
INFINITE GAMES AND σ-POROSITY

M. DOLEŽAL AND M. ZELENÝ

Abstract. We show a game characterizing various types of σ-porosity in terms of win-
ning strategies. We use the game to prove and reprove some new and older inscribing
theorems for σ-ideals of σ-porous type in locally compact metric spaces.

1. Introduction

The theory of porous and σ-porous sets forms an important part of real analysis and
Banach space theory for more than forty years. It originated in 1967 when E. P. Dolženko
used for the first time the nomenclature ‘porous set’ and proved that some sets of his
interest are σ-porous ([2]). Since then the porosity has been used many times as well as
many variants of this notion (see Section 4). The interested reader can consult the survey
papers of L. Zaj́ıček ([10, 12]) on porous and σ-porous sets.

Here we are interested in structural properties of σ-ideals of σ-porous type. More pre-
cisely, the main question we will consider in this work is the following one.

Question. Let A be an analytic subset of a metric space X and I be a σ-ideal of subsets
of X. Suppose that A /∈ I. Does there exist a closed set F ⊂ A which is not in I?

This question was posed by L. Zaj́ıček in [10] (for a Borel set A) for classical Dolženko σ-
porosity. An affirmative answer was given independently by J. Pelant (for any topologically
complete metric space X) and M. Zelený (for any compact metric space X). Their results
are demonstrated in a joint paper [13] which combines the original idea of J. Pelant (giving
an explicit construction of the set F ) and techniques developed by M. Zelený. The case of
some other types of porosity (including the ordinary one in a locally compact metric space
X but also 〈g〉-porosity in a locally compact metric space X and symmetrical porosity in
R) was solved (also affirmatively) by M. Zelený and L. Zaj́ıček in [14]. They offer a less
complicated method of construction of F using so called ‘porosity-like’ relations. Their non-
constructive proof uses tools from Descriptive Set Theory. However, the authors admitted
that their method cannot be applied to strong porosity and so Question for strong porosity
still remained open (even in a compact metric space X).

Later on J. Zapletal introduced a new powerful tool to describe σ-porous sets. This was
an infinite game which can be used to characterize σ-porous sets in 2N considered with
respect to certain metric compatible with the product topology. This game is used to
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reprove the positive answer to Question in this particular case ([5, Example 4.20]). The
only attempt to answer Question for strong porosity (and ordinary porosity once again)
was made by D. Rojas-Rebolledo, who generalized in [9] the ideas from [5]. He managed to
give an affirmative answer to Question in any zero-dimensional compact metric space X.
Further, M. Doležal ([1]) showed a characterization of σ-P -porous sets for any porosity-like
relation P via an infinite game.

Our aim is to generalize results of [5, 9, 14] in two directions. We give a positive answer
to Question in spaces which are more general than those considered in [5, 9] and also for
σ-ideals of σ-porous type which are not included in [14].

Let us look at the contents of this work a little closer. Definitions and well known results
necessary in the sequel are presented in Section 2. In Section 3, we prove the main result
of the paper (Theorem 3.11). The complete formulation is a little bit technical so let us
formulate the result in an informal way.

Let X be a compact metric space and R be a porosity-like relation on X satisfying
some additional conditions. Then every analytic non-σ-R-porous subset A of X contains
a compact non-σ-R-porous subset.

To prove this we proceed as follows. We introduce a variant of Zapletal’s game for two
players played with a set A. We prove that the second player has a winning strategy if and
only if A is σ-R-porous. Now consider non-σ-R-porous analytic subset A of X. By the
result of Farah and Zapletal ([5, Theorem 4.16]) we may assume that A is non-σ-R-porous
and Borel. Then we show that our game with A is determined using Martin Determinacy
Theorem. The set A is non-σ-R-porous thus the second player does not have a winning
strategy. By determinacy the first player has to have a winning strategy. Using a winning
strategy of the first player we find a compact subset K of A such that the first player still
has a winning strategy in the game played with K. This means that the second player
does not have a winning strategy and so K is not σ-R-porous.

In Section 4, we apply the last result to concrete porosities and obtain an (affirmative)
answer to several different variants of Question. Namely, we deal with ordinary porosity,
strong porosity, strong right porosity, and 1-symmetrical porosity. As it is described earlier,
the first result have been already known but the method used in our work (based on an
infinite game) aspires to be more elegant and easier than the known proofs. The other
results are new. Finally, we show that there exists a closed set in R which is σ-(1 − ε)-
symmetrically porous for every ε ∈ (0, 1) but which is not σ-1-symmetrically porous. This
answers a question posed by M. J. Evans and P. D. Humke in [4].

2. Preliminaries

Let (X, d) be a metric space. An open ball with center x ∈ X and radius r > 0 is denoted
by B (x, r). Since an open ball (considered as a set) does not uniquely determine its center
and radius, we will identify every open ball with the pair (center, radius) throughout this
work. Therefore two different open balls (i.e., two different pairs (center, radius)) can still
determine the same subset of X. Now, for p > 0 and an open ball B with center x ∈ X
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and radius r > 0, we can define p ? B as an open ball with center x and radius pr. The
closed ball with center x ∈ X and radius r > 0 is denoted by B(x, r). We employ the same
identification of closed balls with the pair (center, radius) as for open balls. If A ⊂ X is
nonempty and r > 0 then B(A, r) = {x ∈ X : dist(x,A) < r}. We also set B(∅, r) = ∅.

We will prove our results for porosity-like relations satisfying some additional assump-
tions and then apply it to concrete cases. To do this, we need the following definition.

