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EU-SILC longitudinal dataset

n = 29292 households in the Czech Republic
monitored periodically every year (2005 - 2016)
each household at most for 4 years

many outcomes (housing, living conditions, social status, ...) of different
types (numeric, binary, ordinal, categorical)

= mixed type data

explanatory variables: time, location, level of urbanisation, type of
dwelling, family size, other personal information, . ..

Divide households into several groups of similar characteristics according to
measured data.
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Longitudinal data of mixed type

Weighted
Household ID  Year family size HY020 HS040 HS050 HS060 HS090 HS110 HS140
2005 1.3 6228.79 1 1 1 2 1 2
1008400 2006 1.3 7214.65 2 2 2 2 1 2
2007 1.3 7566.56 1 1 1 1 1 2
2008 1.5 7039.23 1 1 1 1 1 2
2014 1.5 5665.90 1 1 1 3 1 1
4329500 2015 1.5 6362.58 1 1 1 3 1 2
2016 1.5 6553.61 1 1 1 1 1 2

4/21  Mgr. Jan Vavra Classification Based on Longitudinal Data of a Mixed Type



Classification - longitudinal data of a mixed type

Let’s apply classification in RP! J

Wait! J

@ Different number of questionnaires per household?

@ Different time periods?

@ Distances between categorical variables?

@ Can a suitable metric dealing with these problems be found?
@ And if so, how can we interpret such results?
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Model based clustering

@ Origins: Banfield and Raftery (1993)

@ Outcomes: Y,,i=1,....n

o K models: fe (yi; Xi,¢,%"®) k=1,....K

@ Group probabilities: w = (Wi, ..., wk),0 < wi < 1, wy + -+ wx =1

@ Parameters of interest: 6 = (w, v, ("), ... ()

@ Mixture likelihood:

L(6)

- f[ (i wii (i X, ¢(k))>

i=1 \k=1

6/21  Mgr. Jan Vavra

Classification Based on Longitudinal Data of a Mixed Type



Model based clustering - latent variable approach

Conditional distribution point of view.

Ui e {1,...,K} latent (hidden, unobserved) variables
Y; generated from group k <— U, =k

P [U, = k] = W

Yi|Ui = k ~ f

By Bayes Theorem:

f (v x; (k)
pik(6) = P[Us = K|Y, = y5: ., 6] = ’l:ka(_V/ X, ¢, 9p\"))

21 w;f; (Vi Xi, v, )
j=

Estimation: MLE (EM-algorithm) or Bayesian approach
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Model based clustering - Bayesian approach

@ Choose models f, for given outcome Y;.
(*]

Model parameters 6 = (w, URTIONNS ﬂ/"K))

} viewed as random
Latent variables U;,i=1,...,n
@ Choose suitable prior distributions.
@ Construct an MCMC algorithm (Robert and Casella, 2004).
o Gibbs sampling
@ Generate "a sample” from posterior distributions.
@ Estimate parameters based on the obtained "sample”.

Details in NMST431 or NMTP539.
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Numeric outcome

HY020 = Total disposable household income

Used model: .3 7
@ Random effects models (LMM) § | |
o Laird and Ware (1983) § g |
° N(X,—T,B—l—z,-Tb,',az) 1 j
R = T T T 1
® bi~N(p,%) 0 10 20 30 40 50

Total disposable income [1000 CZK]
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Numeric outcome
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Numeric outcome - random effects model
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@ Model: log (Y,/) =4 t,'/' + b + Ejj

@ Model error: gj ~ N (0,77)

@ Random effects (shift of y-axis): by ~ N (u, X)
@ Fixed effect (slope): 3
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Modelling the mixed type longitudinal data

Binary + Ordinal variable

HS140 = Financial burden of the total housing cost

L =3 ordered categories

@ 3=Not a burden at all, 37 /_
@ 2 = Somewhat a burden, 2 1 5K /—
@ 1 =A heavy burden. 1 \

I T T T T T
2005 2007 2009 2011 2013 2015

Used model Time

@ Latent variable modelling: Y|Y*
@ Y latent numeric outcome

o Thresholdingby —co =y <y <7< - <71 <y =00
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Binary + Ordinal variable - latent variable modelling
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Latent variable (Burden of housing cost)

@ Fixed threshold: v = —1
@ Estimate other thresholds: 72, . ..

o Y;1X;.Zjibi ~N (X[ B+ 2/ by.1)

Yi=1 <
Yi=2 <= <
Yi=3 <= m<
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Diagram for modelling single outcome

Parameters of interest
| OINC)
X.Z (b) @ n=XT8+Z7h

b~N(pX

Y*~N (n, 7_1)
Unobserved variables 4@
Y=j
Y —
Data Y1 <Y <y
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Joint modelling

How can we combine these models for several outcomes of different type? J

@ Independent models?

@ Dependent outcomes!

@ Several LMM can be combined into Multivariate LMM (Hendersen, 1984).
@ Numeric variables + latent numeric variables

@ Random effects from joint multivariate normal distribution.

bN NN NN ywNB ywNO
i

bi=|b3|~Ny|p=|pB| . ==|x8V %8 580
(Y% MO »ON 0B »00

1
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Modelling the mixed type longitudinal data

Diagram - numeric and ordinal variable jointly
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Classification in joint model

@ Use model based clustering.
@ Each model fx,k = 1,..., K of the same form.
@ Choose class-specific parameters, e.g.
o P — (ﬂ(k)7“(k)7z(k)) 7
o p=(v,7).
@ Use Bayesian methodology to get estimates.
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Log total disposable income - classified
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Summary + Related contributions

@ Mixed type data
@ Model based clustering
@ Combination of known methods

@ Clustering in joint models in the world:
@ 1996 - Verbeke and Lesaffre - mixtures of LMM,

@ 2008 - Grilin and Leisch - multivariate mixed type data (flexmix,
EM-algorithm),

@ 2009 - Villarroel et al. - several numeric outcomes,
@ 2014 - Komarek, Komarkova - MMGLMM (mixAX, no ordinal, Bayesian),

@ 2017 - Proust-Lima et al. - several outcomes of the same type (1cmm, ML).
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Further development

@ Add general categorical variables.
@ Robustness to violation of normality assumption.
@ Selection of important regressors.

@ GLMM as an alternative to latent variable modelling.

Thank you for your attention.
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