. Then there exists a unique $W \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\omega\left(\mathcal{A}_{L / K}(W)\right)=0$ and for each $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ satisfies that $A \leq W$ whenever $\omega\left(\mathcal{A}_{L / K}(A)\right)$.
$\mathbf{T \& N}$. The divisor $W$ from 7.1 uniquely determained by a a Weil differntial $\omega$ is called the canonical divisor of $\omega$ and it is denoted $(\omega)$.

Lemma 7.2. Let $\omega, \tilde{\omega} \in \Omega_{L / K} \backslash\{0\}, A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, and $K=\tilde{K}$. Define $\Psi_{\omega}:=s \cdot \omega l$ for every $s \in L$. Then
(1) if $s \in L^{*}$, then $(s \omega)=(s)+(\omega)$,
(2) $\Psi_{\omega}$ is an $L$ - and so $K$-linear embedding, and $\Psi_{\omega}(\mathcal{L}((\omega)-A)) \subseteq \Omega_{L / K}(A)$
(3) there exists $B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ such that $\Psi_{\omega}(\mathcal{L}((\omega)-B)) \cap \Psi_{\omega}(\mathcal{L}((\omega)-B)) \neq 0$.

Theorem 7.3. Let $K=\tilde{K}$. Then
(1) $\operatorname{dim}_{L}\left(\Omega_{L / K}\right)=1$,
(2) if $\omega \in \Omega_{L / K} \backslash\{0\}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then $\Psi_{\omega, A}: \mathcal{L}((\omega)-A) \rightarrow \Omega_{L / K}(A)$ given by $\Psi_{\omega, A}(s)=s \omega$ is a $K$-isomoprhism.
Corollary 7.4. Let $K=\tilde{K}$. The canonical divisors form exactly one coset modulo $\operatorname{Princ}(\mathrm{L} / \mathrm{K})$ (i.e. for $W$, a canonical divisor, $A \sim W$ iff $A$ is canonical).
Theorem 7.5 (Riemann-Roch). If $K=\tilde{K}$ and $W$ a canonical divisor, then

$$
l(A)=\operatorname{deg} A+l(W-A)+1-g
$$

for every $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
Corollary 7.6. Let $K=\tilde{K}$ and $A, W \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then:
(1) if $W$ is canonical, then $l(W)=g, \operatorname{deg} W=2 g-2, i(W)=1$,
(2) (Main consequence of the Riemann-Roch Theorem) if $\operatorname{deg} A \geq 2 g-1$, then

$$
l(A)=\operatorname{deg} A+1-g
$$

Lemma 7.7. Let $K=\tilde{K}$ and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$, then:
(1) if $\operatorname{deg} A=2 g-2$ and $l(A) \geq g$, then $A$ is canonical,
(2) if $g=1$, then $A$ is canonical if and only if $A$ is principal.

Proposition 7.8. Let $K=\tilde{K}$ and $A, B \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$ and $g=0$. Then:
(1) $A$ is principal if and only if $\operatorname{deg} A=0$,
(2) $A \sim W$ if and only if $\operatorname{deg} A=\operatorname{deg} B$,
(3) $A$ is canonical if and only if and only if $\operatorname{deg} A=-2$.

T\&N. $\mathbb{P}_{L / K}^{(1)}:=\left\{P \in \mathbb{P}_{L / K} \mid \operatorname{deg} P=1\right\}$.
Lemma 7.9. Let $P \in \mathbb{P}_{L / K}^{(1)} \neq \emptyset, h \in \mathbb{Z}, h \geq 0, s \in L$. Then
(1) $K=\tilde{K}$,
(2) $s \in \mathcal{L}(i P) \backslash \mathcal{L}((i-1) P)$ if and only if $(s)_{-}=i P$, where $i \geq 1$,
(3) if there exists $k \geq 0$ such that $l(i P) \geq i-h+1$ for each $i \geq k$, then $g \leq h$,
(4) if for each $i \geq h+1$ there exists $s_{i} \in L$ such that $(s)_{-}=i P$, then $g \leq h$.