Definition 2.1. Let X be a metric space and let P ⊂ X×2X be a relation between points
of X and subsets of X. Then P is called a point-set relation on X. The symbol P (x,A)
where x ∈ X and A ⊂ X means that (x,A) ∈ P . A point-set relation P on X is called a
porosity-like relation if the following conditions hold for every A ⊂ X and x ∈ X:

(P1) if B ⊂ A and P (x,A) then P (x,B),
(P2) we have P (x,A) if and only if there exists r > 0 such that P (x,A ∩B(x, r)),
(P3) we have P (x,A) if and only if P (x,A).

If P is a porosity-like relation on X, A ⊂ X, and x ∈ X, we say that

• A is P -porous at x if P (x,A),
• A is P -porous if it is P -porous at each x ∈ A,
• A is σ-P -porous if it is a countable union of P -porous sets.

We will need the following theorem.

Theorem 2.2 ([11, Lemma 3]). Let X be a metric space, P be a porosity-like relation on
X, and A ⊂ X. Then A is σ-P -porous if and only if for every x ∈ A there exists r > 0
such that B (x, r) ∩ A is σ-P -porous.

Further let us recall that if s is a finite sequence of elements of a nonempty set A and t is
a finite or infinite sequence of elements of A, then the concatenation of s and t is denoted
by s∧t.

3. Main result

3.1. The class R. Now we define the class of porosity-like relations for which we prove
positive answer to our Question in compact metric spaces. The definition is technical but it
covers many interesting concrete cases and verification of the conditions is straightforward.

Definition 3.1. Let (X, d) be a nonempty metric space. We say that a point-set relation
R on X belongs to the class R(X) if there are point-set relations Rs and Rs,q

r on X, s ∈ N,
r > 0, q ∈ (0, 1), such that the following conditions are satisfied:

(R1) Rs =
⋂

0<q<1

⋂
R>0

⋃
0<r<R

Rs,q
r and R =

⋃
s∈N

Rs,

(R2) if Rs,q
r (x,A) and 0 < w < q

2s
then Rs,q−2sw

r (x,B(A, rw)),
(R3) if B ⊂ A and Rs,q

r (x,A) then Rs,q
r (x,B),

(R4) we have Rs,q
r (x,A) if and only if Rs,q

r (x,A ∩B(x, 2r)),
(R5) the set {(x, r) ∈ X × (0,∞) : Rs,q

r (x,A)} is open in X × (0,∞).
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Convention 3.2. Throughout this section we will work with a fixed compact metric space
K with a fixed point-set relation R ∈ R(K). The corresponding point-set relations Rs,q

r , Rs

witnessing R ∈ R(K) are fixed as well. We also fix a set A ⊂ K.

Lemma 3.3. Let s ∈ N and r > 0. Then we have:

(M) if 0 < q1 < q2 < 1 and Rs,q2
r (x,A), then Rs,q1

r (x,A),
(P) Rs is a porosity-like relation; consequently, R is a porosity like-relation.

Proof. (M) By (R2) applied to w = q2−q1
2s

, we get Rs,q1
r

(
x,B(A, r(q2−q1)

2s
)
)
. By (R3), we have

Rs,q1
r (x,A).
We verify (P1)–(P3) from Definition 2.1 to prove (P).
(P1) This property is an immediate consequence of (R1) and (R3)
(P2) Suppose that Rs(x,A ∩ B(x, r0)) for some r0 > 0. By (R1), there exist sequences

(qk)
∞
k=1 of real numbers from (0, 1) and (rk)

∞
k=1 of real numbers from (0,∞) such that

lim
k→∞

qk = 1, lim
k→∞

rk = 0, and Rs,qk
rk

(x,A ∩ B(x, r0)) for every k ∈ N. There exists k0 ∈ N
such that 2rk ≤ r0 for every k ≥ k0. Then Rs,qk

rk
(x,A ∩ B(x, 2rk)) for k ≥ k0 by (R3) and

so Rs,qk
rk

(x,A) for k ≥ k0 by (R4). Using (R1) and (M), we get Rs(x,A). The opposite
implication follows by (P1).

(P3) Suppose that Rs(x,A). Choose q ∈ (0, 1) and R > 0. By (R1), there exists

0 < r̃ < R such that Rs,q
r̃ (x,A). By (M) we have Rs,q′

r̃ (x,A) for every 0 < q′ < q. Using
(R1) we get Rs(x,A). The opposite implication follows by (P1).

The fact that R is a porosity-like relation follows directly from the definition of R. �

3.2. Boulder-Sisyfos game. For the rest of this section, let us fix sequences (Rn)∞n=1 and
(an)∞n=1 of real numbers from (0,∞) such that for every n ∈ N

Rn+1 ≤ 2−(n+2)Rn (1)

and

lim
n→∞

an
Rn+2

= 0. (2)

Let Dn, n ∈ N, be a finite an-net in K (i.e., a finite subset of K such that K =⋃
{B(y, an) : y ∈ Dn}) and let Mn = {B(y, an) : y ∈ Dn}.
Let A be an arbitrary subset of K. We define a game H (A) for two players, who will be

called Boulder and Sisyfos. These names were used by J. Zapletal in the original version
of his game. The game is played as follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

On the first move, Boulder plays an open ball B1 ⊂ K with radius R1 and Sisyfos plays
an open set S1

1 ⊂ B1 where S1
1 is a union (possibly empty) of some balls from M1. On the

second move, Boulder plays an open ball B2 with center in 1
2
?B1 and radius R2 and Sisyfos
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plays two open sets S1
2 and S2

2 such that S1
2 ∪ S2

2 ⊂ B2 where Sj2 is a union of some balls
from M2, j = 1, 2. On the nth move, n > 1, Boulder plays an open ball Bn with center in
(1− 2−(n−1)) ? Bn−1 and radius Rn and Sisyfos replies by playing open sets S1

n, S
2
n, . . . , S

n
n

such that
⋃n
j=1 S

j
n ⊂ Bn where Sjn is a union of some balls from Mn, j = 1, 2, . . . , n.

