# Real functions 

M. Zelený

June 10, 2023

## Contents

I Winter semester ..... 5
1 Differentiation of measures ..... 7
1.1 Covering theorems ..... 7
1.2 Differentiation of measures ..... 14
1.3 Lebesgue points ..... 18
1.4 Density theorem ..... 19
1.5 AC and BV functions ..... 20
1.6 Rademacher theorem ..... 22
1.7 Maximal operator ..... 26
1.8 Lipschitz functions and $W^{1, \infty}$ ..... 26
2 Hausdorff measures ..... 27
2.1 Basic notions ..... 27
2.2 Area formula ..... 28
2.3 Hausdorff dimension ..... 28
II Summer semester ..... 33
3 Area and coarea formulae ..... 35
4 Semicontinuous functions ..... 43
5 Functions of Baire class 1 ..... 45
6 Approximate continuity ..... 47
7 More on derivatives ..... 51
8 Sets with a finite perimeter and divergence theorem ..... 53
8.1 Motivation ..... 53
8.2 Definitions and remarks ..... 54
8.3 Coarea formula for BV functions ..... 55
8.4 The reduced boundary ..... 56
8.5 Gauss theorem for BV functions . . . . . . . . . . . . . . . . . . . . . . . . . . 56

## Part I

## Winter semester

## Chapter 1

## Differentiation of measures

### 1.1 Covering theorems

Covering theorems provide a tool which enables us to infer global properties from local ones in the context of measure theory.

## Vitali theorem

Definition. Let $A \subset \mathbf{R}^{n}$. We say that a system $\mathcal{V}$ consisting of closed balls from $\mathbf{R}^{n}$ forms Vitali cover of $A$, if

$$
\forall x \in A \forall \varepsilon>0 \exists B \in \mathcal{V}: x \in B \wedge \operatorname{diam} B<\varepsilon
$$

## Notation.

- $\lambda_{n} \ldots$ Lebesgue measure on $\mathbf{R}^{n}$
- $\lambda_{n}^{*} \ldots$ outer Lebesgue measure on $\mathbf{R}^{n}$
- If $B \subset \mathbf{R}^{n}$ is a ball and $\alpha>0$, then $\alpha \star B$ denotes the ball, which is concentric with $B$ and with $\alpha$-times greater radius than $B$.

Theorem 1.1 (Vitali). Let $A \subset \mathbf{R}^{n}$ and $\mathcal{V}$ be a system of closed balls forming a Vitali cover of A. Then there exists a countable disjoint subsystem $\mathcal{A} \subset \mathcal{V}$ such that $\lambda_{n}(A \backslash \cup \mathcal{A})=0$.

Proof. First assume that $A$ is bounded. Take an open bounded set $G \subset \mathbf{R}^{n}$ with $A \subset G$. Set

$$
\mathcal{V}^{*}=\{B \in \mathcal{V} ; B \subset G\}
$$

The system $\mathcal{V}^{*}$ is a Vitali cover of $A$ again. If there exists a finite disjoint subsystem $\mathcal{V}^{*}$ covering $A$, we are done. So assume
$(\star)$ there is no finite disjoint subsystem of $\mathcal{V}^{*}$ covering $A$.

1st step. We set

$$
s_{1}=\sup \left\{\operatorname{diam} B ; B \in \mathcal{V}^{*}\right\}
$$

and choose a ball $B_{1} \in \mathcal{V}^{*}$ such that $\operatorname{diam} B_{1}>s_{1} / 2$. We know that $\mathcal{V}^{*} \neq \emptyset$ and $s_{1} \leq \operatorname{diam} G<$ $\infty$.
$k$-th step. Suppose that we have already chosen balls $B_{1}, \ldots, B_{k-1}$. We set

$$
s_{k}=\sup \left\{\operatorname{diam} B ; B \in \mathcal{V}^{*} \wedge B \cap \bigcup_{i=1}^{k-1} B_{i}=\emptyset\right\}
$$

The supremum is considered for a nonempty set since the set $\bigcup_{i=1}^{k-1} B_{i}$ is closed, which by $(\star)$ does not cover $A$, and $\mathcal{V}^{*}$ is a Vitali cover of $A$. We choose a ball $B_{k} \in \mathcal{V}^{*}$ such that $B_{k} \cap \bigcup_{i=1}^{k-1} B_{i}=\emptyset$ and $\operatorname{diam} B_{k}>s_{k} / 2$.

This finishes the construction of the sequence $\left(B_{k}\right)_{k=1}^{\infty}$. Set $\mathcal{A}=\left\{B_{k} ; k \in \mathbf{N}\right\}$. We verify that $\mathcal{A}$ is the desired system.

- $\mathcal{A}$ is countable. This follows immediately from the construction.
- $\mathcal{A}$ is disjoint. This follows from the construction.
- It holds $\lambda_{n}(A \backslash \bigcup \mathcal{A})=0$. We have

$$
\sum_{i=1}^{\infty} \lambda_{n}\left(B_{i}\right)=\lambda_{n}\left(\bigcup_{i=1}^{\infty} B_{i}\right) \leq \lambda_{n}(G)<\infty
$$

Thus the series $\sum_{i=1}^{\infty} \lambda_{n}\left(B_{i}\right)$ is convergent, therefore $\lim _{i} \lambda_{n}\left(B_{i}\right)=0$. Using the fact that $B_{i}$, $i \in \mathbf{N}$, are balls we also have $\lim _{i} \operatorname{diam} B_{i}=0$. We know that $2 \operatorname{diam} B_{i}>s_{i}$, consequently $\lim _{i} s_{i}=0$.

We show that

$$
\forall x \in A \backslash \bigcup \mathcal{A} \forall i \in \mathbf{N} \exists j \in \mathbf{N}, j>i: x \in 5 \star B_{j} .
$$

Take $x \in A \backslash \bigcup \mathcal{A}$ and $i \in \mathbf{N}$. Denote $\delta=\operatorname{dist}\left(x, \bigcup_{k=1}^{i} B_{k}\right)$. It holds $\delta>0$ and there exists $B \in \mathcal{V}^{*}$ such that $x \in B$ and $\operatorname{diam} B<\delta$. Then we have $B \cap \bigcup_{k=1}^{i} B_{k}=\emptyset$. Thus we have $\operatorname{diam} B>s_{p}$ for some $p \in \mathbf{N}$ since $\lim _{i} s_{i}=0$. Therefore there exists $j>i$ with $B_{j} \cap B \neq \emptyset$. Let $j$ be the smallest number with this property. Then we have $s_{j} \geq \operatorname{diam} B$ since $B \cap \bigcup_{l=1}^{j-1} B_{l}=\emptyset$. Further we have $\operatorname{diam} B_{j}>s_{j} / 2 \geq \frac{1}{2} \operatorname{diam} B$. Together we have $2 \operatorname{diam} B_{j} \geq \operatorname{diam} B$. This implies $x \in B \subset 5 \star B_{j}$.

For any $i \in \mathbf{N}$ we have

$$
\lambda_{n}^{*}(A \backslash \bigcup \mathcal{A}) \leq \lambda_{n}\left(\bigcup_{j=i}^{\infty} 5 \star B_{j}\right) \leq \sum_{j=i}^{\infty} \lambda_{n}\left(5 \star B_{j}\right)=5^{n} \sum_{j=i}^{\infty} \lambda_{n}\left(B_{j}\right)
$$

Using $\lim _{i \rightarrow \infty} \sum_{j=i}^{\infty} \lambda_{n}\left(B_{j}\right)=0$ we get $\lambda_{n}^{*}(A \backslash \bigcup \mathcal{A})=0$, and therefore $\lambda_{n}(A \backslash \cup \mathcal{A})=0$.
Now we assume that the set $A$ is a general subset of $\mathbf{R}^{n}$. Let $\left(G_{j}\right)_{j=1}^{\infty}$ be a sequence of bounded disjoint open sets such that $\lambda_{n}\left(\mathbf{R}^{n} \backslash \bigcup_{j=1}^{\infty} G_{j}\right)=0$. Denote

$$
\mathcal{V}_{j}^{*}=\left\{B \in \mathcal{V} ; B \subset G_{j}\right\}
$$

The system $\mathcal{V}_{j}^{*}$ forms a Vitali cover of the bounded set $G_{j} \cap A$. Using the previous part of the construction we find a countable disjoint system $\mathcal{A}_{j} \subset \mathcal{V}_{j}^{*}$ with $\lambda_{n}\left(\left(G_{j} \cap A\right) \backslash \cup \mathcal{A}_{j}\right)=0$. Now we set $\mathcal{A}=\bigcup_{j} \mathcal{A}_{j}$.

The end of the lecture no. 1, 3.10. 2022
Definition. We say that a measure $\mu$ on $\mathbf{R}^{n}$ satisfies Vitali theorem, if for every $M \subset \mathbf{R}^{n}$ and every Vitali cover $\mathcal{V}$ of $M$ there exists countable disjoint cover $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \backslash \bigcup \mathcal{A})=0$.

Remark. (1) By Theorem $1.1 \lambda_{n}$ satisfies Vitali theorem.
(2) If $\mu$ satisfies Vitali theorem and $\nu \ll \mu$, then $\nu$ satisfies Vitali theorem.

Remark. If $\mu$ is the Borel measure on $\mathbf{R}^{2}$ such that $\mu(A)=\lambda_{1}(A \cap(\mathbf{R} \times\{0\}))$ for any $B \subset \mathbf{R}^{2}$ Borel, then Vitali theorem does not hold for $\mu$.

Theorem 1.2. Let $E \subset \mathbf{R}^{n}$ be measurable and $\mathcal{S}$ be a finite system of closed balls covering $E$. Then there exists a disjoint system $\mathcal{L} \subset \mathcal{S}$ such that $\lambda_{n}(E) \leq 3^{n} \sum_{B \in \mathcal{L}} \lambda_{n}(B)$.

Proof. Without any loss of generality we may assume that $\mathcal{S}$ is nonempty. Choose $B_{1} \in \mathcal{S}$ with maximal radius among balls in $\mathcal{S}$. Suppose that we have already constructed $B_{1}, \ldots, B_{k-1}$. If possible, choose $B_{k} \in \mathcal{S}$ disjoint with $\bigcup_{i<k} B_{i}$ and with maximal radius among balls in $\mathcal{S}$ satisfying this property. We construct a finite sequence of closed balls $B_{1}, \ldots, B_{N}$ and set $\mathcal{L}=$ $\left\{B_{1}, \ldots, B_{N}\right\}$. We have $E \subset \bigcup_{B \in \mathcal{L}} 3 \star B$. To this end consider $x \in E$. Then there exists $B \in \mathcal{S}$ with $x \in B$. We find minimal $k$ such that $B \cap B_{k} \neq \emptyset$. Then we have radius $(B) \leq \operatorname{radius}\left(B_{k}\right)$. This implies that $x \in B \subset 3 \star B_{k}$.

Then we have

$$
\lambda_{n}(E) \leq \lambda_{n}\left(\bigcup_{B \in \mathcal{L}} 3 \star B\right) \leq \sum_{B \in \mathcal{L}} \lambda_{n}(3 \star B)=3^{n} \sum_{B \in \mathcal{L}} \lambda_{n}(B) .
$$

## Besicovitch theorem

Theorem 1.3 (Besicovitch). For each $n \in \mathbf{N}$ there exists $N \in \mathbf{N}$ with the following property. If $A \subset \mathbf{R}^{n}$ and $\Delta: A \rightarrow(0, \infty)$ is a bounded function, then there exist sets $A_{1}, \ldots, A_{N}$ such that

- $\left\{\bar{B}(x, \Delta(x)) ; x \in A_{i}\right\}$ is disjoint for every $i \in\{1, \ldots, N\}$,
- $A \subset \bigcup\left\{\bar{B}(x, \Delta(x)) ; x \in \bigcup_{i=1}^{N} A_{i}\right\}$.

Proof. The case of a bounded set $A$. Let $R=\sup _{A} \Delta$. Choose $B_{1}:=\bar{B}\left(a_{1}, r_{1}\right)$ such that $a_{1} \in A$ and $r_{1}:=\Delta\left(a_{1}\right)>\frac{3}{4} R$. Assume that we have already chosen balls $B_{1}, \ldots, B_{j-1}$ where $j \geq 2$. If

$$
F_{j}:=A \backslash \bigcup_{i=1}^{j-1} \bar{B}\left(a_{i}, r_{i}\right)=\emptyset
$$

then the process stops and we set $J=j$. If $F_{j} \neq \emptyset$, we continue by choosing $B_{j}:=\bar{B}\left(a_{j}, r_{j}\right)$ such that $a_{j} \in F_{j}$ and

$$
\begin{equation*}
r_{j}:=\Delta\left(a_{j}\right)>\frac{3}{4} \sup _{F_{j}} \Delta . \tag{1.1}
\end{equation*}
$$

If $F_{j} \neq \emptyset$ for all $j$, then we set $J=\infty$. In this case $\lim _{j \rightarrow \infty} r_{j}=0$ because $A$ is bounded and the inequalities

$$
\left\|a_{i}-a_{j}\right\| \geq r_{i}=\frac{1}{3} r_{i}+\frac{2}{3} r_{i}>\frac{1}{3} r_{i}+\frac{1}{2} r_{j}>\frac{1}{3} r_{i}+\frac{1}{3} r_{j}
$$

for $i<j<J$ imply that

$$
\begin{equation*}
\left\{\frac{1}{3} \star B_{j} ; j<J\right\} \text { is a disjoint family. } \tag{1.2}
\end{equation*}
$$

In case $J<\infty$, we have $A \subset \bigcup_{j<J} B_{j}$. This is also true in the case $J=\infty$. Otherwise there exist $a \in \bigcap_{j=1}^{\infty} F_{j}$ and $j_{0} \in \mathbf{N}$ with $r_{j_{0}} \leq \frac{3}{4} \Delta(a)$, contradicting the choice of $r_{j_{0}}$.

Fix $k<J$. We set $I=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset\right\}$. We now prove that there exists $M \in \mathbf{N}$ depending only on $n$ which estimates $|I|$. To this end we split $I$ into $I_{1}$ and $I_{2}$ and we estimate their cardinality separately.

$$
\begin{aligned}
& I_{1}=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset, r_{i}<10 r_{k}\right\} \\
& I_{2}=\left\{i<k ; B_{i} \cap B_{k} \neq \emptyset, r_{i} \geq 10 r_{k}\right\}
\end{aligned}
$$

The estimate of $\left|I_{1}\right|$. We have $\frac{1}{3} \star B_{i} \subset 15 \star B_{k}$ for every $i \in I_{1}$. Indeed, if $x \in \frac{1}{3} \star B_{i}$, then

$$
\left\|x-a_{k}\right\| \leq\left\|x-a_{i}\right\|+\left\|a_{i}-a_{k}\right\| \leq \frac{10}{3} r_{k}+r_{i}+r_{k} \leq \frac{43}{3} r_{k}<15 r_{k}
$$

Hence, there are at most $60^{n}$ elements of $I_{1}$, because for any $i \in I_{1}$ we have

$$
\lambda_{n}\left(\frac{1}{3} \star B_{i}\right)=\lambda_{n}(\bar{B}(0,1)) \cdot\left(\frac{1}{3} r_{i}\right)^{n}>\lambda_{n}(\bar{B}(0,1)) \cdot\left(\frac{1}{4} r_{k}\right)^{n}=\frac{1}{60^{n}} \lambda_{n}\left(15 \star B_{k}\right)
$$

The end of the lecture no. 2, 10.10.2022

The end of the lecture no. 3, 24.10. 2022
The estimate of $\left|I_{2}\right|$. Denote $b_{i}=a_{i}-a_{k}$. An elementary mesh-like construction gives a family $\left\{Q_{m} ; 1 \leq m \leq(22 n)^{n}\right\}$ of closed cubes with edge length $1 /(11 n)$ (so that diam $Q_{m} \leq 1 / 11$ ), which cover $[-1,1]^{n}$ and thus in particular the unit sphere. We claim that for each $1 \leq m \leq$ $(22 n)^{n}$ there is at most one $i \in I_{2}$ such that $b_{i} /\left\|b_{i}\right\| \in Q_{m}$, which estimates the cardinality of $I_{2}$.

