Mathematics I

Entrance test, 3.10. 2018

1. Find all real solutions of the equation $2 x^{2}+3 x-2=0$.
2. Find the set M of all solutions of the equation $e^{x^{2}-8 x+7} \leq 1$ in the real domain.
3. Compute the distance d of the point $[1,0]$ from the line which contains the points $[1,-1]$ and $[-2,2]$.
4. For every real numbers a, b the term $\sqrt{a^{2}+4 a b+4 b^{2}}$ equals
a) $\sqrt{(a+2 b)^{2}}$,
b) $a+2 b$,
c) $|a|+2|b|$,
d) $|a+2 b|$,
e) $||a|+2| b|\mid$.
5. Solve $\frac{x-1}{2 x+16}>1$ in the real domain.
6. Solve the equation $3 \cos ^{2} x=3 \cos x-\sin ^{2} x$ in the real domain.
7. Solve the system of two equations with a real parameter λ.

$$
\begin{aligned}
& \lambda x+y=1 \\
& x+\lambda y=1
\end{aligned}
$$

8. Draw the graph of the function: $f(x)=||x+1|-2|$. Let a be a real number. Consider the equation $f(x)=a$. Mark all correct answers.
a) There exists $a \in \mathbb{R}$ such that the equation has exactly three solution.
b) There exists $a \in \mathbb{R}$ such that the equation has exactly one solution.
c) For each $a \in \mathbb{R}$ each solution is contained in the interval $\langle-a, a\rangle$.
d) The equation has a solution for each $a \in \mathbb{R}$.
e) The function f is even.
9. Find all lines which are tangent to the circles $\left\{[x, y] \in \mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$ and $\{[x, y] \in$ $\left.\mathbb{R}^{2} ;(x-4)^{2}+y^{2}=1\right\}$.
10. In the square with the side of the length 1 consider the set C whose boundary is formed by one side of the square and by parts of the circles centered at the vertices of the square with radius 1 (see the picture). Find the area S of the set C.

Answers

1. The roots are $-2, \frac{1}{2}$.
2. $M=\langle 1,7\rangle$
3. The line is determined by the equation $y=-x$. The distance of $[1,0]$ from this line is $\frac{1}{\sqrt{2}}$.
4. The term equals $\sqrt{(a+2 b)^{2}}=|a+2 b|$.

Correct answers: a, d.
5. $M=(-17,-8)$
6. Substituting $y=\cos x$ gives the equation $2 y^{2}-3 y+1=0$ having the roots $\frac{1}{2}$ a 1 . Solution: $\frac{\pi}{3}+2 k \pi,-\frac{\pi}{3}+2 k \pi, 2 k \pi$, where $k \in \mathbb{Z}$.
7. The system has for $\lambda=1$ infinitely many solutions, for $\lambda=-1$ there is no solution and for $\lambda \neq \pm 1$ here is a unique solution $\left[\frac{1}{1+\lambda}, \frac{1}{1+\lambda}\right]$.
8. Correct answers: a.
9. There are four solutions: $y=-1, y=1, y=\frac{1}{\sqrt{3}}(x-2), y=-\frac{1}{\sqrt{3}}(x-2)$.
10. $S=\frac{\sqrt{3}}{4}-\frac{\pi}{12}$