By (1), we have lim
n→∞

diamBn = 0. Using this fact and the compactness of K, when a

run of the game is over, we get a unique point x lying in the intersection of the balls Bn,
n ∈ N, played by Boulder. We call this point an outcome of the run. Sisyfos wins if at
least one of the following conditions is satisfied:

(a) x /∈ A,
(b) there exists m ∈ N such that one can find s ∈ N, sequences (nk)

∞
k=1 of integers from

{m,m + 1, . . .}, (qk)
∞
k=1 of real numbers from (0, 1), and (rk)

∞
k=1 of real numbers

from (0,∞) such that

• x ∈ K \
∞⋃
n=m

Smn ,

• lim
k→∞

nk =∞,

• lim
k→∞

qk = 1,

• rk ≤ 2−(nk+3)Rnk
, k ∈ N,

• Rs,qk
rk

(x,K \ Smnk
), k ∈ N.

Boulder wins in the opposite case. If condition (b) is satisfied for some m ∈ N, then m is
called a witness of Sisyfos’ victory.

At first sight, condition (b) looks very complicated. For a better understanding, we can
observe that it is stronger than the assertion that Rs(x,K \

⋃∞
n=m S

m
n ) by (R1), (R3), and

(M).
We use the above notation in the next lemma.

Lemma 3.4. For every n ∈ N, we have Bn+1 ⊂
(
1− 1

2n+1

)
? Bn.

Proof. Suppose that xn is the center of Bn, xn+1 is the center of Bn+1, and z ∈ Bn+1. Then
we have

d(z, xn) ≤ d (z, xn+1) + d (xn+1, xn) < Rn+1 +
(
1− 2−n

)
Rn

≤
(
2−(n+2) + 1− 2−n

)
Rn =

(
1− 3 · 2−(n+2)

)
Rn <

(
1− 2−(n+1)

)
Rn.

�

3.3. Characterization of σ-R-porosity via the infinite game. In this subsection we
show that the notion of σ-R-porosity, where R is the fixed porosity-like relation belonging
to the class R, can be characterized by existence of a winning strategy of Sisysfos in our
game. To this end we will need couple of auxiliary notions.

We say that a finite (also empty) sequence of open balls (B1, B2, . . . , Bi) is good if Bn+1

is centered at 1
2
? Bn, n = 1, . . . , i− 1, and the radius of Bn equals Rn, n = 1, . . . , i. That

is, a finite sequence of open balls is good if the rules of the game H(A) allow Boulder to
play the ball Bn on his nth move, n = 1, 2, . . . , i.
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For n,m ∈ N we define

dmn =

{
1− 2−n+m−1 if m ≤ n,
1
4

if m > n.

Let σ be a strategy for Sisyfos in the game H(A). If k ∈ N ∪ {0} and l ∈ N then we
say that a good sequence of open balls (B1, B2, . . . , Bi) is (k, l)-good (with respect to the
strategy σ) if there exists a run of the game H (A) such that the following conditions hold:

• Sisyfos followed the strategy σ,
• Boulder played the ball Bn on his nth move, n = 1, 2, . . . , i,
• the following conditions are satisfied for every positive n ∈ {k, k + 1, . . . , i− 1}:
(H1) if

[
l > n or

(
l ≤ n and Sln ∩

(
dln ? Bn

)
= ∅

)]
then the center of Bn+1 lies in

dl+1
n ? Bn,

(H2) if
[
l ≤ n and Sln ∩

(
dln ? Bn

)
6= ∅
]

then the center of Bn+1 lies in dln ? Bn.

Let Boulder and Sisyfos play a run of the game H(A). Let V = (B1,S1, B2,S2, . . .), and
Sn = (S1

n, S
2
n, . . . , S

n
n), n ∈ N, where Boulder played the ball Bn and Sisyfos played the

sets S1
n, S

2
n, . . . , S

n
n on the nth move of the run. Then we will refer to the run itself by V

and if we talk about the ball Bn or about the set Smn , we just use the symbols Bn(V ) and
Smn (V ), respectively.

We say that a run V of the game H(A) is (k, l)-good if Sisyfos followed the strategy σ
and the sequence (B1(V ), B2(V ), . . . , Bj(V )) is (k, l)-good for every j ∈ N.

It is easy to see that if l1 > l2 and a finite sequence of open balls (a run of the game
H (A), respectively) is (k, l1)-good then it is also (k, l2)-good.

If T = (B1, B2, . . . , Bi) is a good sequence of open balls, we say that a run V of the
game H(A) is T -compatible if Bn(V ) = Bn for every n ∈ {1, 2, . . . , i}.

For m ∈ N ∪ {0} and a good sequence of open balls T = (B1, B2, . . . , Bi), we denote by
Mm(T ) the set of all

x ∈

{
A if T = ∅, i.e., i = 0,

A ∩
(
1
4
? Bi

)
if i > 0

such that in every T -compatible (i,m+ 1)-good run of the game H(A) giving x as its
outcome, all the witnesses of Sisyfos’ victory (if there exist any) are greater than m. The
set Mm(T ) also depends on the set A and on the strategy σ but these will be always fixed.

