4. CFF Homework, series 4, to be submitted till 1st June

All steps should be explained in detail (preferably by reference to the class assertions).
4.1. For every prime p and every $a \in \mathbb{F}_{p}$ determine genus of the AFF $\mathbb{F}_{p}\left(V_{w_{a}}\right)$ where $w_{a}=y^{2}-\left(x^{3}+a\right) \in \mathbb{F}_{p}[x, y]$.

Hint: Check smoothness of w_{a} applying 3.12(3) if $p>2$ and by the definition if $p=2$. Then apply 8.3(5) and 8.4.
4.2. Let $w=y^{2}+y x-x^{3}+x-1 \in \mathbb{F}_{5}[x, y]$. Prove that w is singular at $(1,2) \in V_{w}$ and find $s \in \mathbb{F}_{5}(x, y)$ such that $\mathbb{F}_{5}\left(V_{w}\right)=\mathbb{F}_{5}(s+(w)$) (i.e. s represents a transcendental generator of the field $\left.\mathbb{F}_{5}\left(V_{w}\right)\right)$.

Hint: Singularity prove by the definition, use the fact that $\mathbb{F}_{5}\left(V_{w}\right)=\mathbb{F}_{5}(\alpha, \beta)$ for $\alpha=$ $x+(w)$ and $\beta=y+(w)$ and then repeat the proof of the direct implication of 8.4. Do not forget that the proof suppose shifting 3.10 of singularity to $(0,0)$.

5 points
4.3. Let $f=y^{2}-x^{3}+2 \in \mathbb{F}_{5}[x, y]$. Show that the $\operatorname{AFF} \mathbb{F}_{5}\left(V_{f}\right)$ is eliptic and
(a) find a generator of the corresponding cyclic group $\left(E\left(\mathbb{F}_{5}\right), \oplus, \ominus, \infty\right)\left(\cong \mathbb{Z}_{6}\right)$,
(b) compute \mathbb{F}_{5}-dimension of the Riemann-Roch space $R=\mathcal{L}\left(\sum_{\gamma \in E\left(\mathbb{F}_{5}\right)} 1 P_{\gamma}\right)$ and find a nonzero element contained in R.

Hint: Apply 8.4 and 3.12 to prove that $\mathbb{F}_{5}\left(V_{w}\right)$ is EFF.
(a) As in Example 8.10 determine all elements of $V_{f}\left(\mathbb{F}_{5}\right)$ and apply 8.8 to find a point $\gamma \in V_{f}\left(\mathbb{F}_{5}\right)$ satisfying $\gamma \oplus \gamma \neq \infty$ and $\gamma \oplus \gamma \neq \ominus \gamma$ which has to be an element of order 6 by Lagrange theorem. Use geometrical ideas of the proof instead explicit formulas of 8.8 (in particular: meaning of the same first coordinates of points i.e. they are opposite; the observation that $\gamma \oplus \gamma$ is the intersection of tangent at γ with the curve; the observation that if $\gamma \oplus \gamma$ is the only intersection of tangent at γ with the curve then $\gamma \oplus \gamma \oplus \gamma=\infty$.
(b) Compute degree of the divisor $A=\sum_{\gamma \in E\left(\mathbb{F}_{5}\right)} 1 P_{\gamma}$ by the definition and then use 7.6(2) to determine $l(A)=\operatorname{dim}_{\mathbb{F}_{5}}(A)$. Apply positivity of A, the knowledge of elments of $\mathcal{L}(0)$ and 6.2.

