Mathematics I

FSV UK, winter semester 2018-19

Sebastian Schwarzacher - Miroslav Zelený

1. Sets, propositions and numerical sets

1.1 Sets

- A set is any collection of distinct objects (which we call elements) into a single whole.

1.1 Sets

\square A set is any collection of distinct objects (which we call elements) into a single whole.

- The fact that the element a belongs to the set A, will be represented as $a \in A$. We write $a \notin A$ to denote that a does not belong to A.

1.1 Sets

- A set is any collection of distinct objects (which we call elements) into a single whole.
- The fact that the element a belongs to the set A, will be represented as $a \in A$. We write $a \notin A$ to denote that a does not belong to A.
\square We say that a set A is part of a set B (or A is a subset of B), if all elements of A are also elements of B. We write $A \subset B$ (inclusion).

1.1 Sets

■ A set is any collection of distinct objects (which we call elements) into a single whole.
\square The fact that the element a belongs to the set A, will be represented as $a \in A$. We write $a \notin A$ to denote that a does not belong to A.
\square We say that a set A is part of a set B (or A is a subset of B), if all elements of A are also elements of B. We write $A \subset B$ (inclusion).
■ Two sets are equal $(A=B)$, if they have the same elements, that is to say $A \subset B$ and $B \subset A$ both hold at the same time.

■ The empty set is the set, which contains no elements. We use the symbol \emptyset.

■ The empty set is the set, which contains no elements. We use the symbol \emptyset.

- The union $A \cup B$ of the sets A and B is the set made of all elements that belong to at least one of the sets A or B.

■ The empty set is the set, which contains no elements. We use the symbol \emptyset.
■ The union $A \cup B$ of the sets A and B is the set made of all elements that belong to at least one of the sets A or B.
$■$ We define $\bigcup_{\alpha \in I} A_{\alpha}$ as the set of all those elements, which belong to at least one of the sets A_{α}.
\square The intersection $A \cap B$ of two sets A and B is the set of those elements which belong to A and B simultaneously.
\square The intersection $A \cap B$ of two sets A and B is the set of those elements which belong to A and B simultaneously.
■ If two sets have an empty intersection we call them disjoint.

■ The intersection $A \cap B$ of two sets A and B is the set of those elements which belong to A and B simultaneously.

- If two sets have an empty intersection we call them disjoint.
$■$ We define $\bigcap_{\alpha \in I} A_{\alpha}$ as the set of elements that belong to all of A_{α}.
- The difference of two sets A and B (we write $A \backslash B$) is the set of elements which belong to A but not to B.
- The difference of two sets A and B (we write $A \backslash B$) is the set of elements which belong to A but not to B.
■ Let us consider m sets A_{1}, \ldots, A_{m}. The Cartesian product $A_{1} \times A_{2} \times \cdots \times A_{m}$ is the set of all ordered m-tuples

$$
\left\{\left[a_{1}, a_{2}, \ldots, a_{m}\right] ; a_{1} \in A_{1}, \ldots, a_{m} \in A_{m}\right\}
$$

Theorem 1.1 (de Morgan rules)
Let us consider the sets $S, A_{\alpha}, \alpha \in I$, where $I \neq \emptyset$. Then

$$
\begin{aligned}
& S \backslash \bigcup_{\alpha \in I} A_{\alpha}=\bigcap_{\alpha \in I}\left(S \backslash A_{\alpha}\right) \quad \text { and } \\
& S \backslash \bigcap_{\alpha \in I} A_{\alpha}=\bigcup_{\alpha \in I}\left(S \backslash A_{\alpha}\right) .
\end{aligned}
$$

1.2 Propositional calculus, mathematical proofs

A statement is any claim for which it makes sense to say that it either holds (is true), or does not hold (is false).

The negation of the statement A is the statement: "It is not true that A holds."

A	$\neg A$
0	1
1	0

The conjunction $A \wedge B$ of the statements A and B is the statement: "Both A and B hold."

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

The disjunction $A \vee B$ of A and B is the statement: " A or B holds."

A	B	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

The implication is the statement: "If A holds, then B also holds."

A	B	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

The equivalence is the statement: " A holds if and only if B holds."