Example 7.10. $x$ be a variable. Then $K(x)$ is an AFF over $K$. By 2.14

$$
\mathbb{P}_{K(x) / K}=\left\{P_{p} \mid p \in K[x] \text { is irreducible }\right\} \cup\left\{P_{\infty}\right\}
$$

where $P_{p}$ is the maximal ideal of the localization $K[x]_{((p))}$ with $\nu_{P_{p}}=\nu_{p}$ and $P_{\infty}$ is given by the dicsrete valuation $\nu_{\infty}\left(\frac{a}{b}\right)=\operatorname{deg}(b)-\operatorname{deg}(a)$.

Then $\nu_{p}\left(x^{i}\right) \geq 0$ for every $i \geq 0$ and $n u_{\infty}\left(x^{i}\right)=-i$ for every $i \geq 0$, hence $\left(x^{i}\right)_{-}=i P_{\infty}$. Thus $K(x)$ is of genus 0 by 7.9(4).

## 8. The associative law

Let $L$ be an AFF over $K$ of genus $g$.

Proposition 8.1. Let $\mathbb{P}_{L / K}^{(1)} \neq \emptyset$. Then $g=0$ if and only if there exists $s \in L$ such that $L=K(s)$
Definition. An Aff $L$ is called an eliptic function field (EFF), if it is of genus 1 and $\mathbb{P}_{L / K}^{(1)} \neq \emptyset$.

Lemma 8.2. Let $L$ be an EFF and $P \in \mathbb{P}_{L / K}^{(1)}$, then
(1) $L$ is full constant and $\mathcal{L}(1 P)=K$,
(2) $\mathcal{L}(1 P) \varsubsetneqq \mathcal{L}(2 P) \varsubsetneqq \mathcal{L}(3 P)$,
(3) For every $u \in \mathcal{L}(2 P) \backslash \mathcal{L}(1 P)$ and every $v \in \mathcal{L}(3 P) \backslash \mathcal{L}(2 P)$ there exists a WEP $w \in K[x, y]$ and $\lambda \in K^{*}$ such that $L$ is given by $w(\lambda u, \lambda v)=0$.
Proposition 8.3. Let $w$ be a WEP $w \in K[x, y]$ and $L$ be given by $w(\alpha, \beta)=0$.
(1) There exists unigue $P=P_{\infty} \in \mathbb{P}_{L / K}$ such that $\nu_{P}(\alpha)<0$ or $\nu_{P}(\beta)<0$,
(2) $K[\alpha, \beta] \subseteq \mathcal{O}_{Q}$ for all $Q \in \mathbb{P}_{L / K} \backslash\left\{P_{\infty}\right\}$,
(3) $P_{\infty} \in \mathbb{P}_{L / K}^{(1)},(\alpha)_{-}=2 P_{\infty},(\beta)_{-}=3 P_{\infty}, P_{\infty} \cap K\left[V_{w}\right]=P_{\infty} \cap K[\alpha, \beta]=0$, and $\mathcal{O}_{P_{\infty}} \cap K[\alpha, \beta]=K$,
(4) if $w$ is smooth at $V_{w}(K)$, then $\mathbb{P}_{L / K}^{(1)}=\left\{P_{\infty}\right\} \cup\left\{P_{\gamma} \mid \gamma \in V_{w}(K)\right\}$,
(5) $L$ is either an EFF (and $g=1$ ) or there is $s \in L$ such that $L=K(s)$ (and $g=0$ ),
(6) if $L=K(s)$, then there exists polynomials $u, v \in K[x]$ for which $\alpha=u(s)$, $\beta=v(s)$, and $\operatorname{deg} u=2, \operatorname{deg} v=3$.

In the sequel $w=y^{2}+a_{1} x y+a_{3} y-\left(x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right)$ be a WEP.

Theorem 8.4. Let $L$ be given by $w(\alpha, \beta)=0$. Then $L$ is an EFF if and only if $w$ is smooth at $V_{w}(K)$.

