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EU-SILC - Outcomes of interest

<
2
=
a
£
S
o
©
]
T
<
Pl
2
B
o
o

A

Financial burden of housing cost

Affordability of a one week holiday

Log(Equivalised total disposable income)

8102
L102
9102
S102
102
€102
210z
1102
otoz
6002
8002
002
9002
5002

Do you have a car?

Yes —

No

Cannot —

Yes —

No

Cannot =

8102
L102
9102
S10C
102
€102
zroe
1102
0102
6002
8002
002
9002
5002

Ability to make ends meet

No —

slight —|

Heavy —

6 —

1 -

ol

Afford to pay unexpected expenses

No

Yes —

No —

Yes —|

8102
102
9102
Ss102
102
€102
ztoe
1102
0102
6002
8002
002
9002
S002

Log(Lowest income to make ends meet)

45 4

4.0 —

35 —

3.0 -

35

3.0 —

25 —

2.0 —

8102
L1102
9102
ST02
102
€102
2102
1102
otoe
6002
8002
L1002
9002
S002

8102
L102
9102
ST0C
102
€102
cr0e
1102
otoz
6002
8002
L1002
9002
5002

8102
L1102
9102
ST02
102
€102
2102
1102
otoz
6002
8002
L1002
9002
S002

GLMM Based Clustering

Jan Vavra

2/14



Clustering into G = 4 groups
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Random effects models

Each outcome is modelled by predictor n consisting of

Fixed part - X;’
Random part - Z;' b;

In case of EU-SILC application:
@ Fixed:

@ Random: random intercept Z; b; = big ~ N (0,03) ,i=1,...

intercept

time - quadratic spline with 3 equidistant knots
level of urbanisation

highest education level achieved in the household
presence of a student

presence of a baby

no interaction terms

id

} n=X]B+2Z]b,
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Joint Modelling

GLMM for different types of outcomes

Numeric outcome
@ Linear Mixed-effects Model (LMM)
o Vi [ ~ N, 77T

Ordinal outcome of K levels
@ Ordinal Logistic Regression (OLR)
e p=P [Yo > k|7]o,c} = logit™" (170 — Ck)

o g« =P[Y°=k[1°c]|

e ordered intercepts
—c0=0C<C <---

= Pk—1 — Pk

< Ck—1 < Ck =0

Binary outcome
@ Logistic Regression with random effects
e’
1+ e

o P[YZ=1]n%] =logit™" (n°) = g

General categorical outcome of K levels
@ Multinomial Logistic Regression (MLR)
e 1¢ specific for each level k
P [Yc = k|’r]1c7 . ,7/2,1] =
K

= softmaxy(n°) = ——————
1+ 3820 e’

5/14  Jan Vavra

GLMM Based Clustering



Joint modelling

Models for individual outcomes
@ Numeric: YN ~ LMM (B, bV, 7)
@ Ordinal: Y° ~ ORL (8o, b?, ¢)

Join individual models through joint distribution of random effects

bV 0 =W
b? | i 0 »BN
b¢ 0 SCN
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e Binary: Y2 ~ LR (3s, b?)
@ Categorical: Y ~ MLR (B ¢, bX)
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6/14  Jan Vavra

GLMM Based Clustering



Joint probability density function

h(ylv Ci>C) = p(YI = yf|/8N7Ta/BB7BO7c7/6C7E; CI) =

R nj

- [TITIe {0 (v ] ¢ Ciy) } - (2 s e - LoTm b b ab,
= p ijl Pis>Gri Lij ) 12" exp oY i j

r=1j=1

@ Requires methods for numerical evaluation of the integral
— solved by Laplacian approximation or generally Adaptive Gaussian Quadrature
@ Pinheiro and Chao (2006)
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Model based clustering

To identify different patterns:
@ suppose G latent groups each following model given by h (y;; C;, ¢(9)

@ ¢(9) consists of
@ 1) - parameters common to all latent groups
o 9 - group-specific parameters (fixed effects for evolution in time, ... )

@ group allocation indicators U; € {1,..., G}
@ marginal clustering probabilites 0 < wy :=P[Ui=g] <1, wi+---+wg=1
@ complete set of unknown parameters 6 = {w, v, (", ... 3D}

@ mixture distribution for Y;:

f(yilCi; 6) ZWg (.V/vcl» )
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Clustering probabilities

@ Estimation: Bayesian approach and MCMC methods (Gibbs sampling)

@ Metropolis proposal steps for fixed and random effects

@ By Bayes Theorem:

wgh (.Vi; Ci, C(g)>

G
> weh (i Ci, ¢O)
=1

pig(0) =P U =g|Yi=y;Ci 0] =

— integral approximation required
@ Simple clustering rule:
U =9 < g= argmaxﬁ,}
Lef{l,..., G}
@ Alternatively use sampled cluster indicators U;
@ Software: implemented in ® using the C programming language
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Correlation matrix of random intercepts
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Random intercepts for
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Afford to pay unexpected expenses
Ability to make ends meet

Financial burden of the total housing cost
Do you have a computer?

Do you have a car?
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sults

Clustering into (AB+ = 4 groups with respect to time

Log(Equivalised total disposable income)

Affordability of a one week holiday Financial burden of the total housing cost

Do you have a computer?

78.33%
4.8
4.6

4.4
4.2

3.8
3.6
3.4
3.2

2.8
2.6

= 0.13%
TTTTTTTTTTTTTT

17.40 %
TTTTTTTTTTTTT

Bcannot@No  Oves

11/14  Jan Vavra

GLMM Based Clustering



sults

Clustering into CAB+ = 4 groups with respect to time
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Conclusion

See you at my poster (doors to knihovna) with application to PBC data
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Conclusion

See you at my poster (doors to knihovna) with application to PBC data

Thank you for your attention.
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