If the claim were not valid, then there would exist $i, j \in I_{2}, i<j$, such that

$$
\left\|\frac{b_{i}}{\left\|b_{i}\right\|}-\frac{b_{j}}{\left\|b_{j}\right\|}\right\| \leq \frac{1}{11} .
$$

Notice that

$$
\begin{equation*}
r_{i}<\left\|b_{i}\right\|<r_{i}+r_{k} \quad \text { and } \quad r_{j}<\left\|b_{j}\right\|<r_{j}+r_{k} \tag{1.3}
\end{equation*}
$$

as the balls $B_{i}, B_{j}$ intersect $B_{k}$ but does not contain $a_{k}$. Hence

$$
\left|\left\|b_{i}\right\|-\left\|b_{j}\right\|\right| \leq\left|r_{i}-r_{j}\right|+r_{k} \leq\left|r_{i}-r_{j}\right|+\frac{1}{10} r_{j}
$$

and

$$
\begin{equation*}
\left\|b_{j}\right\| \leq r_{j}+r_{k} \leq r_{j}+\frac{1}{10} r_{j}=\frac{11}{10} r_{j} \tag{1.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\|a_{i}-a_{j}\right\| & =\left\|b_{i}-b_{j}\right\| \leq\left\|b_{i}-\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}\right\|+\left\|\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}-b_{j}\right\| \\
& =\left\|\frac{\left\|b_{i}\right\| b_{i}}{\left\|b_{i}\right\|}-\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}\right\|+\left\|\frac{\left\|b_{j}\right\|}{\left\|b_{i}\right\|} b_{i}-\frac{\left\|b_{j}\right\|}{\left\|b_{j}\right\|} b_{j}\right\| \\
& \leq\left|\left\|b_{i}\right\|-\left\|b_{j}\right\|\right|+\frac{1}{11}\left\|b_{j}\right\| \\
& \leq\left|r_{i}-r_{j}\right|+\frac{1}{10} r_{j}+\frac{1}{10} r_{j} \quad \quad \text { (using (1.3) and (1.4)) } \\
& \leq \begin{cases}r_{i}-\frac{4}{5} r_{j}<r_{i} & \text { if } r_{i}>r_{j}, \\
-r_{i}+\frac{6}{5} r_{j} \leq-r_{i}+\frac{8}{5} r_{i}<r_{i} & \text { if } r_{i} \leq r_{j} .\end{cases}
\end{aligned}
$$

In the last inequality we have used that $i<j$ and thus $r_{j}<\frac{4}{3} r_{i}$ by 1.1. We arrived at a contradiction as $i<j$ and thus $a_{j} \notin B_{i}$. Hence $\left|I_{2}\right| \leq(22 n)^{n}$.
Thus it is sufficient to choose $M>60^{n}+(22 n)^{n}$.
Choice of $A_{1}, \ldots, A_{M}$. For each $k \in \mathbf{N}$ we define $\lambda_{k} \in\{1,2, \ldots, M\}$ such that $\lambda_{k}=k$ whenever $k \leq M$ and for $k>M$ we define $\lambda_{k}$ inductively as follows. There is $\lambda_{k} \in\{1, \ldots, M\}$ such that

$$
B_{k} \cap \bigcup\left\{B_{i} ; i<k, \lambda_{i}=\lambda_{k}\right\}=\emptyset .
$$

Now we set $A_{j}=\left\{a_{i} ; \lambda_{i}=j\right\}, j=1, \ldots, M$.

The case of a general set $A$. For each $l \in \mathbf{N}$ apply the previously obtained result with $A$ replaced by

$$
A^{l}=A \cap\{x ; 3(l-1) R \leq\|x\|<3 l R\}
$$

and denote resulting sets as $A_{i}^{l}, i=1, \ldots, M$. Then we set

$$
A_{i}=\bigcup_{l \text { is odd }} A_{i}^{l}, \quad A_{M+i}=\bigcup_{l \text { is even }} A_{i}^{l}, \quad i=1, \ldots, M
$$

Then we constructed $N:=2 M$ subsets which have the required properties.
Definition. Let $P$ be a locally compact space and $\mathcal{S}$ be a $\sigma$-algebra of subsets of $P$. We say that $\mu$ is a Radon measure on $(P, \mathcal{S})$ if
(a) $\mathcal{S}$ contains all Borel subsets of $P$,
(b) $\mu(K)<\infty$ for every compact set $K \subset P$,
(c) $\mu(G)=\sup \{\mu(K) ; K \subset G$ is compact $\}$ for every open set $G \subset P$,
(d) $\mu(A)=\inf \{\mu(G) ; A \subset G, G$ is open $\}$ for every $A \in \mathcal{S}$,
(e) $\mu$ is complete.

Definition. Let $\mu$ be a measure on $X$. Outer measure corresponding to $\mu$ is defined by

$$
\mu^{*}(A)=\inf \{\mu(B) ; A \subset B, B \text { is } \mu \text {-measurable }\}
$$

Remark. Let $\mu$ be a Radon measure on $\left(\mathbf{R}^{n}, \mathcal{S}\right)$ and $A \in \mathcal{S}$. Then there exist a Borel set $B \subset \mathbf{R}^{n}$ such that $A \subset B$ and $\mu(B \backslash A)=0$. If $\nu$ is a Radon measure on $\left(\mathbf{R}^{n}, \mathcal{S}^{\prime}\right)$ with $\nu \ll \mu$, then $\mathcal{S} \subset \mathcal{S}^{\prime}$.

Lemma 1.4. Let $\mu$ be a measure on $X$ and $\left\{A_{j}\right\}_{j=1}^{\infty}$ be an increasing sequence of subset of $X$. Then $\lim \mu^{*}\left(A_{j}\right)=\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)$.

Theorem 1.5. Let $\mu$ be a Radon measure on $\mathbf{R}^{n}$ and $\mathcal{F}$ be a system of closed balls in $\mathbf{R}^{n}$. Let A denote the set of centers of the balls in $\mathcal{F}$. Assume $\inf \{r ; B(a, r) \in \mathcal{F}\}=0$ for each $a \in A$. Then there exists a countable disjoint system $\mathcal{G} \subset \mathcal{F}$ such that $\mu(A \backslash \bigcup \mathcal{G})=0$.

Proof. The case $\mu^{*}(A)<\infty$. Let $N$ be the natural number from Theorem 1.3. Fix $\theta$ such that $1-\frac{1}{N}<\theta<1$.

Claim. Let $U \subset \mathbf{R}^{n}$ be an open set. There exists a disjoint finite system $\mathcal{H} \subset \mathcal{F}$ such that $\bigcup \mathcal{H} \subset U$ and

$$
\begin{equation*}
\mu^{*}((A \cap U) \backslash \bigcup \mathcal{H}) \leq \theta \mu^{*}(A \cap U) \tag{1.5}
\end{equation*}
$$

The end of the lecture no. 4, 31.10. 2022

Proof of Claim. We may assume that $\mu^{*}(A \cap U)>0$. Let $\mathcal{F}_{1}=\{B \in \mathcal{F}$; diam $B<1, B \subset U\}$. By Theorem 1.3 there exist disjoint families $\mathcal{G}_{1}, \ldots, \mathcal{G}_{N} \subset \mathcal{F}_{1}$ such that

$$
A \cap U \subset \bigcup_{i=1}^{N} \bigcup \mathcal{G}_{i}
$$

Thus

$$
\mu^{*}(A \cap U) \leq \sum_{i=1}^{N} \mu^{*}\left(A \cap U \cap \bigcup \mathcal{G}_{i}\right)
$$

Consequently, there exists an integer $1 \leq j \leq N$ for which

$$
\mu^{*}\left(A \cap U \cap \bigcup \mathcal{G}_{j}\right) \geq \frac{1}{N} \mu^{*}(A \cap U)>(1-\theta) \mu^{*}(A \cap U)
$$

Using Lemma 1.4 we find a finite system $\mathcal{H} \subset \mathcal{G}_{j}$ such that

$$
\mu^{*}(A \cap U \cap \bigcup \mathcal{H})>(1-\theta) \mu^{*}(A \cap U)
$$

The set $\bigcup \mathcal{H}$ is $\mu$-measurable and therefore

$$
\begin{aligned}
\mu^{*}(A \cap U) & =\mu^{*}(A \cap U \cap \bigcup \mathcal{H})+\mu^{*}(A \cap U \backslash \bigcup \mathcal{H}) \\
& \geq(1-\theta) \mu^{*}(A \cap U)+\mu^{*}(A \cap U \backslash \bigcup \mathcal{H})
\end{aligned}
$$

This gives (1.5).

Set $U_{1}=\mathbf{R}^{n}$. Using Claim we find a disjoint finite system $\mathcal{H}_{1} \subset \mathcal{F}$ such that $\bigcup \mathcal{H}_{1} \subset U_{1}$ and

$$
\mu^{*}\left(\left(A \cap U_{1}\right) \backslash \bigcup \mathcal{H}_{1}\right) \leq \theta \mu^{*}\left(A \cap U_{1}\right)
$$

Continuing by induction we obtain a sequence of open set $\left(U_{j}\right)$ and finite disjoint finite systems $\left(\mathcal{H}_{j}\right)$ such that $U_{j+1}=U_{j} \backslash \bigcup \mathcal{H}_{j}, \mathcal{H}_{j} \subset \mathcal{F}, \bigcup \mathcal{H}_{j} \subset U_{j}$, and

$$
\mu\left(A \cap U_{j+1}\right)=\mu^{*}\left(\left(A \cap U_{j}\right) \backslash \bigcup \mathcal{H}_{j}\right) \leq \theta \mu^{*}\left(A \cap U_{j}\right)
$$

for every $j \in \mathbf{N}$. Together we have

$$
\mu^{*}\left(A \cap U_{j+1}\right) \leq \theta^{j} \mu^{*}(A)
$$

for every $j \in \mathbf{N}$. Since $\mu^{*}(A)<\infty$ we get $\mu^{*}\left(A \backslash \bigcup_{j=1}^{\infty} \bigcup \mathcal{H}_{j}\right)=0$. Thus we set $\mathcal{G}=\bigcup_{j=1}^{\infty} \mathcal{H}_{j}$ and we are done.

The general case. We find a sequence of bounded disjoint open sets $\left(G_{j}\right)_{j=1}^{\infty}$ such that $\mu\left(\mathbf{R}^{n} \backslash\right.$ $\left.\bigcup_{j=1}^{\infty} G_{j}\right)=0$. Then $\mu\left(G_{j}\right)<\infty$ for every $j \in \mathbf{N}$ and we proceed as in the proof of Theorem 1.1

### 1.2 Differentiation of measures

Notation. The symbol $\mathcal{B}$ stands for the family of all closed balls in $\mathbf{R}^{n}$.
Definition. Let $\nu$ and $\mu$ are measures on $\mathbf{R}^{n}$ and $x \in \mathbf{R}^{n}$. Then we define

- upper derivative of $\nu$ with respect to $\mu$ at $x$ by

$$
\bar{D}(\nu, \mu, x)=\lim _{r \rightarrow 0+}(\sup \{\nu(B) / \mu(B) ; x \in B, B \in \mathcal{B}, \operatorname{diam} B<r\})
$$

if the term at the right side is defined,

- lower derivative of $\nu$ with respect to $\mu$ at $x$ by

$$
\underline{D}(\nu, \mu, x)=\lim _{r \rightarrow 0+}(\inf \{\nu(B) / \mu(B) ; x \in B, B \in \mathcal{B}, \operatorname{diam} B<r\}),
$$

if the term at the right side is defined,

- derivative of $\nu$ with respect to $\mu$ at $x$ (denoting $D(\nu, \mu, x)$ ) as the common value of $\bar{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$, if it is defined.

Remark. The value $\bar{D}(\nu, \mu, x)(\underline{D}(\nu, \mu, x))$ is well defined if and only if

$$
\forall B \in \mathcal{B}, x \in B: \mu(B)>0
$$

Theorem 1.6. Let $\nu$ and $\mu$ be Radon measures on $\mathbf{R}^{n}$ and $\mu$ satisfy Vitali theorem. Then $\bar{D}(\nu, \mu, x)$ and $\underline{D}(\nu, \mu, x)$ exist $\mu$-a.e.

Proof. Denote

$$
\begin{aligned}
M & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x) \text { is not defined }\right\} \\
\mathcal{V} & =\{B \in \mathcal{B} ; \mu(B)=0\}
\end{aligned}
$$

The family $\mathcal{V}$ is a Vitali cover of $M$. We find a countable disjoint system $\mathcal{A} \subset \mathcal{V}$ such that $\mu(M \backslash \bigcup \mathcal{A})=0$. The we have

$$
\mu(\bigcup \mathcal{A})=\sum_{B \in \mathcal{A}} \mu(B)=0
$$

therefore $\mu(M)=0$.
The proof for $\underline{D}(\nu, \mu, x)$ is analogous.
Theorem 1.7. Let $\nu$ and $\mu$ be Radon measures on $\mathbf{R}^{n}$, $\mu$ satisfy Vitali theorem, $c \in(0, \infty)$, and $M \subset \mathbf{R}^{n}$.
(i) If for every $x \in M$ we have $\bar{D}(\nu, \mu, x)>c$, then $\nu^{*}(M) \geq c \mu^{*}(M)$.
(ii) Iffor every $x \in M$ we have $\underline{D}(\nu, \mu, x)<c$, then there exists $H \subset M$ such that $\mu(M \backslash H)=$ 0 and $\nu^{*}(H) \leq c \mu^{*}(M)$.
Proof. (i) Choose $\varepsilon>0$. There exists an open set $G \subset \mathbf{R}^{n}$ with $M \subset G$ and $\nu(G) \leq \nu^{*}(M)+\varepsilon$. Set

$$
\mathcal{V}=\{B \in \mathcal{B} ; B \subset G, \nu(B)>c \mu(B)\} .
$$

The family $\mathcal{V}$ is a Vitali cover of $M$. There exists a disjoint countable subfamily $\mathcal{A} \subset \mathcal{V}$ with $\mu(M \backslash \bigcup \mathcal{A})=0$. Then we have

$$
\begin{aligned}
\nu^{*}(M)+\varepsilon & \geq \nu(G) \geq \nu(\bigcup \mathcal{A})=\sum_{B \in \mathcal{A}} \nu(B) \\
& \geq \sum_{B \in \mathcal{A}} c \mu(B)=c \mu(\bigcup \mathcal{A}) \geq c \mu^{*}(M)
\end{aligned}
$$

Taking $\varepsilon \rightarrow 0+$ we get the desired inequality.
The end of the lecture no. 5, 7.11. 2022
(ii) Choose $k \in \mathbf{N}$. There exists an open set $G_{k} \subset \mathbf{R}^{n}$ such that $M \subset G_{k}$ and $\mu\left(G_{k}\right) \leq$ $\mu^{*}(M)+1 / k$. Set

$$
\mathcal{V}_{k}=\left\{B \in \mathcal{B} ; B \subset G_{k}, \nu(B)<c \mu(B)\right\}
$$

The system $\mathcal{V}_{k}$ is a Vitali cover of $M$. Thus there exists a countable disjoint subfamily $\mathcal{A}_{k} \subset \mathcal{V}_{k}$ such that $\mu\left(M \backslash \bigcup \mathcal{A}_{k}\right)=0$. Set $H_{k}=M \cap \bigcup \mathcal{A}_{k}$. Then $\mu\left(M \backslash H_{k}\right)=0, H_{k} \subset M$ and we have

$$
\begin{aligned}
\nu^{*}\left(H_{k}\right) & \leq \nu\left(\bigcup \mathcal{A}_{k}\right)=\sum_{B \in \mathcal{A}} \nu(B) \leq c \sum_{B \in \mathcal{A}} \mu(B)=c \mu(\bigcup \mathcal{A}) \\
& \leq c \mu\left(G_{k}\right) \leq c\left(\mu^{*}(M)+\frac{1}{k}\right) .
\end{aligned}
$$

Now we set $H=\bigcap_{k=1}^{\infty} H_{k}$. Then we have $\nu^{*}(H) \leq c \mu^{*}(M)$ and

$$
\mu(M \backslash H)=\mu^{*}(M \backslash H) \leq \sum_{k=1}^{\infty} \mu^{*}\left(M \backslash H_{k}\right)=0
$$

Theorem 1.8. Let $\nu$ and $\mu$ be Radon measures on $\mathbf{R}^{n}$ and $\mu$ satisfies Vitali theorem. Then $D(\nu, \mu, x)$ is finite $\mu$-a.e.