Example 8.5. (1) Let $f=y^{2}+y+x^{3}+1 \in \mathbb{F}_{2}[x, y]$ be a WEP. Since it is smooth at $V_{f}\left(\mathbb{F}_{2}\right)$, it is of genus 1 by 8.4 and $\mathbb{F}_{2}(s) \varsubsetneqq \mathbb{F}_{2}\left(V_{f}\right)$ for each $s \in \mathbb{F}_{2}\left(V_{f}\right)$
(2) Let $f=y^{2}+x^{3}+x+1 \in \mathbb{F}_{2}[x, y]$ be a WEP. Since it is singular $\mathbb{F}_{2}\left(V_{w}\right)$, it is of genus 1 by 8.4 and there exists $s \in \mathbb{F}_{2}\left(V_{f}\right)$ such that $\mathbb{F}_{2}(s)=\mathbb{F}_{2}\left(V_{f}\right)$.
$\mathbf{T} \& \mathbf{N} . \operatorname{Pic}^{0}(L / K):=\operatorname{Ker}(\mathrm{deg}) / \operatorname{Princ}(\mathrm{L} / \mathrm{K})$ is called the $\operatorname{Picard}$ group, $[A]:=A+$ $\operatorname{Princ}(\mathrm{L} / \mathrm{K})$ denotes the cosets of $\operatorname{Pic}^{0}(L / K)$.

Lemma 8.6. Let $L$ be an EFF over $K, P_{1}, P_{2}, Q \in \mathbb{P}_{L / K}^{(1)}$, and $A \in \operatorname{Div}(\mathrm{~L} / \mathrm{K})$.
(1) if $P_{1}-P_{2} \in \operatorname{Princ}(\mathrm{~L} / \mathrm{K})$, then $P_{1}=P_{2}$,
(2) if $\operatorname{deg} A=1$, then there exist a unique place $Q \in \mathbb{P}_{L / K}^{(1)}$ such that $P-A \in$ $\operatorname{Princ}(\mathrm{L} / \mathrm{K})$,
(3) the mapping $\Psi_{Q}: \mathbb{P}_{L / K}^{(1)} \rightarrow \operatorname{Pic}^{0}(L / K)$ defined by $\Psi_{Q}(P):=[P-Q]$ is a bijection.

T\&N. $L$ be an EFF over $K$, then we can define for each $Q \in \mathbb{P}_{L / K}^{(1)}$ a binary operation $\oplus$ by the rule $P_{1} \oplus P_{2}:=\Psi_{Q}^{-1}\left(\Psi_{Q}\left(P_{1}\right)+\Psi_{Q}\left(P_{2}\right)\right)$ for the mapping $\Psi_{Q}$ from the previous lemma.

T\&N. $L$ be an EFF over $K$, then we can define for each $Q \in \mathbb{P}_{L / K}^{(1)}$ a binary operation $\oplus$ by the rule $P_{1} \oplus P_{2}:=\Psi_{Q}^{-1}\left(\Psi_{Q}\left(P_{1}\right)+\Psi_{Q}\left(P_{2}\right)\right)$ for the mapping $\Psi_{Q}$ from the previous lemma.
$\mathbf{T \& N}$. Let $\hat{l}=c x+d y+e \in K[x, y]$ for $c, d, e \in K$ where $(c, d) \neq(0,0)$. Then $l=$ $\hat{l}+(w) \in K\left[V_{w}\right]=K[\alpha, \beta]$ for $\alpha=x+(w), \beta=y+(w)$ is called a line represented by $\hat{l}$. We say that $l$ passes through $\gamma$ if $\gamma \in V_{\hat{l}}$.

