2. CFF Homework, series 2, to Be submitted till 13th April

All steps should be explained in detail (preferably by reference to the class assertions).

Let $f=y^{2}-\left(x^{3}+2 x^{2}+1\right) \in \mathbb{Q}[x, y]$ and L be an algebraic function field given by $f(\alpha, \beta)=0$ (hence $\alpha=x+(f), \beta=y+(f) \in \mathbb{Q}[\alpha, \beta] \subset \mathbb{Q}(\alpha, \beta)$).
2.1. Consider L as a vector space over fields $\mathbb{Q}(\alpha)$ and over $\mathbb{Q}(\beta)$.
(a) Determine a base A of L over $\mathbb{Q}(\alpha)$,
(b) determine a base B of L over $\mathbb{Q}(\beta)$,
(c) compute coordinates $\left[\alpha^{3} \beta^{3}\right]_{A}\left[\alpha^{3} \beta^{3}\right]_{B}$ of $\alpha^{3} \beta^{3}$ with respect to both the bases A, B. Hint: apply Proposition 4.7 and the proof of Lemma 4.6.
2.2. Prove that f is smooth at the point $(1,2) \in \mathbb{A}^{2}(\mathbb{Q})$ and find
(a) an affine mapping σ, and polynomials $h \in \mathbb{Q}[x]$ and $g \in \mathbb{Q}[x, y]$ such that $\sigma(1,2)=$ $(0,0), \sigma^{*}(h(x)+y g(x, y)+y)=f, \operatorname{mult}(h) \geq 2$, and mult $(g) \geq 1$,
(b) all points $\mathbf{a} \in \mathbb{A}^{2}(\mathbb{Q})$ for which there exists σ satisfying conditions of (a) and, moreover, $\sigma(0,0)=\mathbf{a}$.

Hint: use Lemma 5.7.
2.3. Suppose ν is a normalized discrete valuation of L such that $\nu(\mathbb{Q} \backslash 0)=0, \nu(\alpha-1)>0$ and $\nu(\beta-2)>0$. Determine all $\left(l_{0}, l_{1}, l_{2}\right) \in \mathbb{Q}^{3}$ such that
(a) $\nu\left(l_{0}+l_{1} \alpha+l_{2} \beta\right)=1$,
(b) $\nu\left(l_{0}+l_{1} \alpha+l_{2} \beta\right)=2$,
(c) $\nu\left(l_{0}+l_{1} \alpha+l_{2} \beta\right)=3$.

Hint: apply the proof of Theorem 5.8 and Theorem 2.15.