Proof. Denote

$$
\begin{aligned}
D & =\left\{x \in \mathbf{R}^{n} ; D(\nu, \mu, x) \in\langle 0, \infty)\right\}, \\
N_{1} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x) \text { is not defined }\right\}, \\
N_{2} & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x) \text { is not defined }\right\}, \\
N_{3} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x)=\infty\right\}, \\
N_{4} & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<\bar{D}(\nu, \mu, x)\right\} .
\end{aligned}
$$

Then we have

- $D=\mathbf{R}^{n} \backslash\left(N_{1} \cup N_{2} \cup N_{3} \cup N_{4}\right)$,
- $\mu\left(N_{1}\right)=\mu\left(N_{2}\right)=0$ (Theorem 1.6).

Further we define

$$
\begin{aligned}
A_{k} & =\left\{x \in \mathbf{R}^{n} ; \bar{D}(\nu, \mu, x)>k\right\}, \\
A(r, s) & =\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<s<r<\bar{D}(\nu, \mu, x)\right\}, \quad s, r \in \mathbf{Q}^{+}, s<r .
\end{aligned}
$$

The we have

$$
\begin{aligned}
& N_{3}=\bigcap_{k=1}^{\infty} A_{k}, \\
& N_{4}=\bigcup^{\prime}\left\{A(r, s) ; r, s \in \mathbf{Q}^{+}, s<r\right\} .
\end{aligned}
$$

We show $\mu\left(N_{3}\right)=0$. Choose $Q \subset N_{3}$ bounded. By Theorem 1.7(i) we have

$$
k \mu^{*}(Q) \leq \nu^{*}(Q)<\infty
$$

for every $k \in \mathbf{N}$. Therefore $\mu^{*}(Q)=0$ and thus also $\mu\left(N_{3}\right)=0$, since $N_{3}$ is a countable union of bounded sets.

We show $\mu\left(N_{4}\right)=0$. It is sufficient to show $\mu(A(r, s))=0$ for every $s, r \in \mathbf{Q}^{+}, s<r$. Choose $Q \subset A(r, s)$ bounded. By Theorem 1.7 (ii) there exists $H \subset Q$ such that $\mu(Q \backslash H)=0$ and $\nu^{*}(H) \leq s \mu^{*}(Q)$. By Theorem 1.7(i) we have $r \mu^{*}(H) \leq \nu^{*}(H)$. We may conclude

$$
r \mu^{*}(Q)=r \mu^{*}(H) \leq \nu^{*}(H) \leq s \mu^{*}(Q)<\infty .
$$

Since $r>s>0$, we have $\mu^{*}(Q)=0$. This implies $\mu(A(r, s))=0$.
Lemma 1.9. Let $\nu$ and $\mu$ be Radon measures on $\mathbf{R}^{n}$ and $\mu$ satisfies Vitali theorem. Then the mappings $x \mapsto \bar{D}(\nu, \mu, x), x \mapsto \underline{D}(\nu, \mu, x)$ are $\mu$-measurable.

Proof. We start with the following observation.
The set

$$
M(r, \alpha)=\left\{x \in \mathbf{R}^{n} ; \exists B \in \mathcal{B}: \operatorname{diam} B<r \wedge x \in B \wedge \frac{\nu(B)}{\mu(B)}<\alpha\right\}
$$

is open for every $r>0$ and $\alpha \in \mathbf{R}$.
If $x \in M(r, \alpha)$, then there exist $y \in \mathbf{R}^{n}$ and $s>0$ with $x \in \bar{B}(y, s), 2 s<r$,

$$
\frac{\nu(\bar{B}(y, s))}{\mu(\bar{B}(y, s))}<\alpha
$$

We find $s^{\prime}>s$ such that $2 s^{\prime}<r, \nu\left(\bar{B}\left(y, s^{\prime}\right)\right) / \mu\left(\bar{B}\left(y, s^{\prime}\right)\right)<\alpha$. Now we have $x \in B\left(y, s^{\prime}\right) \subset$ $M(r, \alpha)$. This finishes the proof of the observation.

Denote $D=\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)\right.$ exists finite $\}$. The set $D$ is $\mu$-measurable by Theorem 1.8 . For every $x \in D$ we have

$$
\begin{aligned}
& \underline{D}(\nu, \mu, x)<\alpha \\
& \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau>0 \forall r \in \mathbf{Q}, r>0 \exists B \in B: \operatorname{diam} B<r, x \in B, \frac{\nu(B)}{\mu(B)}<\alpha-\tau \\
& \Leftrightarrow \exists \tau \in \mathbf{Q}, \tau>0 \forall r \in \mathbf{Q}, r>0: x \in M(r, \alpha-\tau)
\end{aligned}
$$

The set $\left\{x \in \mathbf{R}^{n} ; \underline{D}(\nu, \mu, x)<\alpha\right\}$ is intersection of $D$ with a Borel set. This implies that the mapping $x \mapsto \underline{D}(\nu, \mu, x)$ is $\mu$-measurable.

Measurability of the mapping $x \mapsto \bar{D}(\nu, \mu, x)$ can be proved analogously.
Theorem 1.10. Let $\nu$ and $\mu$ be Radon measures on $\mathbf{R}^{n}$, $\mu$ satisfies Vitali theorem, $\nu \ll \mu$, and $B \subset \mathbf{R}^{n}$ is $\mu$-measurable. Then we have

$$
\int_{B} D(\nu, \mu, x) d \mu(x)=\nu(B)
$$

Proof. Let $B \subset \mathbf{R}^{n}$ be a $\mu$-measurable set. Choose $\beta \in \mathbf{R}, \beta>1$. Define

$$
\begin{aligned}
B_{k} & =\left\{x \in B ; \beta^{k}<D(\nu, \mu, x) \leq \beta^{k+1}\right\}, \quad k \in \mathbf{Z} \\
N & =\{x \in B ; D(\nu, \mu, x)=0\}
\end{aligned}
$$

These sets are $\mu$-measurable by Lemma 1.9 . Using Theorem 1.8 we have

$$
\mu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0
$$

Then we have

$$
\begin{aligned}
\int_{B} D(\nu, \mu, x) d \mu(x) & =\sum_{k=-\infty}^{\infty} \int_{B_{k}} D(\nu, \mu, x) d \mu(x) \leq \sum_{k=-\infty}^{\infty} \beta^{k+1} \mu\left(B_{k}\right) \\
& \leq \sum_{k=-\infty}^{\infty} \beta^{k+1} \beta^{-k} \nu\left(B_{k}\right) \leq \beta \nu(B)
\end{aligned}
$$

Going $\beta \rightarrow 1+$ we get

$$
\int_{B} D(\nu, \mu, x) d \mu(x) \leq \nu(B) .
$$

Now let $\beta>1$ again. Define

$$
\begin{aligned}
B_{k} & =\left\{x \in B ; \beta^{k} \leq D(\nu, \mu, x)<\beta^{k+1}\right\}, \\
N & =\{x \in B ; D(\nu, \mu, x)=0\} .
\end{aligned}
$$

Besides the equality

$$
\mu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0
$$

we have also $\nu\left(B \backslash\left(\bigcup_{k=-\infty}^{\infty} B_{k} \cup N\right)\right)=0$, since $\nu \ll \mu$. By Theorem 1.7(ii) and absolute continuity of $\nu$ with respect to $\mu$ we obtain $\nu^{*}(Q) \leq c \mu^{*}(Q)<\infty$ for any $c>0$ and $Q \subset N$ bounded. Similarly as in the proof of Theorem 1.8 we get $\nu(N)=0$. Then we have

$$
\begin{aligned}
\int_{B} D(\nu, \mu, x) d \mu(x) & \geq \sum_{k=-\infty}^{\infty} \int_{B_{k}} D(\nu, \mu, x) d \mu(x) \geq \sum_{k=-\infty}^{\infty} \beta^{k} \mu\left(B_{k}\right) \\
& \geq \sum_{k=-\infty}^{\infty} \beta^{k} \beta^{-(k+1)} \nu\left(B_{k}\right)=\frac{1}{\beta} \nu(B)
\end{aligned}
$$

Now it follows $\int_{B} D(\nu, \mu, x) d \mu(x) \geq \nu(B)$.
The end of the lecture no. 6, 14.11.2022

### 1.3 Lebesgue points

Definition. Let $\mu$ be a Radon measure on $\mathbf{R}^{n}$. The symbol $\mathcal{L}_{l o c}^{1}(\mu)$ denotes the set of all functions $f: \mathbf{R}^{n} \rightarrow \mathbf{C}$, which are $\mu$-measurable and for every $x \in \mathbf{R}^{n}$ there exists $r>0$ such that $\int_{B(x, r)}|f(t)| d \mu(t)<\infty$.
Definition. Let $f \in \mathcal{L}_{l o c}^{1}(\mu)$. We say that $x \in \mathbf{R}^{n}$ is Lebesgue point of $f$ (with respect to $\mu$ ), if it holds

$$
\forall \varepsilon>0 \exists \delta>0 \forall B \in \mathcal{B}, x \in B, \operatorname{diam} B<\delta: \frac{\int_{B}|f(t)-f(x)| d \mu(t)}{\mu(B)}<\varepsilon
$$

Theorem 1.11. Let $\mu$ be a Radon measure on $\mathbf{R}^{n}$ satisfying Vitali theorem and $f \in \mathcal{L}_{\text {loc }}^{1}(\mu)$. Then $\mu$-a.e. points of $f$ are Lebesgue points.

Proof. Without any loss of generality we may assume that $\mu\left(\mathbf{R}^{n}\right)<\infty$ and $f \in \mathcal{L}^{1}(\mu)$. Let $\left(C_{k}\right)$ be a sequence of closed discs in $\mathbf{C}$, which forms a basis of $\mathbf{C}$. We denote

$$
g_{k}(x):=\operatorname{dist}\left(f(x), C_{k}\right), \quad x \in \mathbf{R}^{n} .
$$

The function $g_{k}$ is nonnegative $\mu$-measurable function satisfying $g_{k} \in \mathcal{L}^{1}(\mu)$. Let $\nu_{k}=\int g_{k} d \mu$. By Theorem 1.10 we have $D\left(\nu_{k}, \mu, x\right)=g_{k}(x) \mu$-a.e. Denote

$$
P_{k}=\left\{x \in f^{-1}\left(C_{k}\right) ; \neg\left(D\left(\nu_{k}, \mu, x\right)=0\right)\right\} .
$$

We have $g_{k}=0$ on $f^{-1}\left(C_{k}\right)$, therefore $\mu\left(P_{k}\right)=0$. We show that every point from $\mathbf{R}^{n} \backslash \bigcup_{k=1}^{\infty} P_{k}$ is a Lebesgue point of $f$.

Let $x \in \mathbf{R}^{n} \backslash \bigcup_{k=1}^{\infty} P_{k}$. Choose $\varepsilon>0$. We find $C_{k}$ such that $f(x) \in C_{k}$ and $C_{k} \subset$ $B(f(x), \varepsilon / 2)$. For any $t \in \mathbf{R}^{n}$ it holds

$$
|f(t)-f(x)| \leq g_{k}(t)+\varepsilon
$$

There exists $\delta>0$ such that

$$
\forall B \in \mathcal{B}, x \in B, \operatorname{diam} B<\delta: \frac{\int_{B} g_{k}(t) d \mu(t)}{\mu(B)}<\varepsilon
$$

since $D\left(\nu_{k}, \mu, x\right)=0$. Take $B \in \mathcal{B}$ with $x \in B$, $\operatorname{diam} B<\delta$ we get

$$
\frac{\int_{B}|f(t)-f(x)| d \mu(t)}{\mu(B)} \leq \frac{\int_{B} g_{k}(t) d \mu(t)+\varepsilon \mu(B)}{\mu(B)}<2 \varepsilon .
$$

This finishes the proof.

### 1.4 Density theorem

Definition. Let $\mu$ be a measure on $\mathbf{R}^{n}, A \subset \mathbf{R}^{n}$ be $\mu$-measurable, and $x \in \mathbf{R}^{n}$. We say that $c \in[0,1]$ is $\mu$-density of the set $A$ at $x$, if

$$
\forall \varepsilon>0 \exists \delta>0 \forall B \in \mathcal{B}, x \in B \text {, } \operatorname{diam} B<\delta:\left|\frac{\mu(A \cap B)}{\mu(B)}-c\right|<\varepsilon
$$

We denote $\mathrm{d}_{\mu}(A, x)=c$.
Theorem 1.12. Let $\mu$ be a Radon measure on $\mathbf{R}^{n}$ satisfying Vitali theorem and $M \subset \mathbf{R}^{n}$ be $\mu$-measurable. Then

- $\mathrm{d}_{\mu}(M, x)=1$ for $\mu$-a.e. $x \in M$,
- $\mathrm{d}_{\mu}(M, x)=0$ for $\mu$-a.e. $x \in \mathbf{R}^{n} \backslash M$.

Proof. Define $\nu$ on $\mathbf{R}^{n}$ by

$$
\nu(A)=\mu(A \cap M) \quad \text { for every } A \subset \mathbf{R}^{n} \mu \text {-measurable. }
$$

Then we have

- $\mathrm{d}_{\mu}(M, x)=D(\nu, \mu, x)$, if at least one term is well defined,
- $\nu \ll \mu$,
- $\nu=\int \chi_{M} d \mu$.

By Theorem 1.10 we have $\nu=\int D(\nu, \mu, x) d \mu(x)$ therefore $\mathrm{d}_{\mu}(M, x)=D(\nu, \mu, x)=$ $\chi_{M}(x) \mu$-a.e.

### 1.5 AC and BV functions

Remark. For $a, c, b \in \mathbf{R}, a<c<b$, it holds

- $\mathrm{V}_{a}^{b} f=\mathrm{V}_{a}^{c} f+\mathrm{V}_{c}^{b} f$,
- $|f(b)-f(a)| \leq \mathrm{V}_{a}^{b} f$.

Example. Let $f$ be a function with continuous derivative on an interval $[a, b]$. Then $\mathrm{V}_{a}^{b} f=$ $\int_{a}^{b}\left|f^{\prime}(x)\right| d x$.
Remark. Let $I$ be a closed nonempty interval. Then we have
(a) $f, g \in A C(I) \Rightarrow f+g \in A C(I)$,
(b) $f \in A C(I), \alpha \in \mathbf{R} \Rightarrow \alpha f \in A C(I)$.

Theorem 1.13. Let $f:[a, b] \rightarrow \mathbf{R}, a<b$. Then $f$ is absolutely continuous on $[a, b]$ if and only if $f$ is difference of of two nondecreasing absolutely continuous functions on $[a, b]$.

Proof. $\Rightarrow$ We denote $v(x)=\mathrm{V}_{a}^{x} f, x \in[a, b]$. For every $x, y \in I:=[a, b], x<y$, we have $v(y)-v(x)=V_{x}^{y} f$. The function $v$ is well defined since $f \in B V([a, x]), x \in[a, b]$.

The function $v$ is nondecreasing. This is obvious.
The function $v-f$ is nondecreasing. For every $x, y \in I, x<y$ we have $(v(y)-f(y))-(v(x)-f(x))=(v(y)-v(x))-(f(y)-f(x))=V_{x}^{y} f-(f(y)-f(x)) \geq 0$.