Lemma 3.5. Let σ be a strategy for Sisyfos in the game H(A). Let T0 = (B1, B2, . . . , Bi)
be a good sequence of open balls and m ∈ N∪{0}. Then there exist an R-porous set Nm(T0)
and an at most countable collection T of finite sequences of open balls such that T0

∧T is
(i,m+ 1)-good for every T ∈ T and

Mm(T0) ⊂ Nm(T0) ∪
⋃
{Mm+1(T0

∧T ) : T ∈ T }.

Proof. Define Nm(T0) as the set of all x ∈Mm(T0) such that

(I) there exists a T0-compatible (i,m + 2)-good run of the game H(A) giving x as its
outcome such that m+ 1 is a witness of Sisyfos’ victory,
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(II) for every T0-compatible (i,m + 2)-good run V of the game H(A) and for every
n ≥ max{i,m+ 1}, we have x /∈ Sm+1

n (V ) ∩ (dm+1
n ? Bn(V )).

Suppose that x ∈Mm(T0) \
(
Mm+1(T0)∪Nm(T0)

)
. By definition of Mm+1(T0) there exists

a T0-compatible (i,m + 2)-good run with the outcome x and with a witness less or equal
m + 1. Since x ∈ Mm(T0) and the run is also (i,m + 1)-good, the witness is equal m + 1.
Thus condition (I) holds for x. Therefore condition (II) cannot be true by the definition
of Nm(T0), and so there exist a T0-compatible (i,m+ 2)-good run V (x) of the game H (A)
and n(x) ≥ max{i,m+ 1} such that

x ∈ Sm+1
n(x) (V (x)) ∩

(
dm+1
n(x) ? Bn(x)

(
V (x)

))
.

Denote Bj(x) = B (x,Rj) for j > n(x). Find N(x) > n(x) such that BN(x)(x) ⊂
Sm+1
n(x) (V (x)) and denote

T (x) =
(
Bi+1(V (x)), . . . , Bn(x)(V (x))

) ∧ (Bn(x)+1(x), . . . , BN(x)(x)
)
.

Then the sequence T0
∧T (x) is (i,m+ 1)-good. Indeed, the sequence

T0
∧ (Bi+1(V (x)), . . . , Bn(x)(V (x))

)
is even (i,m+ 2)-good and the fact that

Sm+1
n(x) (V (x)) ∩

(
dm+1
n(x) ? Bn(x)

(
V (x)

))
6= ∅

allows Boulder to use condition (H2) and play the ball with center x ∈ dm+1
n(x) ? Bn(x)(V (x))

on his (n (x) + 1)st move. Since BN(x)(x) ⊂ Sm+1
n(x) (V (x)), we see that m+1 cannot become

a witness of Sisyfos’ victory in any T0
∧T (x)-compatible run of the game H (A). Therefore

we have
Mm(T0) ∩

(
1
4
? BN(x)(x)

)
⊂Mm+1(T0

∧T (x)),

and so x ∈Mm+1(T0
∧T (x)). By Lindelöf’s property, there exists an at most countable set

{xj : j ∈ N} ⊂Mm(T0) \ (Mm+1(T0) ∪Nm(T0))

such that Mm(T0)\
(
Mm+1(T0)∪Nm(T0)

)
is covered by the system

{
1
4
? BN(xj)(xj) : j ∈ N

}
of open sets and so it is also covered by the countable system {Mm+1(T0

∧T (xj)) : j ∈ N}.
Now, we can define T = {∅} ∪ {T (xj) : j ∈ N}. Then we obviously have

Mm(T0) ⊂ Nm(T0) ∪
⋃
{Mm+1(T0

∧T ) : T ∈ T }.

It remains to show that Nm(T0) is R-porous. Suppose that x ∈ Nm(T0) and V is a
T0-compatible (i,m+ 2)-good run of the game H(A) such that x is its outcome and m+ 1
is a witness of Sisyfos’ victory. We know that there exist s ∈ N and sequences (nk)

∞
k=1 of

integers from {m + 1,m + 2, . . .}, (qk)
∞
k=1 of real numbers from (0, 1), and (rk)

∞
k=1 of real

numbers from (0,∞) such that

• x ∈ K \
∞⋃

n=m+1

Sm+1
n (V ),

• lim
k→∞

nk =∞,
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• lim
k→∞

qk = 1,

• rk ≤ 2−(nk+3)Rnk
, k ∈ N,

• Rs,qk
rk

(
x,K \ Sm+1

nk
(V )
)
, k ∈ N.

We may assume that nk ≥ max{i,m + 2} for every k ∈ N. We know that the center of
Bn+1(V ) lies in dm+2

n ? Bn(V ) for every n ≥ i by conditions (H1) and (H2). Let us fix
k ∈ N. By condition (R4), we have

Rs,qk
rk

(
x,K \

(
Sm+1
nk

(V ) ∩B(x, 2rk)
))
. (3)

By condition (II), we have

Nm(T0) ⊂ K \
(
Sm+1
nk

(V ) ∩
(
dm+1
nk

? Bnk
(V )
))
. (4)

Now, let xnk
be the center of Bnk

(V ), xnk+1 be the center of Bnk+1(V ), and let us take
z ∈ B(x, 2rk). Then we have

d(z, xnk
) ≤ d(z, x) + d(x, xnk+1) + d(xnk+1, xnk

) < 2rk +Rnk+1 + dm+2
nk

Rnk

≤ 2−(nk+2)Rnk
+ 2−(nk+2)Rnk

+ dm+2
nk

Rnk
=
(
2−(nk+1) + 1− 2−nk+m+1

)
Rnk

≤
(
1− 2−nk+m

)
Rnk

= dm+1
nk

Rnk
.