A	B	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

The end of the first lecture, 3.10.2018

A statement function is an expression, from which we obtain a statement by substituting an element from a given set into the function as a variable. Generally we can write a statement function as

$$
A\left(x_{1}, x_{2}, \ldots, x_{m}\right), \quad x_{1} \in M_{1}, x_{2} \in M_{2}, \ldots, x_{m} \in M_{m}
$$

A statement function is an expression, from which we obtain a statement by substituting an element from a given set into the function as a variable. Generally we can write a statement function as

$$
A\left(x_{1}, x_{2}, \ldots, x_{m}\right), \quad x_{1} \in M_{1}, x_{2} \in M_{2}, \ldots, x_{m} \in M_{m} .
$$

Let $A(x), x \in M$, be a statement function.
"For all $x \in M$ it holds $A(x)$."

A statement function is an expression, from which we obtain a statement by substituting an element from a given set into the function as a variable. Generally we can write a statement function as

$$
A\left(x_{1}, x_{2}, \ldots, x_{m}\right), \quad x_{1} \in M_{1}, x_{2} \in M_{2}, \ldots, x_{m} \in M_{m}
$$

Let $A(x), x \in M$, be a statement function.
"For all $x \in M$ it holds $A(x)$."

$$
\forall x \in M: A(x)
$$

The symbol \forall is called the universal quantifier.
"There exists $x \in M$ such that $A(x)$ holds."
"There exists $x \in M$ such that $A(x)$ holds."

$$
\exists x \in M: A(x)
$$

"There exists $x \in M$ such that $A(x)$ holds."

$$
\exists x \in M: A(x)
$$

The symbol \exists is called the existential quantifier.
"There exists $x \in M$ such that $A(x)$ holds."

$$
\exists x \in M: A(x) .
$$

The symbol \exists is called the existential quantifier.Further we use the notation

$$
\exists!x \in M: A(x)
$$

which we read as "There exists exactly one $x \in M$ such that $A(x)$."

Let us consider the statement function $V(x, y), x \in M_{1}$, $y \in M_{2}$. Now we can create new statement functions of a single variable $y \in M_{2}$ as follows:

$$
\forall x \in M_{1}: V(x, y), \quad \exists x \in M_{1}: V(x, y) .
$$

Let us consider the statement function $V(x, y), x \in M_{1}$, $y \in M_{2}$. Now we can create new statement functions of a single variable $y \in M_{2}$ as follows:

$$
\forall x \in M_{1}: V(x, y), \quad \exists x \in M_{1}: V(x, y) .
$$

We can create statements from these statement functions using another quantifier as follows:
$\forall y \in M_{2}:\left(\forall x \in M_{1}: V(x, y)\right), \quad \forall y \in M_{2}:\left(\exists x \in M_{1}: V(x, y)\right)$,
$\exists y \in M_{2}:\left(\forall x \in M_{1}: V(x, y)\right), \quad \exists y \in M_{2}:\left(\exists x \in M_{1}: V(x, y)\right)$.

Let us consider the statement function $V(x, y), x \in M_{1}$, $y \in M_{2}$. Now we can create new statement functions of a single variable $y \in M_{2}$ as follows:

$$
\forall x \in M_{1}: V(x, y), \quad \exists x \in M_{1}: V(x, y) .
$$

We can create statements from these statement functions using another quantifier as follows:
$\forall y \in M_{2}:\left(\forall x \in M_{1}: V(x, y)\right), \quad \forall y \in M_{2}:\left(\exists x \in M_{1}: V(x, y)\right)$,
$\exists y \in M_{2}:\left(\forall x \in M_{1}: V(x, y)\right), \quad \exists y \in M_{2}:\left(\exists x \in M_{1}: V(x, y)\right)$.
We usually write the statements above in the form

$$
\begin{aligned}
& \forall y \in M_{2} \forall x \in M_{1}: V(x, y), \quad \forall y \in M_{2} \exists x \in M_{1}: V(x, y), \\
& \exists y \in M_{2} \forall x \in M_{1}: V(x, y), \quad \exists y \in M_{2} \exists x \in M_{1}: V(x, y) .
\end{aligned}
$$

Let A and P be statement functions of one variable. Then
$\forall x \in M, P(x): A(x) \quad$ means $\quad \forall x \in M:(P(x) \Rightarrow A(x))$,
$\exists x \in M, P(x): A(x) \quad$ means $\quad \exists x \in M:(P(x) \wedge A(x))$.