The function $v$ is absolutely continuous. Choose $\varepsilon>0$. We find $\delta>0$ such that

$$
\sum_{j=1}^{m}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\varepsilon,
$$

whenever $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{m}<b_{m}$ are points from $I=[a, b]$ with $\sum_{j=1}^{m}\left(b_{j}-a_{j}\right)<$ $\delta$. Now assume that we have points $A_{1}<B_{1} \leq A_{2}<B_{2} \leq \cdots \leq A_{p}<B_{p}$ from $I$ satisfying $\sum_{j=1}^{p}\left(B_{j}-A_{j}\right)<\delta$. For each $j \in\{1, \ldots, p\}$ we find points

$$
A_{j}=a_{1}^{j}<b_{1}^{j}=a_{2}^{j}<b_{2}^{j}=\cdots<b_{m_{j}}^{j}=B_{j}
$$

such that

$$
v\left(B_{j}\right)-v\left(A_{j}\right)=V_{A_{j}}^{B_{j}} f<\sum_{i=1}^{m_{j}}\left|f\left(b_{i}^{j}\right)-f\left(a_{i}^{j}\right)\right|+\frac{\varepsilon}{p} .
$$

The we have

$$
\sum_{j=1}^{p} \sum_{i=1}^{m_{j}}\left(b_{i}^{j}-a_{i}^{j}\right)=\sum_{j=1}^{p}\left(B_{j}-A_{j}\right)<\delta
$$

and

$$
\sum_{j=1}^{p}\left|v\left(B_{j}\right)-v\left(A_{j}\right)\right|<\sum_{j=1}^{p}\left(\sum_{i=1}^{m_{j}}\left|f\left(b_{i}^{j}\right)-f\left(a_{i}^{j}\right)\right|+\frac{\varepsilon}{p}\right)<\varepsilon+\varepsilon=2 \varepsilon
$$

Now we can write $f=v-(v-f)$.
The end of the lecture no. 7, 21.11. 2022
Remark. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be nondecreasing function which is continuous at each point from the right. Then there exists a Radon measure $\nu_{F}$ such that $F$ is the distribution function of $\nu_{F}$, i.e.,

$$
\nu_{F}((a, b])=F(b)-F(a), \quad a, b \in \mathbf{R}, a<b
$$

Lemma 1.14. Let $f:(a, b) \rightarrow \mathbf{R}, x_{0} \in(a, b)$, and $f^{\prime}\left(x_{0}\right) \in \mathbf{R}$. Then we have

$$
\lim _{\substack{\left[x_{1}, x_{2}\right] \rightarrow\left[x_{0}, x_{0}\right] \\ x_{1} \leq x_{0} \leq x_{2}, x_{1} \neq x_{2}}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}\left(x_{0}\right) .
$$

Lemma 1.15. Let $f:(a, b) \rightarrow \mathbf{R}$ be nondecreasing on $(a, b), C(f)$ be the set of all points of continuity of $f$, and $A \in \mathbf{R}$. Then for every $x_{0} \in C(f)$ it holds

$$
f^{\prime}\left(x_{0}\right)=A \Leftrightarrow \lim _{\substack{\left[x_{1}, x_{2}\right] \rightarrow\left[x_{0}, x_{0}\right] \\ x_{1} \leq x_{1} \leq x_{2}, x_{1} \neq x_{2} \\ x_{1}, x_{2} \in C(f)}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=A .
$$

Lemma 1.16. Let $f$ be a distribution function of a measure $\mu$ on $\mathbf{R}, x_{0} \in C(f), A \in \mathbf{R}$. Then

$$
f^{\prime}\left(x_{0}\right)=A \Leftrightarrow D\left(\mu, \lambda_{1}, x_{0}\right)=A
$$

Theorem 1.17 (Lebesgue). Let $f$ be a monotone function on an interval $I$. Then we have

- $f^{\prime}(x)$ exists a.e. in I,
- $f^{\prime}$ is measurable and $\left|\int_{a}^{b} f^{\prime}\right| \leq|f(b)-f(a)|$, whenever $a, b \in I, a<b$,
- $f^{\prime} \in \mathcal{L}_{l o c}^{1}(I)$.

Theorem 1.18. Let $I$ be a nonempty interval and $f \in B V(I)$. Then $f^{\prime}(x)$ exists finite a.e. in $I$.
The end of the lecture no. 8,23.11.2022
Theorem 1.19. Let $f:[a, b] \rightarrow \mathbf{R}, a<b$. Then the following assertions are equivalent.
(i) $f \in A C([a, b])$.
(ii) We have $\varphi \in \mathcal{L}^{1}([a, b])$ such that

$$
f(x)=f(a)+\int_{a}^{x} \varphi(t) d t, \quad x \in[a, b] .
$$

(iii) $f^{\prime}(x)$ exists a.e. in $[a, b], f^{\prime} \in \mathcal{L}^{1}([a, b])$ and

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) d t, \quad x \in[a, b]
$$

Theorem 1.20 (per partes for Lebesgue integral). Let $f, g \in A C([a, b])$. Then we have

$$
\int_{a}^{b} f^{\prime} g=[f g]_{a}^{b}-\int_{a}^{b} f g^{\prime}
$$

Theorem 1.21. Let $g$ be a nonnegative function on $[a, b]$ with $g \in \mathcal{L}^{1}([a, b])$. Let $f$ be a continuous function on $[a, b]$. The there exists $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f g=f(\xi) \int_{a}^{b} g
$$

Theorem 1.22. Let $f \in \mathcal{L}^{1}([a, b])$ and $g$ be a monotone function on $[a, b]$. Then there exists $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f g=g(a) \int_{a}^{\xi} f+g(b) \int_{\xi}^{b} f
$$

### 1.6 Rademacher theorem

Definition. Let $M \subset \mathbf{R}^{n}$. We say that $f: M \rightarrow \mathbf{R}$ is Lipschitz (on $M$ ), if there exists $K>0$ such that

$$
\forall x, y \in M:|f(x)-f(y)| \leq K\|x-y\| .
$$

Remark. If $f$ is Lipschitz on $M$, then $f$ is continuous on $M$.
Theorem 1.23. Let $G \subset \mathbf{R}^{n}$ be open nonempty and $f: G \rightarrow \mathbf{R}$ be Lipschitz on $G$. Then $f$ is differentiable a.e. on $G$.

Lemma 1.24. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be continuous and $i \in\{1, \ldots, n\}$. Then the set

$$
D_{i}=\left\{x \in \mathbf{R}^{n} ; \frac{\partial f}{\partial x_{i}}(x) \text { exists }\right\}
$$

is Borel.

Proof. We have

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{i}}(x) \text { exists } \\
& \Leftrightarrow \forall \varepsilon>0 \exists \delta>0 \forall t_{1}, t_{2} \in(-\delta, \delta) \backslash\{0\}:\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon \\
& \Leftrightarrow \forall \varepsilon \in \mathbf{Q}^{+} \exists \delta \in \mathbf{Q}^{+} \forall t_{1}, t_{2} \in((-\delta, \delta) \cap \mathbf{Q}) \backslash\{0\}:\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon
\end{aligned}
$$

The end of the lecture no. 9, 28.11.2022
For $\varepsilon>0$ and nonzero $t_{1}, t_{2}$ denote

$$
D\left(\varepsilon, t_{1}, t_{2}\right)=\left\{x \in \mathbf{R}^{n} ;\left|\frac{f\left(x+t_{1} e_{i}\right)-f(x)}{t_{1}}-\frac{f\left(x+t_{2} e_{i}\right)-f(x)}{t_{2}}\right|<\varepsilon\right\} .
$$

The set $D\left(\varepsilon, t_{1}, t_{2}\right)$ is open since $f$ is continuous. We have

$$
D_{i}=\bigcap_{\varepsilon \in \mathbf{Q}^{+}} \bigcup_{\delta \in \mathbf{Q}^{+}} \bigcap_{t_{1} \in(-\delta, \delta) \cap \mathbf{Q}} \bigcap_{\substack{t_{2} \in(-\delta, \delta) \cap \mathbf{Q} \\ t_{1} \neq 0}} D\left(\varepsilon, t_{1}, t_{2}\right),
$$

therefore $D_{i}$ is Borel.
Lemma 1.25. Let $\beta>0, A \neq \emptyset, f_{\alpha}, \alpha \in A$, be $\beta$-Lipschitz function on $\mathbf{R}^{n}$ and $x \in \mathbf{R}^{n}$ be such that $\sup _{\alpha \in A} f_{\alpha}(x)$ is finite. Then the function $z \mapsto \sup _{\alpha \in A} f_{\alpha}(z)$ is $\beta$-Lipschitz on $\mathbf{R}^{n}$.

Proof. Let $u, v \in \mathbf{R}^{n}$. Then $\left|f_{\gamma}(u)-f_{\gamma}(x)\right| \leq \beta\|u-x\|$ for any $\gamma \in A$, therefore

$$
f_{\gamma}(u) \leq f_{\gamma}(x)+\beta\|u-x\| \leq \sup _{\alpha \in A} f_{\alpha}(x)+\beta\|u-x\| .
$$

This implies

$$
\sup _{\gamma \in A} f_{\gamma}(u) \leq \sup _{\alpha \in A} f_{\alpha}(x)+\beta\|u-x\|,
$$

thus $\sup _{\gamma \in A} f_{\gamma}(u) \in \mathbf{R}$. Further we have

$$
f_{\gamma}(u) \leq f_{\gamma}(v)+\beta\|u-v\| \leq \sup _{\alpha \in A} f_{\alpha}(v)+\beta\|u-v\| \quad \text { for every } \gamma \in A
$$

We get

$$
\sup _{\gamma \in A} f_{\gamma}(u) \leq \sup _{\alpha \in A} f_{\alpha}(v)+\beta\|u-v\| .
$$

Thus we have

$$
\sup _{\alpha \in A} f_{\alpha}(u)-\sup _{\alpha \in A} f_{\alpha}(v) \leq \beta\|u-v\| .
$$

Interchanging the roles of $u$ and $v$ we obtain

$$
\sup _{\alpha \in A} f_{\alpha}(v)-\sup _{\alpha \in A} f_{\alpha}(u) \leq \beta\|u-v\|,
$$

which proves $\beta$-Lipschitzness.

Lemma 1.26. Let $E \subset \mathbf{R}^{n}$ be nonempty and $f: E \rightarrow \mathbf{R}$ be $\beta$-Lipschitz. Then there exists $\beta$-Lipschitz function $\tilde{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with $\left.\tilde{f}\right|_{E}=f$.

Proof. The function $f_{x}: y \mapsto f(x)-\beta \cdot\|y-x\|$ is $\beta$-Lipschitz for every $x \in E$ since

$$
\left|f_{x}(u)-f_{x}(v)\right|=|\beta \cdot\|u-x\|-\beta \cdot\|v-x|\|\mid \leq \beta\| u-v \|
$$

for every $u, v \in \mathbf{R}^{n}$. For every $y \in E$ we have $\sup _{x \in E} f_{x}(y) \leq f(y)$. Using Lemma 1.25 we get the mapping defined by

$$
\tilde{f}(y)=\sup _{x \in E}(f(x)-\beta\|y-x\|)
$$

is $\beta$-Lipschitz on $\mathbf{R}^{n}$. For $z \in E$ we have $\tilde{f}(z) \geq f_{z}(z)=f(z)$. Moreover $f_{x}(z)=f(x)-$ $\beta\|z-x\| \leq f(z)$, which gives $\tilde{f}(z) \leq f(z)$. Thus we prove $\tilde{f}(z)=f(z)$.

Proof of Theorem 1.23. By Lemma 1.26 we may suppose that $f$ is Lipschitz with the constant $\beta$ on $\mathbf{R}^{n}$, i.e.,

$$
\forall x, y \in \mathbf{R}^{n}:|f(x)-f(y)| \leq \beta\|x-y\| .
$$

We show that $f$ is differentiable a.e. This gives also the statement of the theorem. Let $E \subset \mathbf{R}^{n}$ be a set of those points where at least one partial derivative does not exist. The set $\mathbf{R}^{n} \backslash D_{i}$ is by Lemma 1.24 measurable. We use Fubini theorem and Rademacher theorem for $n=1$ (see Remark) to get $\lambda_{n}\left(\mathbf{R}^{n} \backslash D_{i}\right)=0$. Then we have $\lambda_{n}(E)=0$, since $E=\bigcup_{i=1}^{n}\left(\mathbf{R}^{n} \backslash D_{i}\right)$.

For $p, q \in \mathbf{Q}^{n}, m \in \mathbf{N}$, denote

$$
S(p, q, m)=\left\{x \in \mathbf{R}^{n} ; \forall i \in\{1, \ldots, n\} \forall t \in(-1 / m, 1 / m) \backslash\{0\}: p_{i} \leq \frac{f\left(x+t e_{i}\right)-f(x)}{t} \leq q_{i}\right\} .
$$

It is easy to verify that the set $S(p, q, m)$ is Borel. Let $\tilde{S}(p, q, m)$ be the set of all points of $S(p, q, m)$, where $S(p, q, m)$ has density 1 . Then Theorem 1.12 gives

$$
\lambda_{n}(S(p, q, m) \backslash \tilde{S}(p, q, m))=0
$$

The set

$$
N=\bigcup\left\{S(p, q, m) \backslash \tilde{S}(p, q, m) ; p, q \in \mathbf{Q}^{n}, m \in \mathbf{N}\right\}
$$

is of measure zero.
We show that $f$ is differentiable at each point $x \in \mathbf{R}^{n} \backslash(E \cup N)$. Take $x \in \mathbf{R}^{n} \backslash(E \cup N)$ and $\varepsilon \in(0,1)$. Choose $p, q \in \mathbf{Q}^{n}$ such that

$$
q_{i}-\varepsilon<p_{i}<\frac{\partial f}{\partial x_{i}}(x)<q_{i}, \quad i=1, \ldots, n
$$

Then there is $m \in \mathbf{N}$ such that $x \in S(p, q, m)$. Since $x \notin N$, the point $x$ is a point of density of the set $S(p, q, m)$. Denote $S=S(p, q, m)$.

We find $\delta \in(0,1 / m)$ such that

$$
\lambda_{n}(B(x, r) \backslash S) \leq\left(\frac{\varepsilon}{2}\right)^{n} \lambda_{n}(B(x, r))
$$

for every $r \in(0,2 \delta)$. Notice that the set $B(x,(1+\varepsilon) \tau) \backslash S$ does not contain a ball with radius $\varepsilon \tau$, whenever $\tau \in(0, \delta)$. Otherwise it would hold

$$
c_{n}(\varepsilon \tau)^{n} \leq(\varepsilon / 2)^{n} c_{n}(1+\varepsilon)^{n} \tau^{n},
$$

a contradiction. (The symbol $c_{n}$ denotes $n$-dimensional measure of the unit ball.)
Choose $y \in B(x, \delta), y \neq x$. Denote

$$
y^{i}=\left[y_{1}, y_{2}, \ldots, y_{i}, x_{i+1}, \ldots, x_{n}\right] .
$$

For every $i \in\{0, \ldots, n\}$ define a ball $B_{i}=B\left(y^{i}, \varepsilon\|y-x\|\right)$. Using the preceding observation we have $B_{i} \cap S \neq \emptyset$. Find points $z^{i} \in S \cap B_{i}, i=0, \ldots, n-1$, and denote $w^{i}=z^{i-1}+\left(y_{i}-x_{i}\right) e_{i}$, $i=1, \ldots, n$.

The end of the lecture no. 10, 5.12. 2022
Then we have

$$
\begin{aligned}
& p_{i} \leq \frac{f\left(w^{i}\right)-f\left(z^{i-1}\right)}{y_{i}-x_{i}} \leq q_{i} \quad \text { if } x_{i} \neq y_{i}, \\
& p_{i}<\frac{\partial f}{\partial x_{i}}(x)<q_{i},
\end{aligned}
$$

therefore

$$
\left|f\left(w^{i}\right)-f\left(z^{i-1}\right)-\frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right| \leq\left(q_{i}-p_{i}\right)\left|y_{i}-x_{i}\right| \leq \varepsilon\|y-x\| .
$$

Then we have

$$
\begin{aligned}
& \left|f(y)-f(x)-\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right| \\
& \leq \sum_{i=1}^{n}\left|f\left(w^{i}\right)-f\left(z^{i-1}\right)-\frac{\partial f}{\partial x_{i}}(x)\left(y_{i}-x_{i}\right)\right|+\sum_{i=1}^{n}\left(\left|f\left(y^{i}\right)-f\left(w^{i}\right)\right|+\left|f\left(z^{i-1}\right)-f\left(y^{i-1}\right)\right|\right) \\
& \leq n \varepsilon\|y-x\|+2 n \beta \varepsilon\|y-x\|=\varepsilon(n+2 n \beta)\|y-x\|
\end{aligned}
$$

thus the proof is finished.
Remark. Let us mention the following two deep results of D. Preiss ([2]).