Therefore we have B(x, 2rk) ⊂ dm+1
nk

? Bnk
(V ), and so

K \
(
Sm+1
nk

(V ) ∩
(
dm+1
nk

? Bnk
(V )
))
⊂ K \

(
Sm+1
nk

(V ) ∩B(x, 2rk)
)
. (5)

Finally, we have Rs,qk
rk

(x,Nm(T0)) by (3), (4), (5), and (R3). Therefore also Rs(x,Nm(T0))
by (R1), (R3), and (M), and we have R(x,Nm(T0)). �

Theorem 3.6. Sisyfos (i.e., the second player) has a winning strategy in the game H(A)
if and only if the set A is σ-R-porous.

Proof. Suppose first that A =
⋃∞
n=1An such that An is R-porous for every n ∈ N. We

define a strategy for Sisyfos as follows. For n ∈ N and m ∈ {1, 2, . . . , n}, Sisyfos plays Smn
as the union of all balls B ∈ Mn for which B ⊂ Bn \ Am, where Bn is the nth move of
Boulder.

We show that this strategy is winning. Let Boulder and Sisyfos play a run of the game
H(A) such that Sisyfos follows this strategy. Let x be an outcome of this run. If x /∈ A
then Sisyfos satisfies condition (a) and wins. If x ∈ A then there exists m ∈ N such that
x ∈ Am. Then we have x /∈

⋃∞
n=m S

m
n . Further, since R(x,Am), there exists s ∈ N such

that Rs(x,Am), and so we know by condition (R1) that there exist sequences (qk)
∞
k=1 of

real numbers from (0, 1) and (rk)
∞
k=1 of real numbers from (0,∞) such that

• lim
k→∞

qk = 1,

• lim
k→∞

rk = 0,

• Rs,qk
rk

(x,Am), k ∈ N.

There also exists n0 ≥ m such that

s
2n+6an
Rn+1

≤ inf{qk : k ∈ N} (6)
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for n ≥ n0 since the expression on the right side is strictly positive and the expression on
the left side tends to zero which follows from (2) and the estimate (derived from (1))

0 < s
2n+6an
Rn+1

≤ s
8an
Rn+2

. (7)

We may assume that rk ≤ 2−(n0+3)Rn0 for every k ∈ N. Let us choose k ∈ N and define nk
as the greatest integer such that

rk ≤ 2−(nk+3)Rnk
. (8)

Obviously, we have nk ≥ n0 and limk→∞ nk =∞. Since (8) does not hold for nk+1 instead
of nk, we get

rk > 2−(nk+4)Rnk+1 ≥ s
4ank

qk
(9)

using the estimate (6) for n = nk in the second inequality. It follows that qk
2s
>

2ank

rk
> 0.

By condition (R2) applied to w =
2ank

rk
, we have

R
s,qk−s

4ank
rk

rk (x,B (Am, 2ank
)) . (10)

Let us denote q̃k = qk − s
4ank

rk
. Using the first inequality from the estimate (9), we get

0 ≤ s
4ank

rk
≤ s

2nk+6ank

Rnk+1

. (11)

By (2), (7), and (11), we have

lim
n→∞

s
4ank

rk
= 0

and so

lim
k→∞

q̃k = lim
k→∞

qk − lim
k→∞

s
4ank

rk
= 1.

To verify condition (b), it suffices to show that Rs,q̃k
rk

(
x,K \ Smnk

)
, k ∈ N. Fix k ∈ N and

suppose that z ∈ B (x, 2rk) \B (Am, 2ank
). Then

B (z, 2ank
) ⊂ K \ Am (12)

by the definition of B (Am, 2ank
). Denote the center of Bnk

by xnk
. If we use

• Lemma 3.4 and the fact that x ∈ Bnk+1 (in the second inequality of the upcoming
estimate),
• an immediate consequence of (9) saying that ank

≤ rk (in the third inequality),
• estimate (8) (in the fourth inequality),

then we have for arbitrary y ∈ B (z, 2ank
) the following:

d(y, xnk
) ≤ d(y, z) + d(z, x) + d(x, xnk

) < 2ank
+ 2rk +

(
1− 2−(nk+1)

)
Rnk

≤ 4rk +
(
1− 2−(nk+1)

)
Rnk
≤ 2−(nk+1)Rnk

+
(
1− 2−(nk+1)

)
Rnk

= Rnk
.

(13)

This gives us the inclusion
B (z, 2ank

) ⊂ Bnk
. (14)
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By putting (12) and (14) together, we get B(z, 2ank
) ⊂ Bnk

\Am and it easily follows from
the definitions of Dnk

and Mnk
that z ∈ Smnk

. So we have B(x, 2rk) \ B(Am, 2ank
) ⊂ Smnk

and thus
B(x, 2rk) \ Smnk

⊂ B(Am, 2ank
). (15)

By (10), (15), and (R3), we get Rs,q̃k
rk

(x,B(x, 2rk)\Smnk
). By (R4), this gives Rs,q̃k

rk
(x,K\Smnk

)
as we wanted.

