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1. Sets, propositions and numerical sets



1.1 Sets

A set is any collection of distinct objects (which we
call elements) into a single whole.

The fact that the element a belongs to the set A, will
be represented as a ∈ A. We write a /∈ A to denote
that a does not belong to A.
We say that a set A is part of a set B (or A is a
subset of B), if all elements of A are also elements
of B. We write A ⊂ B (inclusion).
Two sets are equal (A = B), if they have the same
elements, that is to say A ⊂ B and B ⊂ A both hold at
the same time.
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The empty set is the set, which contains no
elements. We use the symbol ∅.

The union A ∪ B of the sets A and B is the set made
of all elements that belong to at least one of the sets
A or B.
We define

⋃
α∈I Aα as the set of all those elements,

which belong to at least one of the sets Aα.
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simultaneously.

If two sets have an empty intersection we call them
disjoint.
We define

⋂
α∈I Aα as the set of elements that belong

to all of Aα.



The intersection A ∩ B of two sets A and B is the set
of those elements which belong to A and B
simultaneously.
If two sets have an empty intersection we call them
disjoint.

We define
⋂

α∈I Aα as the set of elements that belong
to all of Aα.



The intersection A ∩ B of two sets A and B is the set
of those elements which belong to A and B
simultaneously.
If two sets have an empty intersection we call them
disjoint.
We define

⋂
α∈I Aα as the set of elements that belong

to all of Aα.



The difference of two sets A and B (we write A \ B)
is the set of elements which belong to A but not to B.

Let us consider m sets A1, . . . ,Am. The Cartesian
product A1 × A2 × · · · × Am is the set of all
ordered m-tuples{

[a1,a2, . . . ,am]; a1 ∈ A1, . . . ,am ∈ Am
}
.
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Theorem 1.1 (de Morgan rules)
Let us consider the sets S, Aα, α ∈ I, where I 6= ∅. Then

S \
⋃
α∈I

Aα =
⋂
α∈I

(S \ Aα) and

S \
⋂
α∈I

Aα =
⋃
α∈I

(S \ Aα).



1.2 Propositional calculus, mathematical
proofs

A statement is any claim for which it makes sense to say
that it either holds (is true), or does not hold (is false).



The negation of the statement A is the statement: “It is
not true that A holds.”

A ¬A
0 1
1 0



The conjunction A ∧ B of the statements A and B is the
statement: “Both A and B hold.”

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1



The disjunction A ∨ B of A and B is the statement: “A
or B holds.”

A B A ∨ B
0 0 0
0 1 1
1 0 1
1 1 1



The implication is the statement: “If A holds, then B also
holds.”

A B A⇒ B
0 0 1
0 1 1
1 0 0
1 1 1



The equivalence is the statement: “A holds if and only if
B holds.”

A B A⇔ B
0 0 1
0 1 0
1 0 0
1 1 1

The end of the first lecture, 3. 10. 2018



A statement function is an expression, from which we
obtain a statement by substituting an element from a
given set into the function as a variable. Generally we can
write a statement function as

A(x1, x2, . . . , xm), x1 ∈ M1, x2 ∈ M2, . . . , xm ∈ Mm.

Let A(x), x ∈ M, be a statement function.
“For all x ∈ M it holds A(x).”

∀x ∈ M : A(x)

The symbol ∀ is called the universal quantifier.
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The symbol ∃ is called the existential quantifier.Further
we use the notation

∃!x ∈ M : A(x),

which we read as “There exists exactly one x ∈ M such
that A(x).”
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Let A and P be statement functions of one variable. Then

∀x ∈ M,P(x) : A(x) means ∀x ∈ M :
(
P(x)⇒ A(x)

)
,

∃x ∈ M,P(x) : A(x) means ∃x ∈ M :
(
P(x) ∧ A(x)

)
.

We read the first statement “For every x ∈ M satisfying P
the statement A(x) holds.” The second statement is read
“There exists x ∈ M satisfying P such that A(x) holds.”
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Let V be a statement function of the variable x ∈ M, then

¬
(
∀x ∈ M : V (x)

)
means the same as ∃x ∈ M : ¬V (x),

¬
(
∃x ∈ M : V (x)

)
means the same as ∀x ∈ M : ¬V (x).