1. Let $H$ be a Hilbert space and $f: H \rightarrow \mathbf{R}$ be Lipschitz. Then there exists $x \in H$, where $f$ is Fréchet differentiable, i.e., there exists a continuous linear mapping $L: H \rightarrow \mathbf{R}$ such that

$$
\lim _{h \rightarrow 0} \frac{|f(x+h)-f(x)-L(h)|}{\|h\|}=0 .
$$

2. There exists a closed measure zero set $F \subset \mathbf{R}^{2}$ such that any Lipschitz function on $\mathbf{R}^{2}$ is differentiable at some point of $F$.

### 1.7 Maximal operator

Definition. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be measurable. For $x \in \mathbf{R}^{n}$ we define

$$
M f(x)=\sup _{B \in \mathcal{B}, x \in B} \frac{1}{\lambda_{n}(B)} \int_{B}|f| .
$$

Theorem 1.27 (Hardy-Littlewood-Wiener).
(a) If $f \in L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p \leq \infty$, then $M f$ is finite a.e.
(b) There exists $c>0$ such that for every $f \in L^{1}\left(\mathbf{R}^{n}\right)$ and $\alpha>0$ we have

$$
\lambda_{n}\left(\left\{x \in \mathbf{R}^{n} ; M f(x)>\alpha\right\}\right) \leq \frac{c}{\alpha}\|f\|_{1}
$$

(c) Let $p \in(1, \infty]$. Then there exists $A$ such that for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$ we have $\|M f\|_{p} \leq$ $A\|f\|_{p}$.

### 1.8 Lipschitz functions and $W^{1, \infty}$

Remark. We have
$W^{1, \infty}(\Omega)=L^{p}(\Omega) \cap\left\{u ; \partial_{i} u \in L^{\infty}(\Omega)\right.$ (in the sense of distributions), $\left.i \in\{1, \ldots, n\}\right\}$.
Theorem 1.28. Let $U \subset \mathbf{R}^{n}$ be open. Then $f: U \rightarrow \mathbf{R}$ is local Lipschitz on $U$ if and only if $f \in W_{\mathrm{loc}}^{1, \infty}(U)$.

Without proof.

## Chapter 2

## Hausdorff measures

### 2.1 Basic notions

Convention. We will assume that $(P, \rho)$ is a metric space.
Definition. Let $p>0, A \subset P$. Denote

$$
\begin{aligned}
\mathcal{H}_{p}(A, \delta) & =\inf \left\{\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} ; A \subset \bigcup_{j=1}^{\infty} A_{j}, \operatorname{diam} A_{j} \leq \delta\right\}, \quad \delta>0 \\
\mathcal{H}_{p}(A) & =\sup _{\delta>0} \mathcal{H}_{p}(A, \delta)
\end{aligned}
$$

The function $A \mapsto \mathcal{H}_{p}(A)$ is called p-dimensional outer Hausdorff measure.
Remark. Definice $\mathcal{H}_{s}$ se nezmění, pokud budeme uvažovat $A_{n}$ uzavřené (resp. otevřené).
Definition. Outer measure $\gamma$ on $P$ is called metric, if for every $A, B \subset P$ with $\inf \{\rho(x, y) ; x \in$ $A, y \in B\}>0$ we have $\gamma(A \cup B)=\gamma(A)+\gamma(B)$.
Theorem 2.1. Let $\gamma$ be a metric outer measure on $P$. Then every Borel subset of $P$ is $\gamma$ measurable.

The end of the lecture no. 11, 12. 12. 2022
Theorem 2.2. $\mathcal{H}_{p}$ is a metric outer measure.
Corollary 2.3. Every Borel subset of $P$ is $\mathcal{H}_{p}$-measurable.
Theorem 2.4. Let $k, n \in \mathbf{N}, k \leq n, K=[0,1)^{k} \times\{0\}^{n-k} \subset \mathbf{R}^{n}$. Then $0<\mathcal{H}_{k}(K)<\infty$.
Remark. It can be shown that $\kappa_{k}:=\mathcal{H}_{k}\left([0,1]^{k} \times\{0\}^{n-k}\right)=(4 / \pi)^{k / 2} \Gamma\left(1+\frac{k}{2}\right)$.
Definition. Let $k \in \mathbf{N}$. The $k$-dimensional normalized Hausdorff measure is defined by $H^{k}=\frac{1}{\kappa_{k}} \mathcal{H}_{k}$.
Theorem 2.5 (regularity of Hausdorff measure). Let $k, n \in \mathbf{N}, k \leq n$, and $A \subset \mathbf{R}^{n}$. Then there exists a Borel set $B \subset \mathbf{R}^{n}$ such that $A \subset B$ and $H^{k}(A)=H^{k}(B)$.
Theorem 2.6. Let $n \in \mathbf{N}$ and $A \subset \mathbf{R}^{n}$. Then $H^{n}(A)=\lambda^{n *}(A)$.

### 2.2 Area formula

Notation. Let $k, n \in \mathbf{N}, k \leq n$, and $L: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ be a linear mapping. We denote $\operatorname{vol} L=$ $\sqrt{\operatorname{det} L^{T} L}$.

Definition. Let $k, n \in \mathbf{N}, k \leq n$, and $G \subset \mathbf{R}^{k}$ be open. A mapping $f: G \rightarrow \mathbf{R}^{n}$ is said to be regular, if $f \in \mathcal{C}^{1}(G)$ and for every $x \in G$ the rank of $f^{\prime}(a)$ is $k$.

Theorem 2.7 (area formula). Let $k, n \in \mathbf{N}, k \leq n, G \subset \mathbf{R}^{k}$ be an open set, $\varphi: G \rightarrow \mathbf{R}^{n}$ be an injective regular mapping and $f: \varphi(G) \rightarrow \mathbf{R}$ be $H^{k}$-measurable. Then we have

$$
\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x)=\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

if the integral at the right side converges.


The end of the lecture no. 12, 19. 12. 2022

### 2.3 Hausdorff dimension

Lemma 2.8. Let $0<p<q, A \subset P$, and $\mathcal{H}_{p}(A)<\infty$. Then $\mathcal{H}_{q}(A)=0$.
Proof. Let $\delta \in(0,1)$ and $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a sequence of subsets of $P$ such that $A \subset \bigcup_{j=1}^{\infty} A_{j}$, $\operatorname{diam} A_{j} \leq \delta$ for every $j \in \mathbf{N}$, and $\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p}<\mathcal{H}_{p}(A)+1$. Then we have

$$
\begin{aligned}
\mathcal{H}_{q}(A, \delta) & \leq \sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{q}=\sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} \cdot\left(\operatorname{diam} A_{j}\right)^{q-p} \\
& \leq \sum_{j=1}^{\infty}\left(\operatorname{diam} A_{j}\right)^{p} \cdot \delta^{q-p} \leq \delta^{q-p}\left(\mathcal{H}_{p}(A)+1\right)
\end{aligned}
$$

Sending $\delta \rightarrow 0+$ we get $\mathcal{H}_{q}(A)=0$.

Definition. Let $A \subset P$. Hausdorff dimension of $A$ is defined by

$$
\operatorname{dim} A=\inf \left\{t \geq 0 ; \mathcal{H}_{t}(A)<\infty\right\}
$$

Remark. By Lemma 2.8 we have

$$
\mathcal{H}_{t}(A)= \begin{cases}\infty & \text { for } t<\operatorname{dim}(A) \\ 0 & \text { for } t>\operatorname{dim}(A)\end{cases}
$$

Corollary 2.9. (i) For every $A \subset B \subset P$ we have $\operatorname{dim} A \leq \operatorname{dim} B$.
(ii) For every $A_{i} \subset P, i \in \mathbf{N}$, we have $\operatorname{dim}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sup _{i} \operatorname{dim} A_{i}$.
(iii) We have $\operatorname{dim}\left([0,1]^{k} \times\{0\}^{n-k}\right)=k$, in particular, $\operatorname{dim}[0,1]^{n}=n$.

Example (Cantor set). For $s \in\{\emptyset\} \cup \bigcup_{k=1}^{\infty}\{0,1\}^{k}$ we define inductively closed intervals $I_{s}$ as follows

- $I_{\emptyset}=[0,1]$,
- if $I_{s}=[a, b]$, then $I_{s^{\wedge} i}= \begin{cases}{\left[a, a+\frac{1}{3}(b-a)\right],} & \text { if } i=0, \\ {\left[b-\frac{1}{3}(b-a), b\right],} & \text { if } i=1 .\end{cases}$

Cantor set is defined by

$$
C=\bigcap_{k=0}^{\infty} \bigcup_{s \in\{0,1\}^{k}} I_{s}
$$

The set $C$ has the following properties:

- $C$ is compact,
- $C$ is nowhere dense,
- $C$ is uncountable.

Theorem 2.10. We have $\operatorname{dim} C=\frac{\log 2}{\log 3}$.
Proof. Denote $d=\frac{\log 2}{\log 3}$.
We prove $\mathcal{H}_{d}(C) \leq 1$. We have $C \subset \bigcup_{s \in\{0,1\}^{k}} I_{s}$ and diam $I_{s} \leq 3^{-k}, s \in\{0,1\}^{k}$. We infer

$$
\sum_{s \in\{0,1\}^{k}}\left(\operatorname{diam} I_{s}\right)^{d}=2^{k} \cdot\left(3^{-k}\right)^{d}=1
$$

Then we have $\mathcal{H}_{d}(C) \leq 1$.

We prove $\mathcal{H}_{d}(C) \geq 1 / 4$. It is sufficient to prove that

$$
\sum_{j=1}^{\infty}\left(\operatorname{diam} I_{j}\right)^{d} \geq 1 / 4
$$

where $I_{j}, j \in \mathbf{N}$, are open intervals and $C \subset \bigcup_{j=1}^{\infty} I_{j}$. Convex envelope of an open set $G \subset \mathbf{R}$ is an open interval with the same diameter as $G$. The set $C$ is compact, therefore there exist intervals $I_{1}, \ldots, I_{n}$ covering $C$. Since $C$ is nowhere dense, we may assume that, that the endpoints of $I_{1}, \ldots, I_{n}$ are not in $C$. Then there exists $\delta>0$ such that

$$
\operatorname{dist}\left(C, \text { endpoints of } I_{1}, \ldots, I_{n}\right)>\delta
$$

Let $k \in \mathbf{N}$ and $3^{-k}<\delta$. Then we have

$$
\begin{equation*}
\forall s \in\{0,1\}^{k} \exists j \in\{1, \ldots, n\}: I_{s} \subset I_{j} . \tag{2.1}
\end{equation*}
$$

Claim. Let $I \subset \mathbf{R}$ be an interval and $l \in \mathbf{N}$ we have

$$
\sum_{\substack{I_{s} \subset I \\ s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d} \leq 4(\operatorname{diam} I)^{d}
$$

Proof of Claim. Suppose that the sum at the left side is nonzero. Let $m$ be the smallest natural number such that $I$ contains some $I_{t}, t \in\{0,1\}^{m}$. Then we have obviously $m \leq l$. Let $J_{1}, \ldots, J_{p}$ are those intervals among $I_{s}, s \in\{0,1\}^{m}$, which intersect $I$. The we have $p \leq 4$ by the choice of $m$. Then we have

$$
\begin{aligned}
4(\operatorname{diam} I)^{d} & \geq \sum_{i=1}^{p}\left(\operatorname{diam} J_{i}\right)^{d}=\sum_{i=1}^{p} \sum_{\substack{I_{s} \subset J_{i} \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d} \\
& \geq \sum_{\substack{I_{s} \subset I \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d} .
\end{aligned}
$$

Indeed, we have

$$
\begin{aligned}
\left(\operatorname{diam} J_{i}\right)^{d}=\left(3^{-m}\right)^{d}=2^{-m} \\
\sum_{\substack{I_{s} \subset J_{i} \\
s \in\{0,1\}^{l}}}\left(\operatorname{diam} I_{s}\right)^{d}=2^{l-m} \cdot\left(3^{-l}\right)^{d}=2^{-m} .
\end{aligned}
$$

Then we have

$$
4 \sum_{j=1}^{\infty}\left(\operatorname{diam} I_{j}\right)^{d} \stackrel{\text { Claim }}{\geq} \sum_{j=1}^{n} \sum_{\substack{I_{s} \subset I_{j} \\ s \in\{0,1\}^{k}}}\left(\operatorname{diam} I_{s}\right)^{d} \stackrel{\sqrt[2.11]{\geq}}{\geq} \sum_{s \in\{0,1\}^{k}}\left(\operatorname{diam} I_{s}\right)^{d}=1 .
$$

This finishes the proof.

Example. Let $\alpha>0$. We define
$E_{\alpha}=\left\{x \in \mathbf{R}\right.$; there exists infinitely many pairs $(p, q) \in \mathbf{Z} \times \mathbf{N}$ such that $\left.\left|x-\frac{p}{q}\right| \leq q^{-(2+\alpha)}\right\}$.
Jarník's theorem says that $\operatorname{dim} E_{\alpha}=\frac{2}{2+\alpha}$.
Definition. The mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is called similitude with ratio $r$ if $\|f(x)-f(y)\|=$ $r\|x-y\|$ for every $x, y \in \mathbf{R}^{n}$.

Theorem 2.11. Let $m \in \mathbf{N}$ and $\psi_{1}, \ldots, \psi_{m}$ be similitudes of $\mathbf{R}^{n}$ with ratios $r_{1}, \ldots, r_{m} \in(0,1)$ such that there exists an open set $V \subset \mathbf{R}^{n}$ such that $\psi(V) \subset V$ and for every $i, j \in$ $\{1, \ldots, m\}, i \neq j$, we have $\psi_{i}(V) \cap \psi_{j}(V)=\emptyset$. Let $E$ be a nonempty compact set satisfying $E=\bigcup_{i=1}^{m} \psi_{i}(E)$ and s satisfies $\sum_{i=1}^{m} r_{i}^{s}=1$. Then we have $0<\mathcal{H}_{s}(E)<\infty$.

Without proof.
Example (Koch curve). One can use Theorem 2.11to prove Theorem 2.10 or to infer that Hausskipped



## Part II

## Summer semester

## Chapter 3

## Area and coarea formulae

Theorem 3.1. Let $\left(P_{1}, \rho_{1}\right)$ and $\left(P_{2}, \rho_{2}\right)$ be metric spaces, $s>0$, and $f: P_{1} \rightarrow P_{2}$ be $\beta$-Lipschitz. Then $\mathcal{H}_{s}\left(f\left(P_{1}\right)\right) \leq \beta^{s} \mathcal{H}_{s}\left(P_{1}\right)$.