Now, let us assume that Sisyfos has a winning strategy σ in the game H(A) and that
he follows this strategy in every run of the game H(A). We have A = M0(∅) and, by
Lemma 3.5, it follows

A = M0(∅) ⊂ N0(∅) ∪
⋃
{M1(T1) : T1 ∈ T } , (16)

where N0(∅) is R-porous and T is an at most countable collection of (0, 1)-good sequences
of open balls. Now, for every T1 ∈ T we have

M1(T1) ⊂ N1(T1) ∪
⋃
{M2(T1

∧T2) : T2 ∈ T (T1)} , (17)

where N1(T1) is R-porous and T (T1) is an at most countable collection of finite sequences
of open balls such that T1

∧T2 is (length(T1), 2)-good for every T2 ∈ T (T1). By iterating
this process, we get a countable system of R-porous sets

U = {Nk(T1, T2, . . . , Tk) : k ∈ N ∪ {0}, T1 ∈ T , T2 ∈ T (T1), . . . , Tk ∈ T (T1, . . . , Tk−1)}
such that for every k ∈ N ∪ {0} and T1 ∈ T , T2 ∈ T (T1), . . . , Tk ∈ T (T1, T2, . . . , Tk−1),
the sequence T1

∧T2
∧ . . . ∧Tk is (length(T1

∧T2
∧ . . . ∧Tk−1), k)-good. It suffices to show that

A ⊂
⋃
U . Suppose that this is not true and so there exists x ∈ A \

⋃
U . By (16),

there exists T1 ∈ T such that x ∈ M1(T1). By (17), there exists T2 ∈ T (T1) such that
x ∈M2(T1

∧T2). In this way, we get that there exists a sequence (Tk)
∞
k=1 where T1 ∈ T and

Tk ∈ T (T1, T2, . . . , Tk−1) for k > 1 such that x ∈Mk(T1
∧T2

∧ . . . ∧Tk) for every k ∈ N.
We use the sequence (Tk)

∞
k=1 to construct a special run of the game H(A). Set S =

T1
∧T2

∧ . . . The sequence S is either finite or infinite. In the first case there exists k0 ∈
N ∪ {0} such that S = T1

∧T2
∧ . . . ∧Tk0 and Tk = ∅ for every k > k0. Then Boulder plays

balls from S and then he continues by playing open balls centered at x. Sisyfos follows his
winning strategy σ. The outcome of such a run is x. Moreover, since x ∈Mk0(S), we have
x ∈ 1

4
?Blength(S). It follows that the run is (length(S),m+ 1)-good for every m ∈ N. If the

sequence S is infinite, then Boulder plays open balls following the sequence S and Sisyfos
follows his winning strategy σ.

In both cases the point x is the outcome of the run and any m ∈ N cannot be a witness of
Sisyfos’ victory since x ∈Mm(T1

∧T2
∧ . . . ∧Tm) and the run is (length(T1

∧T2
∧ . . . ∧Tm),m+

1)-good for every m ∈ N. This is a contradiction since the strategy σ is winning for
Sisyfos. �

Lemma 3.7. If the set A is Borel then the game H(A) is Borel.

Proof. Denote by B and G the family of all open balls in K and the family of all open
subsets of K respectively. Denote the tree of all legal positions of the game H(A) by T.
Then the payoff set P for the game H(A) is the set of all V ∈ [T] ([T] stands for the set of
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all infinite branches of T) of the form V = (B1, (S
1
1), B2, (S

1
2 , S

2
2), . . .) such that neither of

the conditions (a) and (b) is satisfied for V . Then [T] is a subset of
∏∞

n=1(B× (G)n), which
will be considered as a topological space with the product topology, where each factor is
equipped with the discrete topology as usual.

We define mappings f : [T]→ K and hjn : [T]→ G, n ∈ N, j ∈ {1, 2, . . . , n}, by

• {f(V )} =
⋂∞
n=1Bn(V ), i.e., f(V ) is the outcome of V ,

• hjn(V ) = Sjn(V ).

It is easy to check that the mappings f and hjn are continuous. Next, we define

Wm = {V ∈ [T] : m is a witness of Sisyfos’ victory in the run V }. (18)

Then we have

P = f−1(A) \
∞⋃
m=1

Wm.

The set f−1(A) is a continuous preimage of a Borel set and so it is Borel. To finish the
proof, it remains to show that Wm is a Borel set for every m ∈ N. Fix m ∈ N. After taking
into consideration (R1), (R3), (R5), and (M), we have V ∈ Wm if and only if

(i) f(V ) ∈ K \
⋃∞
n=m h

m
n (V ) and

(ii) there exists s ∈ N such that for every k ∈ N there exist nk ≥ max{m, k}, qk ∈
(1− 1

k
, 1) ∩Q, and rk ∈ (0, 2−(nk+3)Rnk

] ∩Q such that Rs,qk
rk

(
f(V ), K \ hmnk

(V )
)
.

Further, we have V ∈ [T] satisfies (i) if and only if

V ∈
∞⋂
n=m

⋃
G is a union
of some balls
from Mn

(
(hmn )−1 ({G}) ∩ f−1(K \G)

)
.

The set Mn is finite, so it is easy to see that the set on the right side is closed in [T].
Finally, we have Rs,qk

rk
(f(V ), K \ hmnk

(V )) if and only if

V ∈
⋃

G is a union
of some balls
from Mnk

((
hmnk

)−1
({G}) ∩ f−1

(
{y ∈ K : Rs,qk

rk
(y,K \G)}

))

and the last set is open by (R5). Thus a straightforward verification gives that Wm is Borel
and we are done. �

We will need the following result of J. Zapletal. To state it we need another notion of
abstract porosity.

Definition 3.8 ([5]). Let X be a Polish space and U be a countable collection of its Borel
subsets. An abstract porosity is a mapping por from all subsets of U to Borel subsets of
X such that A ⊂ B implies por(A) ⊂ por(B). The porosity σ-ideal associated with the
porosity por is σ-generated by sets por(A) \

⋃
A, as A runs through all subsets of U .
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Theorem 3.9. [5, Theorem 4.16] Let X be a Polish space and I be a porosity σ-ideal of
subsets of X and A ⊂ X be analytic. If A /∈ I, then there exists a Borel set B ⊂ A with
B /∈ I.

Lemma 3.10. The σ-ideal I of all σ-R-porous subsets of K forms a porosity ideal.

