2. CFF Homework, series 2, to be submitted till 13th April

All steps should be explained in detail (preferably by reference to the class assertions).

Let $f = y^2 - (x^3 + 2x^2 + 1) \in \mathbb{Q}[x, y]$ and L be an algebraic function field given by $f(\alpha, \beta) = 0$ (hence $\alpha = x + (f), \beta = y + (f) \in \mathbb{Q}[\alpha, \beta] \subset \mathbb{Q}(\alpha, \beta)$).

2.1. Consider L as a vector space over fields $\mathbb{Q}(\alpha)$ and over $\mathbb{Q}(\beta)$.

(a) Determine a base A of L over $\mathbb{Q}(\alpha)$,

(b) determine a base B of L over $\mathbb{Q}(\beta)$,

(c) compute coordinates $[\alpha^3\beta^3]_A [\alpha^3\beta^3]_B$ of $\alpha^3\beta^3$ with respect to both the bases A, B. Hint: apply Proposition 4.7 and the proof of Lemma 4.6.

5 points

2.2. Prove that f is smooth at the point $(1,2) \in \mathbb{A}^2(\mathbb{Q})$ and find

(a) an affine mapping σ , and polynomials $h \in \mathbb{Q}[x]$ and $g \in \mathbb{Q}[x, y]$ such that $\sigma(1, 2) = (0, 0), \sigma^*(h(x) + yg(x, y) + y) = f$, mult $(h) \ge 2$, and mult $(g) \ge 1$,

(b) all points $\mathbf{a} \in \mathbb{A}^2(\mathbb{Q})$ for which there exists σ satisfying conditions of (a) and, moreover, $\sigma(0,0) = \mathbf{a}$.

Hint: use Lemma 5.7.

8 points

2.3. Suppose ν is a normalized discrete valuation of L such that $\nu(\mathbb{Q}\setminus 0) = 0$, $\nu(\alpha-1) > 0$ and $\nu(\beta-2) > 0$. Determine all $(l_0, l_1, l_2) \in \mathbb{Q}^3$ such that

(a) ν(l₀ + l₁α + l₂β) = 1,
(b) ν(l₀ + l₁α + l₂β) = 2,
(c) ν(l₀ + l₁α + l₂β) = 3. *Hint: apply the proof of Theorem 5.8 and Theorem 2.15.*

7 points