Proof. Choose $\delta>0$. Let sets $A_{j}, j \in \mathbf{N}$, satisfy $P_{1}=\bigcup_{j=1}^{\infty} A_{j}$ and diam $A_{j}<\delta$ for every $j \in \mathbf{N}$. Then we have $f\left(P_{1}\right)=\bigcup_{j=1}^{\infty} f\left(A_{j}\right)$ and $\operatorname{diam} f\left(A_{j}\right) \leq \beta \operatorname{diam} A_{j} \leq \beta \delta$. Then we have

$$
\mathcal{H}_{s}(f(A), \beta \delta) \leq \sum_{j=1}^{\infty}\left(\operatorname{diam} f\left(A_{j}\right)\right)^{s} \leq \sum_{j=1}^{\infty} \beta^{s}\left(\operatorname{diam} A_{j}\right)^{s} .
$$

This implies $\mathcal{H}_{s}(f(A), \beta \delta) \leq \beta^{s} \mathcal{H}_{s}(A, \delta)$. Sending $\delta \rightarrow 0+$, we get $\mathcal{H}_{s}(f(A)) \leq \beta^{s} \mathcal{H}_{s}(A)$.
Lemma 3.2. Let $k, n \in \mathbf{N}, k \leq n$, a $L: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ be an injective linear mapping. Then for every $\lambda^{k}$-measurable set $A \subset \mathbf{R}^{k}$ it holds

$$
\begin{equation*}
H^{k}(L(A))=\sqrt{\operatorname{det} L^{T} L} \cdot \lambda^{k}(A) \tag{3.1}
\end{equation*}
$$

Proof. The mapping $L$ is linear and injective, therefore the dimension of the vector space $L\left(\mathbf{R}^{k}\right)$ is $k$. Thus there exists a linear isometry $Q: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ such that $Q\left(\mathbf{R}^{k}\right)=L\left(\mathbf{R}^{k}\right)$. Then we have

$$
\begin{align*}
H^{k}(L(A)) & =H^{k}\left(Q^{-1} \circ L(A)\right)=\lambda^{k}\left(Q^{-1} \circ L(A)\right) \\
& =\left|\operatorname{det}\left(Q^{-1} L\right)\right| \cdot \lambda^{k}(A)  \tag{3.2}\\
\left(\operatorname{det}\left(Q^{-1} L\right)\right)^{2} & =\operatorname{det}\left(\left(Q^{-1} L\right)^{T} Q^{-1} L\right) \\
& =\operatorname{det}\left(\left(\left\langle Q^{-1} L e_{i}, Q^{-1} L e_{j}\right\rangle\right)_{i, j=1}^{n}\right)  \tag{3.3}\\
& =\operatorname{det}\left(\left(\left\langle L e_{i}, L e_{j}\right\rangle\right)_{i, j=1}^{n}\right)=\operatorname{det}\left(L^{T} L\right) .
\end{align*}
$$

The desired inequality (3.1) follows from (3.2) a (3.3).
Notation. Let $k, n \in \mathbf{N}, k \leq n$, and $L: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ be a linear mapping. We denote $\operatorname{vol} L=$ $\sqrt{\operatorname{det} L^{T} L}$.

Remark. (a) The matrix $L^{T} L$ is called Gram matrix. By Lemmatu 3.2 we have $H^{k}\left(L\left([0,1]^{k}\right)\right)=$ $\operatorname{vol} L$, thus $\operatorname{vol} L$ is $k$-dimensional volume of $L\left([0,1]^{k}\right)$. If $\varphi \in \mathcal{C}^{1}(G)$, then the mapping $t \mapsto \operatorname{vol} \varphi^{\prime}(t)$ is continuous on the set $G$.
(b) If $L$ is a matrix of the type $n \times k$, then the matrix $L^{T} L$ is symmetric and of the type $k \times k$.
(c) Gram determinant is nonnegative, since for every matrix $A$ of the type $n \times k$ and for every $x \in \mathbf{R}^{k}$ we have $\left(A^{T} A x, x\right)=(A x, A x) \geq 0$. Gram determinant is positive, whenever the rank of $L$ is $k$.

Lemma 3.3. Let $k, n \in \mathbf{N}, k \leq n, G \subset \mathbf{R}^{k}$ be open set, $\varphi: G \rightarrow \mathbf{R}^{n}$ be an injective regular mapping, $x \in G$, and $\beta>1$. Then there exists a neighbourhood $V$ of the point $x$ such that
(a) the mapping $y \mapsto \varphi\left(\varphi^{\prime}(x)^{-1}(y)\right)$ is $\beta$-Lipschitz on $\varphi^{\prime}(x)(V)$,
(b) the mapping $z \mapsto \varphi^{\prime}(x)\left(\varphi^{-1}(z)\right)$ is $\beta$-Lipschitz on $\varphi(V)$.


Figure 3.1:

Proof. First we infer several auxiliary inequalities. The linear mapping $v \mapsto \varphi^{\prime}(x)(v)$ is injective, therefore there exists $\eta>0$ such that

$$
\begin{equation*}
\forall v \in \mathbf{R}^{k}:\left\|\varphi^{\prime}(x)(v)\right\| \geq \eta\|v\| \tag{3.4}
\end{equation*}
$$

We set $\eta=\inf \left\{\left\|\varphi^{\prime}(x)(v)\right\| ; v \in \mathbf{R}^{k},\|v\|=1\right\}$. The mapping $v \mapsto \varphi^{\prime}(x)(v)$ is continuous and the unit sphere $\left\{v \in \mathbf{R}^{k} ;\|v\|=1\right\}$ is compact, therefore the infimum is attained at a point $v_{0}$. Since $\varphi^{\prime}(x)\left(v_{0}\right) \neq 0, \eta$ is positive.

We find $\varepsilon \in\left(0, \frac{1}{2} \eta\right)$ such that

$$
\begin{equation*}
\frac{2 \varepsilon}{\eta}+1<\beta \tag{3.5}
\end{equation*}
$$

Further we find a ball $V$ centered at the point $x$ such that

$$
\forall y \in V:\left\|\varphi^{\prime}(y)-\varphi^{\prime}(x)\right\| \leq \varepsilon
$$

We show that for every $u, v \in V$ it holds

$$
\begin{equation*}
\left\|\varphi(u)-\varphi(v)-\varphi^{\prime}(x)(u-v)\right\| \leq \varepsilon\|u-v\| . \tag{3.6}
\end{equation*}
$$

Fix $v \in V$ and consider the mapping

$$
g: w \mapsto \varphi(w)-\varphi(v)-\varphi^{\prime}(x)(w-v), \quad w \in V
$$

For $w \in V$ we have $g^{\prime}(w)=\varphi^{\prime}(w)-\varphi^{\prime}(x)$. Then we have

$$
\begin{aligned}
\left\|\varphi(u)-\varphi(v)-\varphi^{\prime}(x)(u-v)\right\| & =\|g(u)-g(v)\| \\
& \leq \sup \left\{\left\|g^{\prime}(w)\right\| ; w \in V\right\} \cdot\|u-v\| \\
& \leq \varepsilon\|u-v\|,
\end{aligned}
$$

this implies (3.6).
Further we show that for every $u, v \in V$ we have

$$
\begin{equation*}
\|\varphi(u)-\varphi(v)\| \geq \frac{1}{2} \eta\|u-v\| \tag{3.7}
\end{equation*}
$$

For $u, v \in V$ we compute

$$
\begin{aligned}
\|\varphi(u)-\varphi(v)\| & \geq-\left\|\varphi(u)-\varphi(v)-\varphi^{\prime}(x)(u-v)\right\|+\left\|\varphi^{\prime}(x)(u-v)\right\| \\
& \geq-\varepsilon\|u-v\|+\eta\|u-v\| \geq \frac{1}{2} \eta\|u-v\|
\end{aligned}
$$

this gives (3.7).
(a) Choose $a, b \in \varphi^{\prime}(x)(V)$. We find $u, v \in V$ such that $\varphi^{\prime}(x)(u)=a, \varphi^{\prime}(x)(v)=b$. We compute

$$
\begin{aligned}
\| \varphi\left(\varphi^{\prime}(x)^{-1}(a)\right) & -\varphi\left(\varphi^{\prime}(x)^{-1}(b)\right)\|=\| \varphi(u)-\varphi(v) \| \\
& \leq\left\|\varphi(u)-\varphi(v)-\varphi^{\prime}(x)(u-v)\right\|+\left\|\varphi^{\prime}(x)(u-v)\right\| \\
& \stackrel{3.6}{\leq} \varepsilon\|u-v\|+\left\|\varphi^{\prime}(x)(u-v)\right\| \\
& \stackrel{3.4}{\leq} \frac{\varepsilon}{\eta}\|a-b\|+\|a-b\|=\left(\frac{\varepsilon}{\eta}+1\right)\|a-b\| \\
& \stackrel{\text { B.5. }}{\leq} \beta\|a-b\| .
\end{aligned}
$$

(b) Choose $p, q \in \varphi(V)$. We find $u, v \in V$ with $\varphi(u)=p, \varphi(v)=q$. Compute

$$
\begin{aligned}
\| \varphi^{\prime}(x)\left(\varphi^{-1}(p)\right) & -\varphi^{\prime}(x)\left(\varphi^{-1}(q)\right)\|=\| \varphi^{\prime}(x)(u)-\varphi^{\prime}(x)(v) \| \\
& =\left\|\varphi^{\prime}(x)(u-v)\right\| \\
& \leq\left\|\varphi(u)-\varphi(v)-\varphi^{\prime}(x)(u-v)\right\|+\|\varphi(u)-\varphi(v)\| \\
& \stackrel{3.6}{\leq} \varepsilon\|u-v\|+\|p-q\| \\
& \stackrel{3.77}{\leq} \frac{2 \varepsilon}{\eta}\|\varphi(u)-\varphi(v)\|+\|p-q\|=\left(\frac{2 \varepsilon}{\eta}+1\right)\|p-q\| \\
& \stackrel{\text { B.5 }}{\leq} \beta\|p-q\| .
\end{aligned}
$$

This finishes the proof.
The end of the lecture no. 1, 13.2. 2023
Lemma 3.4. Let $k, n \in \mathbf{N}, k \leq n, G \subset \mathbf{R}^{k}$ be an open set, $\varphi: G \rightarrow \mathbf{R}^{n}$ be an injective regular mapping, $x \in G a \alpha>1$. Then there exists a neighbourhood $V$ of $x$ such that for every $\lambda^{k}$-measurable $E \subset V$ we have

$$
\alpha^{-1} \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq H^{k}(\varphi(E)) \leq \alpha \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

Proof. Find $\beta>1$ a $\tau>1$ such that

$$
\begin{equation*}
\beta^{k} \tau<\alpha \tag{3.8}
\end{equation*}
$$

By Lemma 3.3 we find $V_{1}$ of $x$ such that for $\varphi$ and $\beta$ (a) and (b) of the lemma holds. Using continuity of the mapping $t \mapsto \operatorname{vol} \varphi^{\prime}(t)$ on $G$ we find a neighbourhood $V_{2}$ of $x$ such that

$$
\begin{equation*}
\forall t \in V_{2}: \tau^{-1} \operatorname{vol} \varphi^{\prime}(x) \leq \operatorname{vol} \varphi^{\prime}(t) \leq \tau \operatorname{vol} \varphi^{\prime}(x) \tag{3.9}
\end{equation*}
$$

Set $V=V_{1} \cap V_{2}$. We show that $V$ is the desired neighbourhood.
Let $E \subset V$ be $\lambda^{k}$-measurable. By (3.9) we get

$$
\begin{equation*}
\tau^{-1} \operatorname{vol} \varphi^{\prime}(x) \cdot \lambda^{k}(E) \leq \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq \tau \operatorname{vol} \varphi^{\prime}(x) \cdot \lambda^{k}(E) \tag{3.10}
\end{equation*}
$$

By Lemma 3.2 we have $\operatorname{vol} \varphi^{\prime}(x) \cdot \lambda^{k}(E)=H^{k}\left(\varphi^{\prime}(x)(E)\right)$, and we can write

$$
\begin{equation*}
\tau^{-1} H^{k}\left(\varphi^{\prime}(x)(E)\right) \leq \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq \tau H^{k}\left(\varphi^{\prime}(x)(E)\right) \tag{3.11}
\end{equation*}
$$

By Lemma 3.3(a) and by the choice of $V_{1}$ we get

$$
\begin{aligned}
H^{k}(\varphi(E)) & =H^{k}\left(\varphi \circ \varphi^{\prime}(x)^{-1} \circ \varphi^{\prime}(x)(E)\right) \leq \beta^{k} H^{k}\left(\varphi^{\prime}(x)(E)\right) \\
& \stackrel{\sqrt[3.11]{\leq}}{\leq} \beta^{k} \tau \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \stackrel{\sqrt[3.8]{\leq}}{\leq} \alpha \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) .
\end{aligned}
$$

By Lemma 3.3(b) and by the choice of $V_{1}$ we get

$$
\begin{aligned}
H^{k}(\varphi(E)) & \geq \beta^{-k} H^{k}\left(\varphi^{\prime}(x) \circ \varphi^{-1} \circ \varphi(E)\right)=\beta^{-k} H^{k}\left(\varphi^{\prime}(x)(E)\right) \\
& \stackrel{\sqrt{3.11]}}{\geq} \beta^{-k} \tau^{-1} \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \stackrel{\sqrt[33.8]{\geq}}{\geq} \alpha^{-1} \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) .
\end{aligned}
$$

Theorem 3.5 (area formula). Let $k, n \in \mathbf{N}, k \leq n, G \subset \mathbf{R}^{k}$ be an open set, $\varphi: G \rightarrow \mathbf{R}^{n}$ be an injective regular mapping and $f: \varphi(G) \rightarrow \mathbf{R}$ be $H^{k}$-measurable. Then we have

$$
\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x)=\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

if the integral at the right side converges.


Figure 3.2:

Proof. The mapping $\varphi$ is injective, therefore there exists an inverse mapping $\varphi^{-1}$. Each open set $H \subset G$ is a countable union of compact sets, therefore $\varphi(H)$ is a countable union of compact sets. Thus we get that $\varphi^{-1}$ is Borel and the set $\varphi(G)$ is Borel.

The mappings $\varphi, \varphi^{-1}$ are locally Lipschitz by Lemma 3.3. Therefore $\varphi(G)$ is $H^{k}$ - $\sigma$-finite by Theorem 3.1.

1. Suppose that $f=\chi_{L}$, where $L \subset \varphi(G)$ is $H^{k}$-measurable. We show

$$
\begin{equation*}
H^{k}(L)=\int_{\varphi^{-1}(L)} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \tag{3.12}
\end{equation*}
$$

Choose $\alpha>1$. By Lemma 3.4 we find for every $y \in G$ a neighbourhood $V_{y} \subset G$ of the point $y$ such that for every $\lambda^{k}$-measurable set $E \subset V_{y}$ we have

$$
\begin{equation*}
\alpha^{-1} \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq H^{k}(\varphi(E)) \leq \alpha \int_{E} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \tag{3.13}
\end{equation*}
$$

It holds $\bigcup\left\{V_{y} ; y \in G\right\}=G$. The space $\mathbf{R}^{n}$ is separable, therefore we can find a sequence $\left\{y_{j}\right\}$ of elements of $G$ such that, we have $\bigcup_{j=1}^{\infty} V_{y_{j}}=G$. The measure $H^{k}$ restricted to $\varphi(G)$ is $\sigma$-finite. Using Lemma 2.5 we find Borel sets $B, N \subset \varphi(G)$ such that $B \subset L \subset B \cup N$ and $H^{k}(N)=0$. Using local lipschitzness of $\varphi^{-1}$ we get $\lambda^{k}\left(\varphi^{-1}(N)\right)=H^{k}\left(\varphi^{-1}(N)\right)=0$. Thus we obtain that the set $\varphi^{-1}(L)$ is $\lambda^{k}$-measurable. Set

$$
A_{j}=\varphi^{-1}(L) \cap\left(V_{y_{j}} \backslash \bigcup_{i=1}^{j-1} V_{y_{i}}\right)
$$

Then we have
(a) the set $A_{j}$ is $\lambda^{k}$-measurable for every $j \in \mathbf{N}$,
(b) $A_{j} \subset V_{y_{j}}$ for every $j \in \mathbf{N}$,
(c) $\forall j, j^{\prime} \in \mathbf{N}, j \neq j^{\prime}: A_{j} \cap A_{j^{\prime}}=\emptyset$,
(d) $\bigcup_{j=1}^{\infty} A_{j}=\varphi^{-1}(L)$,
(e) for every $j \in \mathbf{N}$ we have

$$
\alpha^{-1} \int_{A_{j}} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq H^{k}\left(\varphi\left(A_{j}\right)\right) \leq \alpha \int_{A_{j}} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

(f) for every $j \in N$ the set $\varphi\left(A_{j}\right)$ is $H^{k}$-measurable.