Lemma 8.7. Let $w$ be smooth at $V_{w}(K), \gamma=\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}(K), \hat{l} \in K[x, y]$ represents a line $l=\hat{l}+(w) \in K\left[V_{w}\right]$.
(1) if $\hat{l}=x-\gamma_{1}$, then there exists unique $\delta=\left(\gamma_{1}, \delta_{2}\right) \in V_{w}(K)$ such that $(l)=$ $P_{\gamma}+P_{\delta}-2 P_{\infty}$ and $\delta_{2}=-a_{1} \gamma_{1}-a_{3}-\gamma_{2}$,
(2) if $\hat{l}=y-\lambda x-\mu$ and $l$ passes through $\gamma$, then $(l)_{-}=3 P_{\infty}$ and
(a) either there exists $P \in \mathbb{P}_{L / K}$ of degree 2 such that $(l)_{+}=P_{\gamma}+P \hat{l} \notin\left(t_{\gamma}(w)\right)$ and $V_{w}(K) \cap V_{\hat{l}}=\{\gamma\}$,
(b) or there exist points $\delta=\left(\delta_{1}, \delta_{2}\right), \eta\left(\eta_{1}, \eta_{2}\right) \in V_{w}(K)$ such that $(l)_{+}=P_{\gamma}+P_{\delta}+$ $P_{\eta} \hat{l} \notin\left(t_{\gamma}(w)\right)$ and $V_{w}(K) \cap V_{\hat{l}}=\{\gamma\}, V_{w} \cap V_{\hat{l}}=\{\gamma, \delta, \eta\}, \eta_{1}=\gamma_{1}-\delta_{1}-a_{2}+\lambda^{2}+a_{1} \lambda$ and $\hat{l} \in\left(t_{\gamma}(w)\right)$ iff $\gamma \in\{\delta, \eta\}$.

Definition. Let $w$ be smooth and $L$ be an EFF given by $w$. Consider the group structure on $\mathbb{P}_{L / K}{ }^{(1)}$ determined by $\Psi_{P_{\infty}}$. Put $E(K)=V_{w}(K) \cup\{\infty\}$ and define the operations $\oplus$, ominus on $E(K)$ :

$$
\gamma \oplus \delta=\eta \Leftrightarrow P_{\gamma} \oplus P_{\delta}=P_{\eta}, \quad \ominus \gamma=\delta \Leftrightarrow P_{\gamma} \oplus P_{\delta}=P_{\infty}
$$

Theorem 8.8. Let $w$ be smooth at $V_{w}(K)$. Then $(E(K), \oplus, \ominus, \infty)$ is a commutative group. Let $\gamma=\gamma_{1}, \gamma_{2}, \delta=\delta_{1}, \delta_{2}, \eta=\eta_{1}, \eta_{2} \in V_{w}(K)$, then
(1) $\ominus \gamma=\gamma_{1},-\gamma_{2}-a_{1} \gamma_{1}-a_{3}$.
(2) If $\gamma \neq \ominus \delta$ and $\gamma \oplus \delta=\eta$, then $\eta=\left(-\eta_{1}-\delta_{1}+\lambda^{2}+a_{1} \lambda-a_{2}, \lambda\left(\gamma_{1}-\eta_{1}\right)-\gamma_{2}-a_{1} \eta_{1}-a_{3}\right)$ where
(a) $\lambda=\frac{\delta_{2}-\gamma_{2}}{\delta_{1}-\gamma_{1}}$ if $\gamma_{1} \neq \delta_{1}$.
(b) $\lambda=\frac{3 \gamma_{1}^{2}+2 a_{2} \gamma_{1}-a_{1} \gamma_{2}+a_{4}}{2 \gamma_{2}+a_{1} \gamma_{1}+a_{3}}$ if $\gamma_{1}=\delta_{1}$.

## 9. Projective curves

Let $n \geq 1, K$ be a field and $\bar{K}$ the algebraic closure of $K$.
$\mathbf{T \& N}$. Denote $a=\left(a_{0}: a_{1}: \cdots: a_{n}\right)=\operatorname{Span}\left(\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)\right) \subset \mathrm{K}^{\mathrm{n}+1}$ a projective point of the projective space

$$
\mathbb{P}^{n}(K)=\left\{\left(a_{0}: a_{1}: \cdots: a_{n}\right) \mid\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in K^{n+1} \backslash\{0\}\right\}
$$

of the homogeneous coordinates $\left(a_{0}: a_{1}: \cdots: a_{n}\right)$ and put $\mathbb{P}^{n}:=\mathbb{P}^{n}(\bar{K})$.
$K\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ denotes the set of all homogeneous polynomials and put

$$
K\left(X_{0}, X_{1}, \ldots, X_{n}\right):=\left\{\left.\frac{H}{G} \right\rvert\, H, G \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right], \exists d \geq 0: \operatorname{deg} H=\operatorname{deg} G\right\} \cup\{0\}
$$