Direct proof

By using the validity of the statement A we show the
validity of the statement C1, using C1 we show the validity
of C2, from which we show C3, and so on until, using the
validity of Cn we show the statement B. We then have
discovered the following chain of implications

A⇒ C1, C1 ⇒ C2, C2 ⇒ C3, . . . ,Cn−1 ⇒ Cn, Cn ⇒ B.

The end of the second lecture, 4. 10. 2018



Indirect proof

This type of proof is based on the equivalence of the
statements A⇒ B and ¬B ⇒ ¬A. If the second is true
then so is the first. Therefore it suffices to find any proof
of the second statement.



Proof by contradiction

This method is based on the equivalence of the
statements A⇒ B and ¬(A ∧ ¬B). In this method of proof
we assume the validity of A ∧ ¬B. If we are able to
deduce a statement C, which we know to be false, then
A ∧ ¬B must also be false (one cannot deduce a false
statement from a true statement). It therefore holds
¬(A ∧ ¬B), or A⇒ B.



Mathematical induction.

One can use this type of proof to show statements of the
following sort

∀n ∈ N : V (n), (1.1)

where V (n), n ∈ N is a statement function.

In the first step
of mathematical induction we show the validity of the
statement V (1). In the second step we prove the
statement

∀n ∈ N : V (n)⇒ V (n + 1),

that is we assume the validity of V (n) (the so called
induction hypothesis) and deduce the validity of
V (n + 1). From these two steps we get the validity of the
statement (1.1).
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1.3 The set of real numbers

The set of real numbers R will be considered as the set
with the operations addition and multiplication, which
will be denoted as usual, and a relation ordering (≤),
such that the following three groups are satisfied.

I. The properties of addition and multiplication and their
relationships.

II. The relationships of the ordering and the operations
addition and multiplication.

III. Infimum axiom.

The end of the third lecture, 11. 10. 2018
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Definition of boundedness

Definice
We say, that the set M ⊂ R is bounded from below, if
there exists a number a ∈ R such that, for each x ∈ M we
have x ≥ a.

Such a number a is called lower bound of
the set M. We define the following notions analogously
set bounded from above and upper bound. We say
that a set M ⊂ R is bounded, if it is bounded from above
and below.
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Infimum axiom

III. Infimum axiom:
Let M be a nonempty bounded from below set. Then
there exists a unique number g ∈ R such that

(i) ∀x ∈ M : x ≥ g,

(ii) ∀g′ ∈ R,g′ > g ∃x ∈ M : x < g′.

The number g is denoted by inf M and is called infimum
of the set M.
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Supremum

Definice
Let M ⊂ R. The number G ∈ R satisfying

(i) ∀x ∈ M : x ≤ G,
(ii) ∀G′ ∈ R,G′ < G ∃x ∈ M : x > G′,
is called supremum of the set M and is denoted by supM.

Theorem 1.2
Let M ⊂ R be a nonempty set which is bounded from
above. Then there exists supM.
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Maximum and minimum

Definice
Let M ⊂ R. We say that a is a maximum of the set M
(notation maxM), if a ∈ M and a is an upper bound of M.
We define analogously minimum of M. Maximum and
minimum of M is denoted by maxM and minM
respectively.



Basic properties of real numbers

Theorem 1.3
For every r ∈ R there exists an integer part of r , i.e.,
there exists k ∈ Z such that k ≤ r < k + 1. (Integer part of
r is denoted by [r ]).

Theorem 1.4
For each x ∈ R there exists n ∈ N such that x < n.
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Basic properties of real numbers

Theorem 1.5
For each x ∈ 〈0,+∞) and for each n ∈ N there exists a
unique y ∈ R, y ≥ 0, with yn = x.

Theorem 1.6
Let a,b ∈ R, a < b. Then there exists r ∈ Q such that
a < r < b.
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Kurt Gödel (1906–1978)



II.1 Introduction

Definice
Suppose that to each natural number n ∈ N is assigned a
real number an. Then we say that {an}∞n=1 is a sequence
of real numbers.

The number an is called n-th member of
the sequence. A sequence {an}∞n=1 equals a sequence
{bn}∞n=1, if an = bn holds for every n ∈ N.
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Definice
We say that a sequence {an} has a limit which equals to
a real number A, if

∀ε ∈ R, ε > 0 ∃n0 ∈ N ∀n ∈ N,n ≥ n0 : |an − A| < ε.

We denote lim
n→∞

an = A or only liman = A.

We say that a
sequence {an} is convergent, if there exists A ∈ R with
liman = A.
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