From (a) and (c)-(e) we get

$$
\alpha^{-1} \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \leq H^{k}\left(\varphi\left(\varphi^{-1}(L)\right)\right) \leq \alpha \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

Since $\alpha$ has been chosen arbitrarily, we get (3.12).
2. Suppose that $f$ is a nonnegative simple $\lambda^{k}$-measurable function, i.e., $f=\sum_{j=1}^{p} c_{j} \chi_{L_{j}}$, where $L_{j} \subset \varphi(G)$ is $H^{k}$-measurable and $c_{j} \geq 0, j=1, \ldots, p$. Then by (3.12) we have

$$
\begin{align*}
\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x) & =\sum_{j=1}^{p} c_{j} H^{k}\left(L_{j}\right)=\sum_{j=1}^{p} c_{j} \int_{\varphi^{-1}\left(L_{j}\right)} \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \\
& =\sum_{j=1}^{p} c_{j} \int_{G} \chi_{L_{j}} \circ \varphi(t) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)  \tag{3.14}\\
& =\int_{G} f \circ \varphi(t) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
\end{align*}
$$

3. Let $f$ be a nonnegative $H^{k}$-measurable function. We find a nonnegative simple $H^{k}$-measurable functions $f_{j}: \varphi(G) \rightarrow \mathbf{R}, j \in \mathbf{N}$, such that $f_{j} \rightarrow f$ a $f_{j} \leq f_{j+1}$. Then by Levi theorem we get

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \int_{\varphi(G)} f_{j}(x) \mathrm{d} H^{k}(x) & =\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x), \\
\lim _{j \rightarrow \infty} \int_{G} f_{j}(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) & =\int_{G} f\left(\varphi^{\prime}(t)\right) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) .
\end{aligned}
$$

Since using the point 2 we have for every $j \in \mathbf{N}$ the equality

$$
\int_{\varphi(G)} f_{j}(x) \mathrm{d} H^{k}(x)=\int_{G} f_{j}(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

we get

$$
\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x)=\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

4. Let $f$ be a $H^{k}$-measurable function and the integral $\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)$ converges. Set $f^{+}=\max \{f, 0\}$ a $f^{-}=\max \{-f, 0\}$. By the point 3 it holds

$$
\begin{equation*}
\int_{\varphi(G)} f^{+}(x) \mathrm{d} H^{k}(x)=\int_{G} f^{+}(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t) \tag{3.15}
\end{equation*}
$$

The last integral equals $\int_{G}\left(f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t)\right)^{+} \mathrm{d} \lambda^{k}(t)$, thus it is finite by assumption. Similarly we get

$$
\begin{equation*}
\int_{\varphi(G)} f^{-}(x) \mathrm{d} H^{k}(x)=\int_{G}\left(f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t)\right)^{-} \mathrm{d} \lambda^{k}(t) \tag{3.16}
\end{equation*}
$$

the last integral is finite again. This implies

$$
\int_{\varphi(G)} f(x) \mathrm{d} H^{k}(x)=\int_{G} f(\varphi(t)) \operatorname{vol} \varphi^{\prime}(t) \mathrm{d} \lambda^{k}(t)
$$

Remark. Area formula holds even for locally $\operatorname{Lipschitz} \varphi$ (cf. [1, F.34]).
Example. Compute $H^{2}\left(\mathbb{S}_{2}\right)$, where $\mathbb{S}_{2}=\left\{x \in \mathbf{R}^{3} ;\|x\|=1\right\}$.
The set $\mathbb{S}_{2}$ can be written as a disjoint union $\mathbb{S}_{2}=A_{1} \cup A_{2} \cup A_{3}$, where

$$
\begin{aligned}
& A_{1}=\{[0,0,1],[0,0,-1]\}, \\
& A_{2}=\left\{x \in \mathbb{S}_{2} ; x_{2}=0, x_{1}<0\right\}, \\
& A_{3}=\mathbb{S}_{2} \backslash\left(A_{1} \cup A_{2}\right) .
\end{aligned}
$$

Using area formula we compute $H^{2}\left(A_{3}\right)$. We use spherical coordinate system $\varphi: G \rightarrow \mathbf{R}^{3}$, where $G=(-\pi, \pi) \times(-\pi / 2, \pi / 2)$ a

$$
\varphi(\alpha, \gamma)=[\cos (\gamma) \cos (\alpha), \cos (\gamma) \sin (\alpha), \sin (\gamma)]
$$

The mapping $\varphi$ is injective regular and it holds $\varphi(G)=A_{3}$. We infer vol $\varphi^{\prime}(\alpha, \gamma)=\cos \gamma$ for $(\alpha, \gamma) \in G$. Then we have

$$
\begin{aligned}
H^{2}(\varphi(G)) & =\int_{\varphi(G)} 1 \mathrm{~d} H^{2}=\int_{G} \operatorname{vol} \varphi^{\prime} \mathrm{d} \lambda^{2} \\
& =\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \gamma \mathrm{~d} \gamma \mathrm{~d} \alpha=2 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \gamma \mathrm{~d} \gamma=4 \pi
\end{aligned}
$$

It remains to show $H^{2}\left(A_{1} \cup A_{2}\right)=0$. The set $A_{1}$ has just two elements, thus we have $H^{2}\left(A_{1}\right)=0$. The set $A_{2}$ can be parameterized by the mapping $\psi:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbf{R}^{3}$, which is defined by $\psi(t)=[-\cos t, 0, \sin t]$. The mapping $\psi$ is injective regular and $\psi\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)=A_{2}$. By area formula we obtain

$$
\begin{aligned}
H^{1}\left(\psi\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right) & =\int_{\psi\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} 1 \mathrm{~d} H^{1}=\int_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} \operatorname{vol} \psi^{\prime} \mathrm{d} \lambda^{1} \\
& =\int_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} 1 \mathrm{~d} t=\pi .
\end{aligned}
$$

By Theorem 3.1 we get $H^{2}\left(A_{2}\right)=0$. We may conclude $H^{2}\left(\mathbb{S}_{2}\right)=4 \pi$.
Theorem 3.6 (coarea formula). Let $k, n \in \mathbf{N}, k>n, \varphi: \mathbf{R}^{k} \rightarrow \mathbf{R}^{n}$ be Lipschitz mapping, $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be $\lambda^{k}$-integrable function. Then we have

$$
\begin{aligned}
\int_{\mathbf{R}^{k}} f(x) & \sqrt{\operatorname{det}\left(\varphi^{\prime}(x) \varphi^{\prime}(x)^{T}\right)} \mathrm{d} \lambda^{k}(x) \\
& =\int_{\mathbf{R}^{n}}\left(\int_{\varphi^{-1}(\{y\})} f(x) \mathrm{d} H^{k-n}(x)\right) \mathrm{d} \lambda^{n}(y) .
\end{aligned}
$$

Without proof.
Theorem 3.7. Let $f: \mathbf{R}^{k} \rightarrow \mathbf{R}$ be $\lambda^{k}$-integrable function. Then we have

$$
\int_{\mathbf{R}^{k}} f(x) \mathrm{d} \lambda^{k}(x)=\int_{0}^{\infty}\left(\int_{\left\{z \in \mathbf{R}^{k} ;\|z\|=r\right\}} f(x) \mathrm{d} H^{k-1}(x)\right) \mathrm{d} \lambda^{1}(r)
$$

## Chapter 4

## Semicontinuous functions

Definition. let $X$ be a topological space and $f: X \rightarrow \mathbf{R}^{*}$. We say that $f$ is lower semicontinuous, if the set $\{x \in X ; f(x)>a\}$ is open for every $a \in \mathbf{R}$. We say that $f$ is upper semicontinuous, if the set $\{x \in X ; f(x)<a\}$ is open for every $a \in \mathbf{R}$.

Notation. The abbreviations Isc and usc are used.
Theorem 4.1. Let $X$ be a metrizable topological space and $f: X \rightarrow \mathbf{R}^{*}$ be bounded from below. Then the function $f$ is lsc, if and only if there exists a nondecreasing sequence $\left\{f_{n}\right\}$ of continuous functions from $X$ to $\mathbf{R}$ such that $f_{n} \rightarrow f$.

## Chapter 5

## Functions of Baire class 1

Definition. Let $X$ and $Y$ be metrizable topological spaces. A function $f: X \rightarrow Y$ is of Baire class 1 ( $B_{1}$-function) if for every open set $U$ the set $f^{-1}(U)$ is $F_{\sigma}$.

Theorem 5.1 (Lebesgue-Hausdorff-Banach). Let $X$ be a metrizable topological space and $f: X \rightarrow \mathbf{R}$ be a $B_{1}$-function. Then there exists a sequence $\left\{f_{n}\right\}$ of continuous functions from $X$ to $\mathbf{R}$ with $f_{n} \rightarrow f$.

Lemma 5.2. Let $X$ be a metrizable topological space and $A \subset X$ be $G_{\delta}$ and $F_{\sigma}$ set. Then $\chi_{A}$ is a pointwise limit of a sequence of continuous functions.

The end of the lecture no. 3, 27.2. 2023
Lemma 5.3. Let $X$ be a metrizable topological space, $p_{n}: X \rightarrow \mathbf{R}, n \in \omega$, be a pointwise limit of continuous functions. If the sequence $\left\{p_{n}\right\}$ converges uniformly to $p$, then $p$ is a pointwise limit of continuous functions.

Lemma 5.4 (reduction for $F_{\sigma}$ sets). Let $X$ be a metrizable topological space, $A_{n}$ be $F_{\sigma}$ set for every $n \in \omega$. Then there are $F_{\sigma}$ sets $A_{n}^{*} \subset A_{n}, n \in \omega$, such that $A_{n}^{*} \cap A_{m}^{*}=\emptyset$, whenever $n, m \in \omega, n \neq m$, and $\bigcup_{n \in \omega} A_{n}^{*}=\bigcup_{n \in \omega} A_{n}$.

Remark. Theorem 5.1 holds also for $X$ zero-dimensional and $Y$ separable metrizable.
Theorem 5.5 (Baire). Let $X, Y$ be metrizable topological spaces, $Y$ be separable, and $f: X \rightarrow$ $Y$ be $B_{1}$-function. Then the set of points of continuity of $f$ is residual and $G_{\delta}$.

The end of the lecture no. 4, 6.3.2023
Lemma 5.6. Let $X$ be a Polish topological space, i.e., separable topological space metrizable by a complete metric, $A, B \subset X, A \cap B=\emptyset$. If there is no set $C$ which is $G_{\delta}$ and $F_{\sigma}$ with $A \subset C$ and $C \cap B=\emptyset$, then there exists closed nonempty set $F$ such that $A \cap F, B \cap F$ are dense in $F$.

Proof. We define $F_{0}=X, F_{\alpha+1}=\overline{A \cap F_{\alpha}} \cap \overline{B \cap F_{\alpha}}$, whenever $\alpha<\omega_{1}$, and $F_{\eta}=\bigcap_{\alpha<\eta} F_{\alpha}$, whenever $\eta<\omega_{1}$ is a limit ordinal. Then $\left(F_{\alpha}\right)_{\alpha<\omega_{1}}$ is a nonincreasing sequence of closed sets in $X$. One can infer that there exists $\zeta<\omega_{1}$ such that $F_{\zeta}=F_{\zeta+1}$.

Claim. $F_{\zeta} \neq \emptyset$
Proof of Claim. We assume towards contradiction that $F_{\zeta}=\emptyset$. Then we can write

$$
\begin{equation*}
X=\bigcup_{\alpha<\zeta}\left(F_{\alpha} \backslash F_{\alpha+1}\right) \tag{5.1}
\end{equation*}
$$

We set $C=\bigcup_{\alpha<\zeta}\left(\overline{A \cap F_{\alpha}} \backslash F_{\alpha+1}\right)$. Then one can get $A \subset C$ and $C \cap B=\emptyset$. We have that $C$ is $F_{\sigma}$ as well as $G_{\delta}$. To check the latter fact we define $G_{\delta}$ sets

$$
G_{\alpha}=\overline{A \cap F_{\alpha}} \cup\left(X \backslash F_{\alpha}\right) \cup F_{\alpha+1}, \quad \alpha<\zeta,
$$

and we verify that

$$
C=\bigcap_{\alpha<\zeta} G_{\alpha} .
$$

The inclusion $\subset$. For $x \in C$ there exists $\alpha_{0}<\omega_{1}$ such that $x \in \overline{A \cap F_{\alpha_{0}}} \backslash F_{\alpha_{0}+1}$. Take $\alpha<\omega_{1}$. We distinguish the following three possibilities. If $\alpha<\alpha_{0}$, then

$$
x \in \overline{A \cap F_{\alpha_{0}}} \subset F_{\alpha_{0}} \subset F_{\alpha+1} \subset G_{\alpha} .
$$

If $\alpha=\alpha_{0}$, then

$$
x \in \overline{A \cap F_{\alpha_{0}}} \subset G_{\alpha_{0}}=G_{\alpha} .
$$

If $\alpha>\alpha_{0}$ then

$$
x \in X \backslash F_{\alpha_{0}+1} \subset X \backslash F_{\alpha} \subset G_{\alpha}
$$

The inclusion $\supset$. Now suppose that $x \in \bigcap_{\alpha<\zeta} G_{\alpha}$. By (5.1) there exists $\beta<\zeta$ with $x \in$ $F_{\beta} \backslash F_{\beta+1}$. We also have $x \in G_{\beta}$. This implies that $x \in \overline{A \cap F_{\beta}} \backslash F_{\beta+1} \subset C$.

Thus $C$ is a $G_{\delta}$ and $F_{\sigma}$ set separating $A$ form $B$, a contradiction. This finishes the proof of Claim.

Now it is sufficient to set $F=F_{\zeta}$.
Theorem 5.7 (Baire). Let $X$ be Polish, $Y$ separable metrizable, and $f: X \rightarrow Y$. Then the following are equivalent
(i) $f$ is a $B_{1}-$ function.
(ii) $\left.f\right|_{F}$ has a point of continuity for every $F \subset X$ closed.

## Chapter 6

## Density topology, approximate continuity and differentiability

Definition. Let $f$ be a function from $\mathbf{R}$ to $\mathbf{R}, a \in \mathbf{R}$, and $L \in \mathbf{R}$. We say that $f$ has approximate limit $L$ at the point $a$ if

$$
\forall \varepsilon>0 \exists \delta>0 \forall B \in \mathcal{B}, a \in B, \operatorname{diam} B<\delta: \lambda_{n}^{*}(\{x \in B ;|f(x)-L| \geq \varepsilon\})<\varepsilon \lambda_{n}(B)
$$

Theorem 6.1. Let $f$ be a function from $\mathbf{R}$ to $\mathbf{R}, a \in \mathbf{R}$. Then $f$ has at most one approximate limit at $a$.

Notation. Let $f$ be a function from $\mathbf{R}$ to $\mathbf{R}$. The approximate limit of $f$ at $a \in \mathbf{R}$ is denoted by ap- $\lim _{x \rightarrow a} f(x)$.

Definition. A function from $\mathbf{R}$ to $\mathbf{R}$ is approximately continuous at $a \in \mathbf{R}$ if ap- $-\lim _{x \rightarrow a} f(x)=$ $f(a)$.
$\qquad$
Definition. We say that a measurable set $A \subset \mathbf{R}$ is $d$-open, if each point of $A$ is a point of density of $A$.

Theorem 6.2. The system of d-open sets forms a topology.
Notation. The symbol $\tau_{d}$ stands for the density topology from the previous theorem.

## PROPERTIES OF DENSITY TOPOLOGY

- The topology $\tau_{d}$ is finer than the standard topology.
- The topology $\tau_{d}$ is not metrizable.
- A set $K \subset \mathbf{R}$ is $\tau_{d}$-compact if and only if $K$ is finite.
- The topology $\tau_{d}$ is not normal.
- Baire theorem holds in $\left(\mathbf{R}, \tau_{d}\right)$.

Theorem 6.3. The topology $\tau_{d}$ is completely regular, i.e., if $F \subset \mathbf{R}$ is $\tau_{d}$-closed and $x_{0} \in \mathbf{R} \backslash F$, then there exists $\tau_{d}$-continuous function $f: \mathbf{R} \rightarrow[0,1]$ such that $f(y)=0$ for every $y \in F$ and $f\left(x_{0}\right)=1$.

Lemma 6.4. Let $E \subset \mathbf{R}$ be measurable, $X \subset E$ is closed and $\mathrm{d}(E, x)=1$ for every $x \in X$. Then there exists a closed set $P \subset \mathbf{R}$ such that

- $X \subset P \subset E$,
- $\forall x \in X: \mathrm{d}(P, x)=1$,
- $\forall x \in P: \mathrm{d}(E, x)=1$.