Let $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}$. We define

$$
\hat{f}:=X_{0}^{\operatorname{deg} f} f\left(\frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right), \hat{0}:=0 \in K\left[X_{0}, X_{1}, \ldots, X_{n}\right], \quad \hat{a}:=\left(1: a_{1}: \cdots: a_{n}\right) \in \mathbb{P}^{n}
$$

Lemma 9.1. Let $f \in K\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$ and $a \in V_{f}$. Then $f$ is smooth at $a$ if and only if $\hat{f}$ is smooth at $\hat{a}$.
Proposition 9.2. Let $H, F \in K\left[X_{0}, X_{1}, X_{2}\right], F$ be irreducible and $j \in\{0,1,2\}$.
(1) Then either $H \in(F)$, hence $H(a)=0$ for all $a \in V_{F}$, or $H \notin(F)$ and $V_{F} \cap V_{H}$ is finite.
(2) If $x_{j} \notin(F)$, then $\left|\left\{\left(a_{0}: a_{1}: \cdots: a_{n}\right) \in V_{F} \mid a_{j}=0\right\}\right|$ is finite.

Corollary 9.3. Let $F, G \in K\left[X_{0}, X_{1}, X_{2}\right], V_{F}=V_{G}, a \in V_{F}$. Then
(1) there exists $\lambda \in K^{*}$ such that,
(2) $F$ is smooth at $a$ iff $G$ is smooth at $a$.

Proposition 9.4. Let $f \in K\left[x_{1}, x_{2}\right]$ be irreducible and $F=\hat{f}$. Define the mappings $\epsilon_{f}: K\left(V_{f}\right) \rightarrow K\left(V_{F}\right)$ and $\epsilon: K(x) \rightarrow K\left(\mathbb{P}^{1}\right)$ by the rules

$$
\epsilon_{f}\left(\frac{g+(f)}{h+(f)}\right)=\frac{X_{0}^{\operatorname{deg}(h)} \hat{g}+(F)}{X_{0}^{\operatorname{deg}(g)} \hat{h}+(F)} \quad \text { and } \quad \epsilon\left(\frac{g}{h}\right)=\frac{X_{0}^{\operatorname{deg}(h)} \hat{g}}{X_{0}^{\operatorname{deg}(g)} \hat{h}} .
$$

Then $\epsilon_{f}$ and $\epsilon$ are $K$-isomorphisms of fields.
T\&N. Let $A, B, G \in K\left[X_{0}, X_{1}\right], B \neq 0$. Define

$$
\nu_{G}(A):=\max \left\{e \geq 0 \mid G^{e} / A\right\}, \quad \nu_{G}\left(\frac{A}{B}\right):=\nu_{G}(A)-\nu_{G}(B), \quad \nu_{G}(0)=\infty .
$$

Lemma 9.5. Let $\nu$ be a normalized discrete valuation of the AFF $K\left(\mathbb{P}^{1}\right)$ over $K$.
(1) There exists $G \in K\left[X_{0}, X_{1}\right]$ irreducible such that $\nu=\nu_{G}$,
(2) degree of the place $\left\{U \in K\left(\mathbb{P}^{1}\right) \mid \nu_{G}(U)>0\right\}$ is equal to $\operatorname{deg} G$,
(3) the map $\left(a_{0}: a_{1}\right) \rightarrow\left\{U \in K\left(\mathbb{P}^{1}\right) \mid \nu_{a_{1} X_{0}-a_{0} X_{1}}(U)>0\right\}$ is a bijection $\mathbb{P}^{1} \rightarrow \mathbb{P}_{L / K}^{(1)}$.

Theorem 9.6. Let $F \in K\left[X_{0}, X_{1}, X_{2}\right]$, be irreducible and $P \in \mathbb{P}_{\left.K\left(V_{F}\right) / K\right), ~} a \in V_{F}$. Then
(1) there exists $b \in V_{F}$ such that $P_{b} \subseteq P$,
(2) if $\operatorname{deg} P=1$ and $P_{a} \subseteq P$, then $a \in V_{F}(K)$,
(3) if $F$ is smooth at $a \in V_{F}(K)$, then $P_{a}=P$ and $\operatorname{deg} P_{a}=1$.