Proof. Let U be a countable open basis of the space K. We define the mapping por by

por(A) =
{
x ∈ K : R(x,K \

⋃
A)
}
.

Using the definition of R and property (R5) we get that por(A) is Borel for every A ⊂ U .
The monotonicity of por is obvious. The verification that I is σ-generated by sets of the
form por(A) \

⋃
A, A ⊂ U , is straightforward. �

Theorem 3.11. Let (K, d) be a nonempty compact metric space, R ∈ R(X), and let
A ⊂ K be an analytic set which is not σ-R-porous. Then there exists a compact set F ⊂ A
which is not σ-R-porous.

Proof. Using Lemma 3.10 and Theorem 3.9 we may assume that A is Borel. Sisyfos does
not have a winning strategy in the game H(A) by Theorem 3.6. But by Theorem 3.7 and
Martin Determinacy Theorem ([8]), the game is determined and so Boulder has a winning
strategy µ. We consider µ as a subset of T (cf. [6, 20.A]). The fact that Sisyfos has only
finitely many possible choices on each of his moves of the game H(A) easily implies that
the body [µ] is compact in the topology derived from the topological space

∏∞
n=1(B×(G)n).

Each run V ∈ [µ] is a run of the game H(A) won by Boulder. Let f : [T] → K be the
mapping from the proof of Theorem 3.7, that is the mapping assigning to V ∈ [T] its
outcome. Recall that the mapping f is continuous. Define F = f([µ]). Then F is compact
and a subset of A by condition (a) because the strategy µ is winning for Boulder.

It remains to show that F is not σ-R-porous. Since satisfaction of condition (b) does
not depend on the set which the game is played with, it is obvious that µ is a winning
strategy for Boulder also in the game H(F ). Therefore Sisyfos does not have a winning
strategy in the game H(F ) and using Theorem 3.6 again, we get the conclusion. �

4. Applications to concrete porosities.

Using Theorem 3.11 we prove inscribing theorems for σ-porosity, σ-strong porosity, σ-
strong right porosity, and σ-1-symmetrical porosity. It will be clear that Theorem 3.11
can be applied to many other types of porosity. First of all we recall definitions of the
mentioned porosities.

Let (X, d) be a metric space. Let M ⊂ X, x ∈ X, and R > 0. Then we define

θ(x,R,M) = sup{r > 0: there exists an open ball B(z, r)

such that d(x, z) < R and B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

θ(x,R,M)

R
.

We say that M ⊂ X is



INFINITE GAMES AND σ-POROSITY 13

• porous at x ∈ X if p(x,M) > 0,
• strongly porous at x ∈ X if p(x,M) ≥ 1.

Let M ⊂ R, x ∈ R, and R > 0. Then we define

θ+(x,R,M) = sup{r > 0; there exists an open ball B(z, r), z > x,

such that |x− z| < R, and B(z, r) ∩M = ∅},

p+(x,M) = lim sup
R→0+

θ+(x,R,M)

R
,

θs(x,R,M) = sup{r > 0; there exists an open ball B(z, r),

such that |x− z| < R, and (B(z, r) ∪B(2x− z, r)) ∩M = ∅},

ps(x,M) = lim sup
R→0+

θs(x,R,M)

R
.

Let c > 0. We say that M ⊂ X is

• right porous at x ∈ R if p+(x,M) > 0,
• strongly right porous at x ∈ R if p+(x,M) ≥ 1,
• c-symmetrically porous at x ∈ R if ps(x,M) ≥ c.

Theorem 4.1 (cf. [13, Theorem 3.1]). Let (X, d) be a locally compact metric space. Let
A ⊂ X be a non-σ-porous analytic set. Then there exists a non-σ-porous compact set
F ⊂ A.

Proof. First, suppose that the space (X, d) is compact. Let s ∈ N, q ∈ (0, 1), and r > 0.
We define a point-set relation Rs,q

r on X by

Rs,q
r (x,M)⇔ there exists a ball B(y, r̃) such that x ∈

(
B(y, r) \B(y, 1

2
r)
)
∩B(y, sr̃

q
)

and B(y, r̃) ∩M = ∅.

We set

Rs =
⋂

q∈(0,1)

⋂
R>0

⋃
0<r<R

Rs,q
r and R =

⋃
s∈N

Rs.

To show that R ∈ R(X), we need to verify that the relations Rs,q
r , s ∈ N, r > 0,

q ∈ (0, 1), satisfy conditions (R1)–(R5). Let us verify only (R2) and (R4), the other
conditions are easy to check.

(R2) Let s ∈ N, r > 0, q ∈ (0, 1), M ⊂ X, x ∈ X, 0 < w < q
2s

, and suppose that
Rs,q
r (x,M). There exists an open ball B(y, r̃) such that

x ∈
(
B(y, r) \B(y, 1

2
r)
)
∩B(y, sr̃

q
) and B(y, r̃) ∩M = ∅.

So we have
sr̃

q
> d(x, y) >

r

2
(19)
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and so r̃ − rw > r
(
q
2s
− w

)
> 0. Clearly, B(y, r̃ − rw) ∩ B(M, rw) = ∅ and by (19) we

have

s
r̃ − rw
q − 2sw

> s
r̃(1− 2sw

q
)

q − 2sw
=
sr̃

q
> d(x, y).

Thus x ∈ B
(
y, s r̃−rw

q−2sw

)
and we can conclude that Rs,q−2sw

r (x,B(M, rw)).

(R4) Let s ∈ N, r > 0, q ∈ (0, 1), M ⊂ X, and x ∈ X be such that Rs,q
r (x,M ∩B(x, 2r)).