Let A and P be statement functions of one variable. Then

$$
\begin{array}{lll}
\forall x \in M, P(x): A(x) & \text { means } & \forall x \in M:(P(x) \Rightarrow A(x)), \\
\exists x \in M, P(x): A(x) & \text { means } & \exists x \in M:(P(x) \wedge A(x)) .
\end{array}
$$

We read the first statement "For every $x \in M$ satisfying P the statement $A(x)$ holds."

Let A and P be statement functions of one variable. Then

$$
\begin{array}{lll}
\forall x \in M, P(x): A(x) & \text { means } & \forall x \in M:(P(x) \Rightarrow A(x)), \\
\exists x \in M, P(x): A(x) & \text { means } & \exists x \in M:(P(x) \wedge A(x)) .
\end{array}
$$

We read the first statement "For every $x \in M$ satisfying P the statement $A(x)$ holds." The second statement is read "There exists $x \in M$ satisfying P such that $A(x)$ holds."

Let V be a statement function of the variable $x \in M$, then
$\neg(\forall x \in M: V(x)) \quad$ means the same as $\quad \exists x \in M: \neg V(x)$,
$\neg(\exists x \in M: V(x)) \quad$ means the same as $\quad \forall x \in M: \neg V(x)$.

Direct proof

By using the validity of the statement A we show the validity of the statement C_{1}, using C_{1} we show the validity of C_{2}, from which we show C_{3}, and so on until, using the validity of C_{n} we show the statement B. We then have discovered the following chain of implications

$$
A \Rightarrow C_{1}, C_{1} \Rightarrow C_{2}, C_{2} \Rightarrow C_{3}, \ldots, C_{n-1} \Rightarrow C_{n}, C_{n} \Rightarrow B
$$

The end of the second lecture, 4. 10. 2018

Indirect proof

This type of proof is based on the equivalence of the statements $A \Rightarrow B$ and $\neg B \Rightarrow \neg A$. If the second is true then so is the first. Therefore it suffices to find any proof of the second statement.

Proof by contradiction

This method is based on the equivalence of the statements $A \Rightarrow B$ and $\neg(A \wedge \neg B)$. In this method of proof we assume the validity of $A \wedge \neg B$. If we are able to deduce a statement C, which we know to be false, then $A \wedge \neg B$ must also be false (one cannot deduce a false statement from a true statement). It therefore holds $\neg(A \wedge \neg B)$, or $A \Rightarrow B$.

Mathematical induction.

One can use this type of proof to show statements of the following sort

$$
\begin{equation*}
\forall n \in \mathbf{N}: V(n), \tag{1.1}
\end{equation*}
$$

where $V(n), n \in \mathbf{N}$ is a statement function.

Mathematical induction.

One can use this type of proof to show statements of the following sort

$$
\begin{equation*}
\forall n \in \mathbf{N}: V(n) \tag{1.1}
\end{equation*}
$$

where $V(n), n \in \mathbf{N}$ is a statement function. In the first step of mathematical induction we show the validity of the statement $V(1)$.

Mathematical induction.

One can use this type of proof to show statements of the following sort

$$
\begin{equation*}
\forall n \in \mathbf{N}: V(n), \tag{1.1}
\end{equation*}
$$

where $V(n), n \in \mathbf{N}$ is a statement function. In the first step of mathematical induction we show the validity of the statement $V(1)$. In the second step we prove the statement

$$
\forall n \in \mathbf{N}: V(n) \Rightarrow V(n+1)
$$

that is we assume the validity of $V(n)$ (the so called induction hypothesis) and deduce the validity of $V(n+1)$. From these two steps we get the validity of the statement (1.1).

1.3 The set of real numbers

The set of real numbers \mathbf{R} will be considered as the set with the operations addition and multiplication, which will be denoted as usual, and a relation ordering (\leq), such that the following three groups are satisfied.

1.3 The set of real numbers

The set of real numbers \mathbf{R} will be considered as the set with the operations addition and multiplication, which will be denoted as usual, and a relation ordering (\leq), such that the following three groups are satisfied.
I. The properties of addition and multiplication and their relationships.

1.3 The set of real numbers

The set of real numbers \mathbf{R} will be considered as the set with the operations addition and multiplication, which will be denoted as usual, and a relation ordering (\leq), such that the following three groups are satisfied.
I. The properties of addition and multiplication and their relationships.
II. The relationships of the ordering and the operations addition and multiplication.

