1. CFF Homework, series 1, to be sent till 30th March

All steps should be explained in detail (preferably by reference to the class assertions).
1.1. Prove that WEP $y^{2}-\left(x^{3}-4 x^{2}-x+4\right)$ is
(a) smooth as a polynomial of $\mathbb{R}[x, y]$ and
(b) singular as a polynomial of $\mathbb{F}_{5}[x, y]$.

Hint: apply Proposition 3.12
1.2. Find all singularities of WEP
(a) $y^{2}+y(2-2 x)-\left(x^{3}+x^{2}+3 x-1\right) \in \mathbb{R}[x, y]$
(b) $y^{2}+y(2 x+1)-\left(x^{3}+2 x^{2}+2 x\right) \in \mathbb{F}_{3}[x, y]$

Hint: use the proof of Proposition 3.12, Lemma 3.10 and Lemma 3.1
10 points
1.3. Find at least 3 points $\alpha \in \mathbb{R}^{2}$ such that $W:=\left(y^{2}-\left(x^{3}-4 x^{2}-x+4\right)\right) \subseteq I_{\alpha} \subseteq \mathbb{R}[x, y]$. For each such α find an irreducible polynomial $g_{\alpha} \in I_{\alpha} \backslash W$.

Hint: apply Proposition 4.3 and Lemma 4.1
5 points