Then there exists an open ball B(y, r̃) such that

x ∈
(
B(y, r) \B(y, 1

2
r)
)
∩B(y, sr̃

q
) and B(y, r̃) ∩M ∩B(x, 2r) = ∅.

First, let us assume that r̃ ≤ r. If z ∈ B(y, r̃) then

d(z, x) ≤ d(z, y) + d(y, x) < r̃ + r ≤ 2r.

So we have B(y, r̃) ⊂ B(x, 2r) and therefore B(y, r̃)∩M = B(y, r̃)∩M ∩B(x, 2r) = ∅. It
follows that Rs,q

r (x,M). Now, let us assume that r̃ > r. Then we have

B (y, r) ∩M = B (y, r) ∩M ∩B (x, 2r) ⊂ B(y, r̃) ∩M ∩B (x, 2r) = ∅

and the open ball B (y, r) witnesses that Rs,q
r (x,M). The opposite implication in (R4) is

obvious.
It is also straightforward to verify that M ⊂ X is porous at x ∈ X if and only if M

is R-porous at x. Therefore, A is not σ-R-porous and by Theorem 3.11, there exists a
non-σ-R-porous (and thus also non-σ-porous) compact set F ⊂ A.

Now, suppose that (X, d) is an arbitrary locally compact metric space. Since A is a non-
σ-porous subset of X, there exists x ∈ X such that A ∩ B(x, r) is a non-σ-porous subset

of X for every r > 0 by Theorem 2.2. Let us take r0 > 0 such that B (x, r0) is compact
and denote A′ = A ∩B(x, r0). Since porosity is a local property, every M ⊂ B(x, r0) is σ-

porous in X if and only if M is σ-porous in the compact metric space B (x, r0). Therefore,

A′ is non-σ-porous in B (x, r0). Due to the previous part of the proof, there exists a

non-σ-porous (in B (x, r0) and therefore also in X) compact set F ⊂ A′ ⊂ A. �

Theorem 4.2. Let (X, d) be a locally compact metric space. Let A ⊂ X be a non-σ-strongly
porous analytic set. Then there exists a non-σ-strongly porous compact set F ⊂ A.

Proof. Similarly as in the previous proof we may assume that X is compact. Let q ∈ (0, 1)
and r > 0. We define a point-set relation Rq

r on X by

Rq
r(x,M)⇔ there exists a ball B(y, r̃) such that x ∈

(
B(y, r) \B(y, 1

2
r)
)
∩B(y, r̃

q
)

and B(y, r̃) ∩M = ∅.

We set

R =
⋂

q∈(0,1)

⋂
R>0

⋃
0<r<R

Rq
r.

One can easily check that R ∈ R(X). Then M ⊂ X is σ-strongly porous if and only if A
is σ-R-porous. Applying Theorem 3.11, we get the conclusion. �
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Theorem 4.3. Let A ⊂ R be a non-σ-strongly right porous analytic set. Then there exists
a non-σ-strongly right porous compact set F ⊂ A.

Proof. Without any loss of generality, we may assume that A ⊂ (0, 1). Let q ∈ (0, 1) and
r > 0. We define a point-set relation Rq

r on [0, 1] by

Rq
r(x,M)⇔ there exist y ∈ R, r̃ > 0 such that y > x, x ∈

(
B(y, r) \B(y, 1

2
r)
)
∩B(y, r̃

q
)

and B(y, r̃) ∩M = ∅.

We set

R =
⋂

q∈(0,1)

⋂
R>0

⋃
0<r<R

Rq
r.

One can easily check that R ∈ R([0, 1]). Then M ⊂ (0, 1) is σ-strongly right porous if and
only if M is σ-R-porous. Applying Theorem 3.11 we get the conclusion. �

Remark 4.4. Theorem 4.3 has been already used in [7].

Theorem 4.5. Let A ⊂ R be a non-σ-1-symmetrically porous analytic set. Then there
exists a non-σ-1-symmetrically porous compact set F ⊂ A.

Proof. Without any loss of generality, we may assume that A ⊂ (0, 1). Let q ∈ (0, 1) and
r > 0. We define a point-set relation Rq

r on [0, 1] by

Rq
r(x,M)⇔ there exist y ∈ R, r̃ > 0 such that x ∈

(
B(y, r) \B(y, 1

2
r)
)
∩B(y, r̃

q
)

and
(
B(y, r̃) ∪B(2x− y, r̃)

)
∩M = ∅.

We set

R =
⋂

q∈(0,1)

⋂
R>0

⋃
0<r<R

Rq
r.

We can easily verify that R ∈ R([0, 1]) and that M ⊂ (0, 1) is σ-1-symmetrically porous if
and only if M is σ-R-porous. The rest of the proof follows from Theorem 3.11. �

Finally, we apply Theorem 4.5 to answer a question posed by M. J. Evans and P. D. Humke
in [4]. This is the following question.

Question. Does there exist an Fσ set in [0, 1] which is σ-(1− ε)-symmetrically porous for
every 0 < ε < 1 but which is not σ-1-symmetrically porous?

We answer this question positively by proving the next theorem.

Theorem 4.6. There exists a closed set F ⊂ [0, 1] which is σ-(1−ε)-symmetrically porous
for every 0 < ε < 1 but which is not σ-1-symmetrically porous.

Proof. There exists a Borel set A ⊂ (0, 1) which is σ-(1− ε)-symmetrically porous for every
0 < ε < 1 but which is not σ-1-symmetrically porous ([3]). By Theorem 4.5, there exists
a compact non-σ-1-symmetrically porous set F ⊂ A. Since F is a subset of A, it is still
σ-(1− ε)-symmetrically porous for every 0 < ε < 1. �
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