1.3 The set of real numbers

The set of real numbers \mathbf{R} will be considered as the set with the operations addition and multiplication, which will be denoted as usual, and a relation ordering (\leq), such that the following three groups are satisfied.
I. The properties of addition and multiplication and their relationships.
II. The relationships of the ordering and the operations addition and multiplication.
III. Infimum axiom.

The end of the third lecture, 11.10.2018

Definition of boundedness

Definice

We say, that the set $M \subset \mathbf{R}$ is bounded from below, if there exists a number $a \in \mathbf{R}$ such that, for each $x \in M$ we have $x \geq a$.

Definition of boundedness

Definice
We say, that the set $M \subset \mathbf{R}$ is bounded from below, if there exists a number $a \in \mathbf{R}$ such that, for each $x \in M$ we have $x \geq a$. Such a number a is called lower bound of the set M.

Definition of boundedness

Definice
We say, that the set $M \subset \mathbf{R}$ is bounded from below, if there exists a number $a \in \mathbf{R}$ such that, for each $x \in M$ we have $x \geq a$. Such a number a is called lower bound of the set M. We define the following notions analogously set bounded from above and upper bound.

Definition of boundedness

Definice

We say, that the set $M \subset \mathbf{R}$ is bounded from below, if there exists a number $a \in \mathbf{R}$ such that, for each $x \in M$ we have $x \geq a$. Such a number a is called lower bound of the set M. We define the following notions analogously set bounded from above and upper bound. We say that a set $M \subset \mathbf{R}$ is bounded, if it is bounded from above and below.

Infimum axiom

III. Infimum axiom:

Let M be a nonempty bounded from below set. Then there exists a unique number $g \in \mathbf{R}$ such that
(i) $\forall x \in M: x \geq g$,

Infimum axiom

III. Infimum axiom:

Let M be a nonempty bounded from below set. Then there exists a unique number $g \in \mathbf{R}$ such that
(i) $\forall x \in M: x \geq g$,
(ii) $\forall g^{\prime} \in \mathbf{R}, g^{\prime}>g \exists x \in M: x<g^{\prime}$.

Infimum axiom

III. Infimum axiom:

Let M be a nonempty bounded from below set. Then there exists a unique number $g \in \mathbf{R}$ such that
(i) $\forall x \in M: x \geq g$,
(ii) $\forall g^{\prime} \in \mathbf{R}, g^{\prime}>g \exists x \in M: x<g^{\prime}$.

The number g is denoted by $\inf M$ and is called infimum of the set M.

Supremum

Definice
Let $M \subset \mathbf{R}$. The number $G \in \mathbf{R}$ satisfying
(i) $\forall x \in M: x \leq G$,
(ii) $\forall G^{\prime} \in \mathbf{R}, G^{\prime}<G \exists x \in M: x>G^{\prime}$,
is called supremum of the set M and is denoted by sup M.

Supremum

Definice
Let $M \subset \mathbf{R}$. The number $G \in \mathbf{R}$ satisfying
(i) $\forall x \in M: x \leq G$,
(ii) $\forall G^{\prime} \in \mathbf{R}, G^{\prime}<G \exists x \in M: x>G^{\prime}$,
is called supremum of the set M and is denoted by sup M.
Theorem 1.2
Let $M \subset \mathbf{R}$ be a nonempty set which is bounded from above. Then there exists sup M.

Maximum and minimum

Definice
Let $M \subset \mathbf{R}$. We say that a is a maximum of the set M (notation $\max M$), if $a \in M$ and a is an upper bound of M. We define analogously minimum of M. Maximum and minimum of M is denoted by $\max M$ and $\min M$ respectively.

Basic properties of real numbers

Theorem 1.3
For every $r \in \mathbf{R}$ there exists an integer part of r, i.e., there exists $k \in \mathbf{Z}$ such that $k \leq r<k+1$. (Integer part of r is denoted by $[r]$).

Basic properties of real numbers

Theorem 1.3
For every $r \in \mathbf{R}$ there exists an integer part of r, i.e., there exists $k \in \mathbf{Z}$ such that $k \leq r<k+1$. (Integer part of r is denoted by [r]).
Theorem 1.4
For each $x \in \mathbf{R}$ there exists $n \in \mathbf{N}$ such that $x<n$.