The end of the lecture no. 6, video lecture

Remark. Let $f$ be a function from $\mathbf{R}$ to $\mathbf{R}$.
(a) The function $f$ is approximately continuous at $a \in \mathbf{R}$ if and only if $f$ is $\tau_{d}$-continuous at $a$.
(b) The function $f$ is approximately continuous at $a \in \mathbf{R}$ if and only there exists a measurable set $M \subset \mathbf{R}$ such that $\mathrm{d}(M, a)=1$ and $\lim _{x \rightarrow a, x \in M} f(x)=f(a)$.

Theorem 6.5 (Denjoy). Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Then the function $f$ is approximately continuous a.e. if and only if $f$ is measurable.

Proof. $\Rightarrow$ We set

$$
N=\{x \in \mathbf{R} ; f \text { is not approximately continuous at } x\} .
$$

Then we have $\lambda_{1}(N)=0$. Choose $c \in \mathbf{R}$ and set $M=\{x \in \mathbf{R} ; f(x)>c\}$. The set $M \backslash N$ is $d$-open, therefore it is a measurable set. This implies that $M$ is measurable. Consequently, we have that $f$ is measurable.
$\Leftarrow$ Choose $\varepsilon>0$. By Luzin theorem there exist a closed set $F \subset \mathbf{R}$ with $\lambda_{1}(\mathbf{R} \backslash F)<\varepsilon$ and a function $g: F \rightarrow \mathbf{R}$ which is continuous on $F$ satisfying $\left.f\right|_{F}=g$. We have that a.e. point in $F$ is a density point of $F$, therefore $f$ is approximately continuous at a.e. point in $F$. This implies that $f$ is approximately continuous a.e. in $\mathbf{R}$.

Theorem 6.6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a bounded approximately continuous function. Then $f$ has an antiderivative on $\mathbf{R}$.

Proof. Find $K \in \mathbf{R}$ such that $|f(x)| \leq K$ for every $x \in \mathbf{R}$. We set $F(x)=\int_{0}^{x} f$. The function $f$ is measurable by Theorem 6.5 and is bounded, therefore $F$ is well defined. Choose $x \in \mathbf{R}$. Let $\varepsilon>0$. We find $\delta>0$ such that for every $h \in(0, \delta)$ it holds

$$
\frac{1}{h} \lambda_{1}(\{y \in[x, x+h] ;|f(y)-f(x)| \geq \varepsilon\})<\varepsilon
$$

Fix $h \in(0, \delta)$ and denote $M=\{y \in[x, x+h] ;|f(y)-f(x)| \geq \varepsilon\}$. It holds

$$
\begin{aligned}
\left|\frac{1}{h}(F(x+h)-F(x))-f(x)\right| & =\frac{1}{h}\left|\int_{x}^{x+h}(f(t)-f(x)) d t\right| \\
& \leq \frac{1}{h} \int_{M}|f(t)-f(x)| d t+\frac{1}{h} \int_{[x, x+h] \backslash M}|f(t)-f(x)| d t \\
& \leq \frac{1}{h} 2 K \cdot \varepsilon h+\frac{1}{h} \cdot h \varepsilon=(2 K+1) \varepsilon .
\end{aligned}
$$

This implies $F_{+}^{\prime}(x)=f(x)$. One can infer $F_{-}^{\prime}(x)=f(x)$ analogously.

The end of the lecture no. 7, 27.3. 2023
Corollary 6.7. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a bounded approximately continuous function. Then $f$ has Darboux property and is in $B_{1}$.

Theorem 6.8. There exists a differentiable function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that the sets $\left\{x \in \mathbf{R} ; f^{\prime}(x)>\right.$ $0\}$ and $\left\{x \in \mathbf{R} ; f^{\prime}(x)<0\right\}$ are dense.

Proof. Let $A, B \subset \mathbf{R}$ be countable, dense, and disjoint. Suppose that $A=\left\{a_{n} ; n \in \mathbf{N}\right\}$ and $B=\left\{b_{n} ; n \in \mathbf{N}\right\}$. Observe that $A$ and $B$ are $\tau_{d}$-closed. Using Theorem 6.3 we find for every $n \in \mathbf{N}$ approximately continuous functions $g_{n}$ and $h_{n}$ such that

$$
\begin{array}{ll}
g_{n}\left(a_{n}\right)=1, & h_{n}\left(b_{n}\right)=1, \\
0 \leq g_{n} \leq 1, & 0 \leq h_{n} \leq 1, \\
\left.g_{n}\right|_{B}=0, & h_{n} \mid A=0
\end{array}
$$

We define

$$
\psi=\sum_{n=1}^{\infty} 2^{-n} g_{n}-\sum_{n=1}^{\infty} 2^{-n} h_{n}
$$

Then the function $\psi$ is bounded, approximately continuous, positive on $A$, and negative on $B$. By Theorem 6.6 there is a function $f$ such that $f^{\prime}=\psi$ and we are done.

Remark. We say that a differentiable function $g$ is of Köpcke type if $g^{\prime}$ is bounded and the sets $\left\{g^{\prime}>0\right\}$ and $\left\{g^{\prime}<0\right\}$ are dense.

## Chapter 7

## More on derivatives

Notation. Let $I$ be a nonempty open interval. The set of all real functions defined on $I$ which have an antiderivative on $I$ is denoted by $\Delta^{\prime}(I)$.

Remark. We have ap $-\mathcal{C}_{b}(I) \subset \Delta^{\prime}(I) \subset \mathcal{D} B_{1}(I)$.
Theorem 7.1. Let I be a nonempty open interval and $f \in \Delta^{\prime}(I)$ The $f$ has Denjoy-Clarskon property, i.e., for every open $G \subset \mathbf{R}$ we have that either $f^{-1}(G)=\emptyset$ or $\lambda\left(f^{-1}(G)\right)>0$.

Proof. To be added.
The end of the lecture no. 8, 3.4.2023 $\qquad$
Lemma 7.2. Let $F$ be a differentiable at each point of the interval $[a, b] \subset \mathbf{R}$ and $F^{\prime}$ is bounded from below. Then $F$ is absolutely continuous on $[a, b]$.

Proof. To be added.
Theorem 7.3. Let $f$ be differentiable at each point of $[a, b] \subset \mathbf{R}$ and $f^{\prime} \in L^{1}([a, b])$. Then we have

$$
f(x)-f(a)=(L) \int_{a}^{x} f^{\prime}(t) \mathrm{d} t, \quad x \in[a, b] .
$$

Proof. To be added. See [3, 7.21].
Theorem 7.4 (Caratheodory-Vitali). Let $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfy $f \in L^{1}(\lambda)$ and $\varepsilon>0$. Then there exists $u, v: \mathbf{R} \rightarrow \mathbf{R}^{*}$ such that

- $u \leq f \leq v$,
- $u$ is usc and bounded from above,
- $v$ is lsc and bounded from below,
- $\int(u-v) \mathrm{d} \lambda<\varepsilon$.

Proof. To be added. See [3].

## Zahorski classes

Definition. Let $E \subset \mathbf{R}$ be an $F_{\sigma}$ set. We say that $E$ belongs to class
$M_{0}$ if every point of $E$ is a point of bilateral accumulation of $E$,
$M_{1}$ if every point fo $E$ is a point of bilateral condensation of $E$,
$M_{2}$ if each one sided neighbourhood of each $x \in E$ intersects $E$ in a set of positive measure,
$M_{3}$ if for each $x \in E$ and each sequence $\left\{I_{k}\right\}$ of closed intervals converging to $x$ such that $\lambda\left(I_{n} \cap E\right)=0$ for each $n$, we have

$$
\lim _{n \rightarrow \infty} \frac{\lambda\left(I_{n}\right)}{\operatorname{dist}\left(x, I_{n}\right)}=0
$$

$M_{4}$ if there exists a sequence of closed sets $\left\{K_{n}\right\}$ and a sequence of positive numbers $\eta_{n}$ such that $E=\bigcup_{n=1}^{\infty} K_{n}$ and

$$
\begin{aligned}
& \forall n \in \mathbf{N} \forall x \in K_{n} \forall c>0 \exists \varepsilon>0 \\
& \qquad \forall h, h_{1} \in \mathbf{R}, h h_{1}>0, \frac{h}{h_{1}}<c,\left|h+h_{1}\right|<\varepsilon: \frac{\lambda\left(E \cap\left(x+h, x+h+h_{1}\right)\right)}{\left|h_{1}\right|}>\eta_{n} .
\end{aligned}
$$

$M_{5}$ if every point of $E$ is a point of density of $E$.

## TO BE COMPLETED

## Chapter 8

## Sets with a finite perimeter and divergence theorem

### 8.1 Motivation

Lemma 8.1. Let $F$ be distribution function of a signed Radon measure $\mu$ and $\varphi \in \mathcal{C}_{c}^{1}(\mathbf{R})$. Then $\int \varphi \mathrm{d} \mu=-\int F \varphi^{\prime} \mathrm{d} \lambda$.
Theorem 8.2. Let $u \in L^{1}(\mathbf{R})$. Then the following are equivalent.
(i) There exists a signed Radon measure $\mu$ such that the weak derivative of $u$ is $\mu$.
(ii) There exists $v: \mathbf{R} \rightarrow \mathbf{R}$ such that $v \in B V([a, b])$ for every $a, b \in \mathbf{R}, a<b$, and $v=u$ a.e.

Theorem 8.3 (Gauss divergence theorem). Let $n>1, \Omega \subset \mathbf{R}^{n}$ be a bounded nonempty open set with $H^{n-1}(\partial \Omega)<\infty, H^{n-1}\left(\partial \Omega \backslash \partial_{r} \Omega\right)=0, f \in \mathcal{C}^{1}\left(\bar{\Omega}, \mathbf{R}^{n}\right)$. Then we have

$$
\int_{\partial \Omega}\left\langle f(y), \nu_{\Omega}(y)\right\rangle \mathrm{d} H^{n-1}(y)=\int_{\Omega} \operatorname{div} f(x) \mathrm{d} \lambda^{n}(x) .
$$

Without proof.
The end of the lecture no. 10, 24.4. 2023

### 8.2 Definitions and remarks

Definition. Let $U \subset \mathbf{R}^{n}$ be open.
(a) A function $f \in L^{1}(U)$ has bounded variation in $U$ if

$$
\sup \left\{\int_{U} f \operatorname{div} \varphi \mathrm{~d} x ; \varphi \in \mathcal{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right),\|\varphi\|_{\infty} \leq 1\right\}<\infty
$$

We write $B V(U)$ to denote the space of functions of bounded variation.
(b) A $\lambda^{n}$-measurable set $E \subset \mathbf{R}^{n}$ has finite perimeter in $U$ if $\chi_{E} \in B V(U)$.
(c) A function $f \in L^{1}(U)$ has locally bounded variation in $U$ if for each open set $V$ with $\bar{V} \subset U$ we have

$$
\sup \left\{\int_{U} f \operatorname{div} \varphi \mathrm{~d} x ; \varphi \in \mathcal{C}_{c}^{1}\left(V, \mathbf{R}^{n}\right),\|\varphi\|_{\infty} \leq 1\right\}<\infty
$$

We write $B V_{l o c}(U)$ to denote the space of such functions.
(d) A $\lambda^{n}$-measurable set $E \subset \mathbf{R}^{n}$ has locally finite perimeter in $U$ if $\chi_{E} \in B V_{l o c}(U)$.

Theorem 8.4 (structure theorem). Let $U \subset \mathbf{R}^{n}$ be open and $f \in B V_{l o c}(U)$. Then there exists a Radon measure $\mu$ on $U$ and a $\mu$-measurable function $\sigma: U \rightarrow \mathbf{R}^{n}$ such that
(a) $\|\sigma(x)\|=1 \mu$ a.e. and
(b) $\int_{U} f \operatorname{div} \varphi \mathrm{~d} x=-\int_{U}\langle\varphi, \sigma\rangle \mathrm{d} \mu$ for every $\varphi \in \mathcal{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right)$.

Remark. (1) Let $U \subset \mathbf{R}^{n}$ be open, $f \in B V_{l o c}(U), i \in\{1, \ldots, n\}$. For $\psi \in \mathcal{C}_{c}^{\infty}(U)$ we set $\varphi=[0, \ldots, 0, \psi, 0, \ldots, 0]$ and we have

$$
\int_{U} f \partial_{i} \psi=\int_{U} f \operatorname{div} \varphi=-\int_{U}\langle\varphi, \sigma\rangle \mathrm{d} \mu=-\int_{U} \psi \sigma_{i} \mathrm{~d} \mu
$$

If $f \in L_{l o c}^{1}(U)$ and $\partial_{i} f, i=1, \ldots, n$, is a signed Radon measure, then $f \in B V_{l o c}(U)$. We have

$$
\int_{U} f \partial_{i} \psi=-\int \psi \mathrm{d} \tau_{i}, \quad \psi \in \mathcal{C}_{c}^{\infty}(U)
$$

Then for every $\varphi \in \mathcal{C}_{c}^{\infty}\left(V, \mathbf{R}^{n}\right)$, where $V$ is open with $\bar{V} \subset U$, we have

$$
\int_{U} f \operatorname{div} \phi=-\int_{U} \sum_{i=1}^{n} \psi
$$

Theorem 8.5 (lower semicontinuity of variation measure). Let $U \subset \mathbf{R}^{n}$ be open, $f_{k} \in B V(U)$, $k \in \mathbf{N}$, and $f_{k} \rightarrow f$ in $L_{l o c}^{1}(U)$. Then

$$
\|D f\|(U) \leq \liminf _{k \rightarrow \infty}\left\|D f_{k}\right\|(U)
$$

### 8.3 Coarea formula for $B V$ functions

Notation. For $f: U \rightarrow \mathbf{R}$ and $t \in \mathbf{R}$, define $E_{t}=\{x \in U ; f(x)>t\}$.
Lemma 8.6. Let $U \subset \mathbf{R}^{n}$ be open and $f \in B V(U)$. Then the mapping $t \mapsto\left\|\partial E_{t}\right\|(U)$ is $\lambda^{1}$-measurable.

The end of the lecture no. 11, 15.5. 2023
Proof. The mapping $(x, t) \mapsto \chi_{E_{t}}(x)$ is $\lambda^{n+1}$-measurable since the set

$$
\left\{(x, t) \in U \times \mathbf{R} ; \chi_{E_{t}}(x)=1\right\}=\left\{(x, t) \in U \times \mathbf{R} ; x \in E_{t}\right\}=\{(x, t) \in U \times \mathbf{R} ; f(x)>t\}
$$

is a subgraph of the measurable function $f$. Let $\varphi \in \mathcal{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right)$. Then the function

$$
t \mapsto \int_{E_{t}} \operatorname{div} \varphi=\int \chi_{E_{t}} \operatorname{div} \varphi
$$

is $\lambda^{1}$-measurable. Find $D \subset \mathcal{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right)$ countable and dense. Then

$$
t \mapsto\left\|\partial E_{t}\right\|(U)=\sup _{\|\varphi\|_{\infty} \leq 1, \varphi \in \mathcal{C}_{c}^{1}\left(U, \mathbf{R}^{n}\right)} \int_{E_{t}} \operatorname{div} \varphi=\sup _{\|\varphi\|_{\infty} \leq 1, \varphi \in D} \int_{E_{t}} \operatorname{div} \varphi
$$

is $\lambda^{1}$-measurable.

Theorem 8.7. Let $U \subset \mathbf{R}^{n}$ be open and $f \in B V(U)$. Then

- $E_{t}$ has finite perimeter for $\lambda^{1}$-a.e. $t \in \mathbf{R}$ and
- $\|D f\|=\int_{-\infty}^{\infty}\left\|\partial E_{t}\right\|(U) \mathrm{d} t$.
- Conversely, if $f \in L^{1}(U)$ and $\int_{-\infty}^{\infty}\left\|\partial E_{t}\right\|(U) \mathrm{d} t<\infty$, then $f \in B V(U)$.


### 8.4 The reduced boundary

To be added.

### 8.5 Gauss theorem for $B V$ functions

To be added.
$\qquad$
The end of the lecture no. 12, 22.5.2023
The end of Summer Semester

## Bibliography

[1] Jaroslav Lukeš and Jan Malý, Measure and integral, second ed., Matfyzpress, Prague, 2005. MR 2316454
[2] David Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312-345. MR 1058975
[3] Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987. MR 924157

