Synthetic approach to Chasles theorem for timelike ruled surface

Mgr. Michal Zamboj

Mathematical Institute of the Charles University, MUUK

> WDS-M
> Prague
> 8.6.2015

Michel Chasles

Michel Floréal Chasles
1793-1880
French mathematician
1841 Professor at theÉcole Polytechnique1846 chair of highergeometry at the SorbonneWorks
1837 Aperçu historique sur l'origine et le développement des méthodes en géométrie
1852 Traité de géométrie
1865 Traité des sections coniques

Chasles theorem (for timelike ruled surface)

Correspondence Mathématique et Physique XI (Bruxelles 1839), p. 53

> Donc :
> Quatre plans tangens à une surface gauche, menés par une même génératrice, ont leur rapport anharmonique égal à celui de leurs quatre points de contact.

Let Σ be a non-developable timelike ruled surface, and $/$ be a generatrix of Σ. Then points on / are in projectivity with tangent planes to Σ in these points.

Timelike ruled surface |cяs

> Through every point of Σ there is a straight line that lies on Σ
> ruling line = generatrix
> finite number of singular (torsal) lines

> 2nd degree surfaces:
> hyperboloid
> hyperbolic paraboloid

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
oriented („length" of) line segment

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
Projection from point O

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
Projection from point O

Cross-ratio

A, B, C, D collinear points

$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
Projection from point O
$(A, B ; C, D)=$ ($A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}$)
Cross-ratio is projective invariant

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
Projection from point O
$(A, B ; C, D)=$
($A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}$)
Cross-ratio is projective invariant
Pencil of lines a, b, c, d
$(A, B ; C, D)=(a, b ; c, d)$

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
Projection from point O
$(A, B ; C, D)=$
($A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}$)
Cross-ratio is projective invariant
Pencil of lines a, b, c, d
$(A, B ; C, D)=(a, b ; c, d)$
3rd dimension

Cross-ratio

A, B, C, D collinear points
$(A, B ; C, D)=\frac{\frac{A C}{B C}}{\frac{A D}{B D}}$
$A C$ - oriented length
Projection from point O
$(A, B ; C, D)=$
($A^{\prime}, B^{\prime} ; C^{\prime}, D^{\prime}$)
Cross-ratio is projective invariant
Pencil of lines a, b, c, d 3rd dimension
$(A, B ; C, D)=(a, b ; c, d)=$ $(\alpha, \beta ; \gamma, \delta)$

Pole and polar

Conic: $x \cdot Q \cdot x^{T}=$
$a_{1,1} x_{1}^{2}+2 a_{1,2} x_{1} x_{2}+a_{2,2} x_{2}^{2}+2 a_{1,0} x_{1} x_{0}+2 a_{2,0} x_{2} x_{0}+a_{0, n} x_{0}^{2}=0$
$Q=\left(\begin{array}{lll}a_{1,1} & a_{1,2} & a_{1,0} \\ a_{2,1} & a_{2,2} & a_{2,0} \\ a_{0,1} & a_{0,2} & a_{0, n}\end{array}\right)$
Pole: $p=\left(\begin{array}{lll}p_{1} & p_{2} & p_{0}\end{array}\right)$
Polar: $p \cdot Q \cdot x^{T}=0$

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant
$(A, B ; P, Q)=-1$

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant
$(A, B ; P, Q)=-1$

Pole and polar (synthetically)

Find harmonic conjugate to P on any secant
$(A, B ; P, Q)=-1$
polar intersects conic in tangent points

Pole and polar plane

$Q=$
$\left(\begin{array}{llll}a_{1,1} & a_{1,2} & a_{1,3} & a_{1,0} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,0} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,0} \\ a_{0,1} & a_{0,2} & a_{0,3} & a_{0, n}\end{array}\right)$
Quadric: $x \cdot Q \cdot x^{T}=0$
Pole:
$p=\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{0}\end{array}\right)$
Polar plane: $p \cdot Q \cdot x^{T}=0$

Pole and polar plane (synthetically)

Find polars on secant planes through P

Pole and polar plane (synthetically)

Find polars on secant planes through P

Pole and polar plane (synthetically)

Find polars on secant planes through P

Plane through polars

Pole and polar plane (synthetically)

Find polars on secant planes through P

Plane through polars
Polar plane intersects quadric in tangent points

Pole and polar plane (synthetically)

Polar planes to points on a line

Surface degree and number of tangent planes

Polar planes to points on a line

Tangent planes through line to a quadric

Surface of 2nd degree has 2 tangent planes

Conjugate polars $\left.\right|_{\text {cas }}$

Polar planes to points on a line

Tangent planes through line to a quadric

Surface of 2nd degree has 2 tangent planes

Polar planes to points through given line rotates around conjugate polar of this line

Timelike ruled surface of 2nd degree |cas

Polar plane to point on surface is tangent plane

Ruling line is
self-conjugate
Tangent planes are in projectivity with their contact points

Chasles theorem for 2nd degree surfaces

Timelike ruled surface of 2nd degree |cas

Polar plane to point on
surface is tangent plane
Ruling line is self-conjugate

Tangent planes are in projectivity with their contact points

Chasles theorem for 2nd degree surfaces

Timelike ruled surface of 2nd degree |cas

Polar plane to point on surface is tangent plane

Ruling line is self-conjugate

Tangent planes are in projectivity with their contact points

Chasles theorem for 2nd degree surfaces

Timelike ruled surface of 2nd degree |cas

Polar plane to point on surface is tangent plane

Ruling line is self-conjugate

Tangent planes are in projectivity with their contact points

Chasles theorem for 2nd degree surfaces

General (algebraic) surface

$$
\begin{aligned}
& x=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array} x_{0}\right. \\
& f(x)=0
\end{aligned}
$$

form of n-th degree
Pole:
$p=\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{0}\end{array}\right)$
1st polar: $\sum_{i=0}^{3} \frac{\partial f(x)}{\partial x_{i}} p_{i}$

General (algebraic) surface

$$
\begin{aligned}
& x=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array} x_{0}\right. \\
& f(x)=0
\end{aligned}
$$

form of n-th degree
Pole:
$p=\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{0}\end{array}\right)$
1st polar: $\sum_{i=0}^{3} \frac{\partial f(x)}{\partial x_{i}} p_{i}$
last polar: $\sum_{i=0}^{3} \frac{\partial f(p)}{\partial p_{i}} x_{i}$

General (algebraic) surface

1st polar intersects
surface in tangent points

Applications in descriptive geometry |mn

1st polar intersects
surface in tangent points
curve of intersection = edge of the shadow

Applications in descriptive geometry

Given 3 points on the generatrix with 3 tangent planes

Simple construction of tangent plane through any other point.

Projectivity of collinear points and pencil of lines can be done with strip of paper

References

1837 CHASLES M.: Aperçu historique sur l'origine et le développement des méthodes en géométrie (Bruxelles)
1839 CHASLES M.: In: Correspondence Mathématique et Physique XI (Bruxelles)
1931 KADEŘÁVEK F., KLÍMA J., KOUNOVSKÝ J.: Deskriptivní geometrie II (Prague)
1941 HLAVATÝ V.: Differenciálni přímková geometrie I-II. (Prague)
1948 BYDŽOVSKÝ B.: Úvod do algebraické geometrie (Prague)
1967 URBAN A.: Deskriptivní geometrie II (Prague)
2011 RICHTER-GEBERT J.: Perspectives on Projective Geometry (Berlin)

Thank you for your attention