Basic properties of real numbers

Theorem 1.5
For each $x \in\langle 0,+\infty)$ and for each $n \in \mathbf{N}$ there exists a unique $y \in \mathbf{R}, y \geq 0$, with $y^{n}=x$.

Basic properties of real numbers

Theorem 1.5
For each $x \in\langle 0,+\infty)$ and for each $n \in \mathbf{N}$ there exists a unique $y \in \mathbf{R}, y \geq 0$, with $y^{n}=x$.

Theorem 1.6
Let $a, b \in \mathbf{R}, a<b$. Then there exists $r \in \mathbf{Q}$ such that $a<r<b$.

Kurt Gödel (1906-1978)

II. 1 Introduction

Definice
Suppose that to each natural number $n \in \mathbf{N}$ is assigned a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers.

II. 1 Introduction

Definice
Suppose that to each natural number $n \in \mathbf{N}$ is assigned a real number a_{n}. Then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers. The number a_{n} is called n-th member of the sequence. A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ equals a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$, if $a_{n}=b_{n}$ holds for every $n \in \mathbf{N}$.

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ bounded from above, if the set of all members of this sequence is bounded from above,

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ bounded from above, if the set of all members of this sequence is bounded from above,

- bounded from below, if the set of all members of this sequence is bounded from below,

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ bounded from above, if the set of all members of this sequence is bounded from above,

- bounded from below, if the set of all members of this sequence is bounded from below,
- bounded, if the set of all members of this sequence is bounded from above.

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
\square nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,
■ increasing, if $a_{n}<a_{n+1}$ for every $n \in \mathbf{N}$,

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,
■ increasing, if $a_{n}<a_{n+1}$ for every $n \in \mathbf{N}$,
■ nonincreasing, if $a_{n} \geq a_{n+1}$ for every $n \in \mathbf{N}$,

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
\square nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,
■ increasing, if $a_{n}<a_{n+1}$ for every $n \in \mathbf{N}$,
■ nonincreasing, if $a_{n} \geq a_{n+1}$ for every $n \in \mathbf{N}$,
$■$ decreasing, if $a_{n}>a_{n+1}$ for every $n \in \mathbf{N}$.

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
\square nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,
■ increasing, if $a_{n}<a_{n+1}$ for every $n \in \mathbf{N}$,
■ nonincreasing, if $a_{n} \geq a_{n+1}$ for every $n \in \mathbf{N}$,
$■$ decreasing, if $a_{n}>a_{n+1}$ for every $n \in \mathbf{N}$.
A sequence $\left\{a_{n}\right\}$ is monotone, if it satisfies one of the conditions above.

II. 1 Introduction

Definice
We say that a sequence $\left\{a_{n}\right\}$ is
■ nondecreasing, if $a_{n} \leq a_{n+1}$ for every $n \in \mathbf{N}$,
■ increasing, if $a_{n}<a_{n+1}$ for every $n \in \mathbf{N}$,
■ nonincreasing, if $a_{n} \geq a_{n+1}$ for every $n \in \mathbf{N}$,
$■$ decreasing, if $a_{n}>a_{n+1}$ for every $n \in \mathbf{N}$.
A sequence $\left\{a_{n}\right\}$ is monotone, if it satisfies one of the conditions above. A sequence $\left\{a_{n}\right\}$ is strictly monotone, if it is increasing or decreasing.

II. 2 Convergence

Definice
We say that a sequence $\left\{a_{n}\right\}$ has a limit which equals to a real number A, if

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists n_{0} \in \mathbf{N} \forall n \in \mathbf{N}, n \geq n_{0}:\left|a_{n}-A\right|<\varepsilon .
$$

We denote $\lim _{n \rightarrow \infty} a_{n}=A$ or only $\lim a_{n}=A$.

II. 2 Convergence

Definice
We say that a sequence $\left\{a_{n}\right\}$ has a limit which equals to a real number A, if

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists n_{0} \in \mathbf{N} \forall n \in \mathbf{N}, n \geq n_{0}:\left|a_{n}-A\right|<\varepsilon .
$$

We denote $\lim _{n \rightarrow \infty} a_{n}=A$ or only $\lim a_{n}=A$. We say that a sequence $\left\{a_{n}\right\}$ is convergent, if there exists $A \in \mathbf{R}$ with $\lim a_{n}=A$.

